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Abstract

Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with
speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in
obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are
very few existing databases of impaired speech, which are also limited in size, the obvious solution to build a speech
acoustic model of impaired speech is by employing adaptation techniques. However, issues that have not been addressed
in existing studies in the area of adaptation for speech impairment are as follows: (1) identifying the most effective
adaptation technique for impaired speech; and (2) the use of suitable source models to build an effective impaired-speech
acoustic model. This research investigates the above-mentioned two issues on dysarthria, a type of speech impairment
affecting millions of people. We applied both unimpaired and impaired speech as the source model with well-known
adaptation techniques like the maximum likelihood linear regression (MLLR) and the constrained-MLLR(C-MLLR). The
recognition accuracy of each impaired speech acoustic model is measured in terms of word error rate (WER), with further
assessments, including phoneme insertion, substitution and deletion rates. Unimpaired speech when combined with
limited high-quality speech-impaired data improves performance of ASR systems in recognising severely impaired
dysarthric speech. The C-MLLR adaptation technique was also found to be better than MLLR in recognising mildly and
moderately impaired speech based on the statistical analysis of the WER. It was found that phoneme substitution was the
biggest contributing factor in WER in dysarthric speech for all levels of severity. The results show that the speech acoustic
models derived from suitable adaptation techniques improve the performance of ASR systems in recognising impaired
speech with limited adaptation data.
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Introduction

Speech is second nature for most of us, to the extent that we

cannot imagine how life would be like without it, as speech

communication is a vital skill in our society. Inability to

communicate verbally is a serious disability that can drastically

affect a person’s life. Speech impairment deprives a person of

communicating with others, and severe speech impairment can be

frustrating for both sufferers and listeners.

Several studies show that about 60% of individuals with speech

impairments have difficulties in communicating orally with others;

such disability severely affects their social life [1]. Speech

impairment is sometimes, but not always, the result of cognitive

impairment. Thus, some sufferers can learn and make sound

judgments, but, due to their poor speaking ability, they have

difficulties in communicating with others; this condition affects

their ability in learning and restricts their chances of gaining a

proper education.

Dysarthria is one of the common types of speech impairments in

several studies on ASR systems for impaired speech. It is a motor

speech impairment caused by neurological diseases such as

cerebral palsy, neurological injuries such as stroke or various

other traumatic brain or nerve injuries [2]. Dysarthric speech is

characterised by weakness, paralysis or poor coordination of the

muscles responsible for speech [3]. As a result, the speech has poor

articulation, low precision, and badly pronounced phonemes; it is

spoken at a very slow rate and has variable intensity. It is difficult

for human listeners to understand this defective speech [4]. On top

of that, dysarthria itself is often a symptom of a gross-motor

disorder, whose other symptoms often hinder a sufferer from using

a keyboard and mouse. Published case studies have shown that

some dysarthric users may find it easier to use speech technology

such as automatic speech recognition (ASR) systems [5–7], instead

of a keyboard.

The traditional approach to alleviate the problem faced by

speech-impaired individuals is to improve their speaking skill with

the assistance of a speech therapist [8]. However, engaging a

personal speech therapist is an expensive solution that may not be

affordable to most sufferers, where the improvement in speaking

skill requires a long period of time.

Recently, speech technology such as automatic speech recog-

nition (ASR) system has offered an alternative solution for

individuals with speech impairment to improve their ability to

communicate orally. Although ASR was originally intended for
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enabling oral communication between man and machine, it has

been increasingly adopted as an assistive tool for individuals

suffering from speech impairments.

An ASR tool is a system where a machine such as a computer is

programmed to recognise and act on spoken language. The most

familiar usage of ASR systems is the conversion of speech input

into text output. ASR systems use several components to recognise

speech, one of the most important being the acoustic model. An

acoustic model is created by taking audio recordings of speech and

their text transcripts, and using software to create a statistical

knowledge base of the sounds that make up each word in a process

known as speech training.

The issue of building a high-quality acoustic model is arguably

the most complex and the most important one in ASR systems [9–

11]. This is because the acoustic model depends on both the

quality and quantity of the recordings. However, in ASR system

development, one prominent issue in acoustic model building is

the availability of a speech database with sufficient quality and

quantity. The lack of speech database is more apparent for the

speech-impaired community, where their physical limitation

hinders the accumulation of sufficient data to fill a speech

database large enough for building an effective speech acoustic

model [12–14].

Due to the scarcity of speech databases available for dysarthric

speakers, the creation of an acoustic model trained exclusively in

pathological speech is a difficult task. As such, two alternatives can

be considered when developing ASR systems for people with

dysarthria. The first one, which is a crude approach, is to use an

unimpaired (normal speech) speech acoustic model to recognise

impaired (dysarthric) speech. However, the speech of a dysarthric

speaker has very low speech intelligibility, causing typical measures

of speech acoustics to have values in ranges that are very different

from those for unimpaired speech [15]. It is unlikely then that the

acoustic models trained in unimpaired speech will be able to adjust

to this mismatch [16,17].

An alternative solution to the scarcity of dysarthric speech is the

use of adaptation techniques where a source model, which can be

an unimpaired speech acoustic model, is transformed to be more

reflective of the speech features of dysarthric speakers. Adaptation

seems to be an approach worth pursuing to overcome the obstacles

in developing ASR systems for dysarthric speech.

However, some of the issues that are not well addressed in

existing research on ASR systems for dysarthric speakers include

the use of the most effective adaptation technique and the most

suitable source model for performing model adaptation. This is

because an acoustic model derived from model adaptation must be

able to interpret variations of speech properties for differing levels

of severity of dysarthric speech [4,5,18].

The remaining sections of the paper are organised as follows. In

Section 2, we briefly describe types of existing ASR speech

acoustic models and available types of speech acoustic models for

dysarthric speakers. Section 3 describes various techniques for

adaptation of dysarthric speech and the most suitable source

model for adaptation. Section 4 describes the methodology used in

this research and includes information on the comprehensive

development of different techniques for adaptation, dataset for

training the speech acoustic model, performance measurement

methods and procedures. Results and discussions are presented in

Section 5 and 6 respectively. Finally, Section 7 serves as the

conclusion with a summary of the major findings.

A. ASR Speech Acoustic Models
There are three categories of speech acoustic models for ASR

differentiated by the degree of user training required before use,

which are speaker dependent, speaker independent and speaker

adaptation ASR.

Speaker dependent (SD) acoustic modelling requires speaker

training or enrolment before use, and a primary user trains the

speech recogniser with samples of his/her own speech. These

systems typically work well only for the person who trains it. The

recognition accuracy of the SD ASR system is very high when

recognising speech of the intended speaker but yields poor results

for users who did not perform voice training before using the

system [9,10,13].

The speaker independent (SI) acoustic model is the exact

opposite of the SD model; this form of ASR does not require any

speaker training before use. SI ASR system is pre-trained during

system development with speech samples from a collection of

many different speakers. An ASR system with SI acoustic model

can be used to recognise voices of many different speakers with

relatively high accuracy if their speech falls within the range of the

collected samples. However, the accuracy of a speaker-indepen-

dent ASR system will generally be lower than that produced by a

speaker-dependent ASR system. While an ASR system with SI

model can show impressive performance, its recognition error (in

terms of word error rate) can be twice or three times greater than

that for the SD acoustic model [9,10].

The speaker adaptation (SA) speech acoustic model is similar to

the speaker-independent ASR in that no initial speaker training is

required before use, and it has attracted much attention over the

last decade. However, unlike SI ASR systems, as the SA ASR

system is used, the model gradually adapts to the speech of the

user. Hence, the rationale for developing an ASR system that

applies the SA model is its ability to recognise speech comparable

to that of the SD model, but requires only a small fraction of

speaker-specific training data needed to build a full SD system.

The SA model is also useful when there is a scarcity of speech

samples of intended users such as those suffering from speech

impairment [12–14,19].

I. Speech Acoustic Model for Dysarthric

Speakers. Earlier research has evaluated different types of

speech acoustic models and performance of ASR systems in

recognising dysarthric speech [1,12–14,16]. Sanders et al. [17]

conducted a comparative study to evaluate the performance of SD

and SI models with dysarthric speech. The SI systems were trained

with unimpaired speech of 5,000 speaker corpuses (40 items per

speaker), whereas the SD systems were trained with the speech of

two dysarthric speakers for 8.5 and 12.8 minutes of speech

respectively. The SI and SD speech acoustic models were tested

using ten dysarthric speakers; each speaker uttered ten utterances.

It was found that the performance of the ASR systems using the

SD model was better than that of the systems using the SI model.

The recognition error of the SI system was between 67–100%,

whereas the recognition error of the SD system was 19–50%; this

marks an improvement in recognition of 50–100% over that of the

SI model. Similar findings were also reported in [15,19]. However,

building SD model for speech-impaired individuals is non-trivial

because of difficulties in obtaining sufficient speech data for

training from an individual afflicted with dysarthria, particularly at

the more severe level [1,12,17].

One of the earlier speech databases available for dysarthric

speakers is Nemours [20], which has been applied in numerous

research projects on ASR for speech impairment [16,21,22]. The

Nemours database contains the voices of 11 dysarthric speakers,

each uttering 74 nonsensical sentences. It also contains the speech

of 11 non-dysarthric speakers uttering the same sentence sets for

control purposes. However, it is not large enough for building SI

model for dysarthric speech.

Severity-Based Adaptation for Dysarthric Speakers
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Recent and larger speech databases such as the TORGO [23]

and the UAspeech databases [24] offer researchers the opportunity

to build efficient SI and SA ASR systems for dysarthric speech.

The TORGO database consists of more than two hours of

recordings of dysarthric speakers, which are suitably applied to the

SI dysarthric speech acoustic model. However, the UAspeech

database, which is based on isolated words (digits), is not a suitable

database to develop a continuous speech recognition system.

As mentioned earlier, the speaker adaptation model seems

useful for dysarthric speech recognition since dysarthric subjects

find it very exhausting to record large amounts of speech for

training ASR systems. Several studies have been carried out on the

SA model for dysarthric speech [16,17,25].These studies have

shown that the SA model can be a good alternative to ASR

systems, especially for more severely speech-impaired dysarthric

speakers with limited or no database. However, the researchers did

not consider the adaptation techniques and the source models that

can be suitably applied to optimise the performance of ASR

systems in recognising dysarthric speech.

Raghavendra et al. [26] compared recognition accuracy of SA

ASR system with that of SD ASR system; the authors found that

the SA ASR system adapted well to speech of speakers with mild

or moderate dysarthria, but the subject with severe dysarthria was

able to achieve better performance with the SD system than with

the SA system. These findings were also supported by Rudzicz

[25] who compared the performance of SD and SA systems using

the Nemours database; the researcher independently varied the

quantity of data for training and the number of Gaussian

components used for modelling the output probability distribu-

tions. The SA technique implemented is not a speaker adaptation

approach in the conventional sense: it uses parameter values for

the SI system as the starting point to train the speech acoustic

model for a particular dysarthric speaker.

Recently, Sharma and Hasegawa-Johnson [27] investigated the

development of medium vocabulary recognisers for dysarthric

speech of various degrees of severity. The most interesting

outcome of their study was that for subjects with very severe

dysarthria, model adaptation was able to achieve substantial

improvement in recognition accuracy compared with the SD

systems. This finding is significant in that it is contrary to the

conclusions of previously published studies [25,26]. Although some

of the existing studies on adaptation for dysarthric speech did not

disclose the adaptation technique used, they can be broadly

categorised into two areas, which are MAP and MLLR. These

techniques are described below (refer to Section 3).

B. Adaptation of Dysarthric speech
A good source model is vital for performing SA, as it will

directly affect the target speech acoustic model. For ASR systems

of impaired speech, some of the source models applied includes

unimpaired and impaired speech models (preferably SI mod-

el).The effect of the adaptation technique is influenced by the

amount of adaptation data that are used to build a target model

based on a source model. When adaptation data consist of those of

a single speaker, a general SI acoustic model can be transformed

into SD acoustic model. When enough adaptation data are

available in a new domain for every single speaker, it is possible to

create SD acoustic model for every speaker. Unfortunately, there

is not always enough adaptation data available to create SD model

for every speaker in a new task.

The issue to be addressed is the way to optimise the use of such

limited data. Adaptation techniques, notably the maximum

likelihood linear regression (MLLR) [28] and the maximum a

posteriori (MAP) [29], are used in large vocabulary continuous

speech recognition (LVCSR) to tune SI recognisers to the speech

of an individual, resulting in SD model, with a relatively small

amount of adaptation data. There is, however, an assumption in

these procedures that the target speech is not a gross mismatch to

that used to train the SI models.

MLLR is a technique typically used for speaker adaptation

purposes in speech recognition systems. MLLR [28] adapts the

observation probability of the hidden Markov models (HMMs) in

a parametric way, where it finds a transform vector that maximises

the likelihood of the adaptation data from a set of transformed

Gaussian parameters. HMMs are widely used in pattern

recognition applications, most notably speech recognition. A

HMM consists of a recurrent finite-state Markov chain, and a

distribution over that state for each transition in the Markov

Chain. The states and transitions of the Markov chain are hidden

from observation so that only the output symbols are visible [30].

Transitions between the states are governed by a set of

probabilities called transition probabilities, using the following

formula:

anam~anzm ð1Þ

Where aij is the state transition probability, qt denotes the

current state, and N is the number of states. Unlike the standard

MAP adaptation, which adapts only the observed Gaussian

components, MLLR transforms are typically estimated across a

set of Gaussians, a regression class that shares the same

transformation parameters [31]. In the general MLLR framework,

both mean and variance parameters are transformed as follows

[31]:

m̂m~Amzb ð2Þ

ŜS~HSHT ð3Þ

Where m is a mean vector in the model, S is its corresponding

covariance matrix, m̂m and ŜS are the adapted mean and covariance

matrix, respectively. The likelihood function of the adaptation

data are to be maximised with respect to the transform parameters

(A;b;H). This is performed using the expectation maximisation

(EM) in two steps [28], by estimating the covariance transforma-

tion, H after the mean transform of A and b.

The MLLR transformation is applied to all model parameters

irrespective of whether they have been observed in the adaptation

data. This is achieved by allowing transformation to be shared

among the groups of model parameters, by using regression

classes. The basic assumption is densities that are assigned to the

same transformation class exhibit similar acoustic properties and

can therefore be transformed in the similar way. This means that

the MLLR technique is suitable for target data that are of small

amounts and are incomplete.

The main problem of the MLLR adaptation technique is the

reliability of estimating the regression coefficients from the

available training data. The constrained MLLR (CMLLR) [32]

is an extension of the MLLR technique whereby the former

performs transformation of the mean vectors while the latter

performs both the mean vectors and the covariance matrix

adaptation. CMLLR simplifies the regression model by using

diagonal or block-diagonal covariance matrices [28], thereby

reducing the number of parameters in the linear regression model,

or to share the mean and the variance transforms. For an arbitrary

Severity-Based Adaptation for Dysarthric Speakers
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Gaussian component in a regression class, the parameters are

transformed using CMLLR as follows [31]:

m̂m~Amzb ð4Þ

ŜS~ASAT ð5Þ

Where the linear transform A is used for the adaptation of both m
and S. The main difference in CMLLR from MLLR is that, using

the same number of parameters, the covariance matrices are also

adapted. The algorithm used for the CMLLR adaptation is

normally the same as that used for MLLR such as EM. In

CMLLR, sufficient statistics are computed for the current

estimates, and the likelihood function is maximised with respect

to these parameters [31]. CMLLR can be used in speaker-

recognition systems to extract features that are more specifically

focused on the speaker-related characteristics than the standard

spectral envelope features [33].

MAP considers model parameters to be random variables with a

known prior distribution [27]. Given a model parameter h with a

prior distribution f (h) and sequence of observations

O = {O1,O2,On}, the MAP estimate for h is given by:

hMAP~arg max
h

p O hjð Þ ð6Þ

~arg max
h

h O hjð Þf hð Þ ð7Þ

Where h (O|h) is the density function for observation O, from

which the model parameters estimate h is to be estimated. In the

case where no knowledge exists regarding the prior distribution f

(h), the MAP estimate equates to the maximum likelihood

estimates. In contrast to MLLR, in MAP, only the parameters

for which observation exists are adapted. As the amount of

adaptation increases, most of the original parameters are adapted

and, in principle, the MAP estimates converge towards the

maximum likelihood estimates.

MAP and MLLR have been applied in several studies for the

adaptation of dysarthric speech. For instance, the MAP technique

has been applied in [27,34], and the MLLR technique has been

applied in [19,34,35] with acceptable recognition rates. In [36], a

comparative study has been conducted to compare the perfor-

mance of the MAP and MLLR techniques in terms of the

recognition of impaired speech; it was found that MLLR

performed better compared with MAP. However, no existing

work has been carried out on the performance of CMLLR for

dysarthric speech.

Methods

This research experiments with different adaptation techniques

and source models that can be suitably applied for the optimum

performance of an ASR system in recognising dysarthric speech.

An adapted acoustic model for recognising the dysarthric speech

of Nemours was built by adapting two SI models based on the

unimpaired TIMIT [37] and the impaired TORGO [23] speech;

the aim was to assess the suitability of these two SI models as the

source model and identify any emerging differences between the

models. The performance of the ASR system under each identified

adaptation technique (MLLR and C-MLLR) and the source

model (unimpaired and impaired speech) is measured in terms of

the word error rate (WER) for each level of severity of impaired

speech (mild, moderate and severe). We have performed a

statistical analysis to determine any significant difference in the

variance of WER. This section describes the databases, research

methodology, performance measures and equipment involved in

our experiments.

A. Speech Databases
The Nemours database contains the speech samples of 11

dysarthric males and one non-dysarthric male, each uttering 74

syntactically invariant short English sentences and two additional

paragraphs [20]. The speakers of the Nemours database have been

categorised according to three types of speech impairment

severity, which are mild, moderate and severe. These classifica-

tions were based on the intelligibility scores in [26,38]; speakers

with intelligibility scores exceeding 80% were classified as mild,

whereas speakers with intelligibility scores of less than 60% were

classified as severe, and the rest of the speakers were classified as

moderate as shown in Table 1. The classification is crucial to

determine the performance of the ASR system in recognising the

dysarthric speech for the different levels of severity. From the 11

speakers of Nemours, nine speakers were chosen; the speech of

speaker KS was omitted because of missing and incomplete

records, and the speech of speaker LL was left out to maintain the

same number of speakers for each severity type.

The TIMIT Acoustic-Phonetic Continuous Speech Corpus is

widely used for both speech and speaker recognition tests, and

each utterance is phonetically hand-labelled. TIMIT contains

recordings from 630 English speakers (438 males and 192 females).

After excluding dialectal variants, a total of 5,040 sentences were

used as the training data to build the SI model of unimpaired

speech. An experiment conducted in [40] showed that phoneme

recognition performed well on the TIMIT speech corpus when the

HTK toolkit used the Bigram language model.

TORGO consists of seven dysarthric subjects’ speech, each

uttering three hours of data (about 500 utterances each). 3,500

sentences were used for the training data to build the SI model of

impaired speech.

Table 1. The classification of speakers in Nemours database.

Speakers Intelligibility score Severity Types

FB 92.9 Mild

MH 92.1 Mild

BB 89.7 Mild

LL* 84.4 Mild

JF 78.5 Moderate

RL 73.3 Moderate

RK 68.6 Moderate

BK 58.2 Severe

BV 57.5 Severe

SC 51.5 Severe

KS* Not available Unknown

*Not included for model adaptation.
doi:10.1371/journal.pone.0086285.t001

Severity-Based Adaptation for Dysarthric Speakers
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B. Research Procedures
The procedure of this research begins with the process of

building SI model for TIMIT and TORGO. This is followed by

the model adaptation of Nemours for building SA (adapted)

speech acoustic model to be applied by an ASR system for

recognising impaired speech. The detailed procedure is described

below.

I. Building Source SI Models. The baseline SI model built

with TIMIT and TORGO was developed using the HTK toolkit

[39]. A Hamming window of 25 milliseconds moving at a frame

rate of 10 milliseconds was applied to the waveform data to

convert them to 12 MFCCs (using 26 filterbanks); the energy, delta

and acceleration coefficients were then added. The standard three

state left-to-right HMM topology was applied during training with

the standard maximum-likelihood technique.

II. MLLR and C-MLLR Adaptation for Dysarthric

Speech. Each of the baseline SI models (TIMIT and TORGO)

is adapted using Nemours, which has been categorised into three

levels of severity: mild, moderate and severe. All the adaptations

(MLLR and CMLLR) make use of a single Gaussian mixture

model [31], and we have applied the BiGram statistical language

model of the respective speech databases.

The MLLR and CMLLR adaptations of the Nemours database

based on the severity levels are described in Table 2, including the

source models of TIMIT and TORGO, the severity levels (mild,

moderate and severe), the adapted models (mild, moderate and

severe) and the test data of Nemours. The adapted model was built

using 50 sentences from each dysarthric speaker of Nemours, while

the remaining 24 were used for testing.

C. Performance Measure
We have applied the leave-one-out evaluation for measuring the

effectiveness of the two SI models. The effectiveness of an ASR

system is generally measured in terms of word error rate (WER).

WER measures global and incorrect word recognition in a total

recognition task. As an alternative, an error rate may also be

measured in smaller units such as phonemes, syllables or detailed

errors, including phoneme insertion, substitution and deletion

Table 2. The experimental set-up of this study.

Experiment Source SI model Severity level Adapted dysarthric model Test data

MILD-A TIMIT Mild 1. Speaker FB 1. Speaker FB

MILD-B 2. Speaker BB 2. Speaker BB

MILD-C 3. Speaker MH 3. Speaker MH

MOD-A Moderate 1. Speaker JF 1. Speaker JF

MOD-B 2. Speaker RK 2. Speaker RK

MOD-C 3. Speaker RL 3. Speaker RL

SEV-A Severe 1. Speaker SC 1. Speaker SC

SEV-B 2. Speaker BK 2. Speaker BK

SEV-C 3. Speaker BV 3. Speaker BV

MILD-A TORGO Mild 1. Speaker FB 1. Speaker FB

MILD-B 2. Speaker BB 2. Speaker BB

MILD-C 3. Speaker MH 3. Speaker MH

MOD-A Moderate 1. Speaker JF 1. Speaker JF

MOD-B 2. Speaker RK 2. Speaker RK

MOD-C 3. Speaker RL 3. Speaker RL

SEV-A Severe 1. Speaker SC 1. Speaker SC

SEV-B 2. Speaker BK 2. Speaker BK

SEV-C 3. Speaker BV 3. Speaker BV

doi:10.1371/journal.pone.0086285.t002

Table 3. The WER calculation for the uttered sentences ‘‘The two weeping the bit’’ in terms of phoneme addition, substitution and
omission.

Error

Input word Phoneme Insertion Phoneme Substitution Phoneme Deletion

The

two big

weeping sleeping sleeping

the -

bit bet

doi:10.1371/journal.pone.0086285.t003

Severity-Based Adaptation for Dysarthric Speakers
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rates [41] as follows:

WER~
InsertionzSubstitutionzDeletion

Number of Words
|100% ð8Þ

Where:

N Phoneme insertion: An extra sound or sounds added to the

intended word due to slow speaking rate of a dysarthric

speaker, which causes a monosyllabic word to be interpreted as

two syllables.

N Phoneme substitution: One phoneme is substituted with another

due to errors in pronunciation made by people suffering from

dysarthria, e.g. twee instead of tree.

N Phoneme deletion: Certain sounds are not produced by the people

suffering from dysarthria, which causes all the syllables or

specific sounds to be omitted.

For example, the sentence ‘‘the two weeping the bit’’ uttered by

speaker BB is recognised by the ASR system as ‘‘the big is sleeping

the bet’’. The WER for this test data is calculated as shown in

Table 3.

Based on Table 3, the WER of the sentence ‘‘the two weeping

the bit’’ can be calculated as follows:

Table 4. WERs in recognising dysarthric speech using the
adapted models of TIMIT and TORGO.

Experiment Adapted Models

TIMIT TORGO

MLLR CMLLR MLLR CMLLR

MILD-A 9.23% 8.74% 10.65% 9.84%

MILD-B 13.95% 13.05% 15.54% 14.12%

MILD-C 11.06% 9.87% 11.98% 10.96%

MOD-A 30.17% 27.28% 33.98% 30.14%

MOD-B 50.24% 44.62% 44.03% 39.27%

MOD-C 42.62% 39.38% 37.94% 34.46%

SEV-A 77.82% 67.14% 67.92% 59.96%

SEV-B 67.68% 58.43% 58.42% 51.41%

SEV-C 71.44% 61.56% 62.95% 55.36%

doi:10.1371/journal.pone.0086285.t004

Figure 1. The box plot for the WER arising from the use of TIMIT adapted models.
doi:10.1371/journal.pone.0086285.g001

Severity-Based Adaptation for Dysarthric Speakers
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WER~3=5|100%~60% ð9Þ

The WER of the sentence can be analysed into addition as 15%

(1/4660%), substitution as 45% (3/4660%) and omission as 0%

(non-occurrence). The sum of all the three errors of addition,

substitution and deletion is equal to the WER of the sentences ‘‘the

two weeping the bit’’, which is 60%.

D. Statistical analysis
We have performed the ANOVA test to measure any significant

difference in the WER between the two techniques globally and at

each level of severity with TIMIT being the denominator and

TORGO as the numerator. The ANOVA test is also performed

for the WERs arising from the phoneme insertion, substitution and

deletion for the different levels of severity.

Results

The recognition of dysarthric speech using the TIMIT SI model

is more accurate for the mildly impaired speech (for both

adaptation techniques), while the one based on TORGO performs

well in recognising the moderately impaired and the severely

impaired speech (for both adaptation techniques) except for

experiment MOD-A. The CMLLR technique shows a lower

WER than the MLLR technique for both the TIMIT and

TORGO adapted model. Table 4 presents the WERs in

recognising the dysarthric speech of Nemours.

For the TIMIT and TORGO databases, we found that there is

a significant difference in WER for MLLR and CMLLR

Figure 2. The box plot for the WER arising from the use of TORGO adapted models.
doi:10.1371/journal.pone.0086285.g002

Table 5. Results of the ANOVA test on WER for each severity level using the adapted models of TIMIT and TORGO.

Severity Adapted Models

TIMIT TORGO

Mild significant difference in mean at p,0.05 (df = 17, F = 0.00, p = 0.00) significant difference in mean at p,0.05 (df = 21, F = 3.876, p = 0.00)

Moderate no significant difference in mean at p,0.05 (df = 65, F = 1.307, p = 0.300) no significant difference in mean at p,0.05 (df = 63, F = 0.736, p = 0.787)

Severe significant difference in mean at p,0.05 (df = 109, F = 2.080, p = 0.032) significant difference in mean at p,0.05 (df = 88, F = 98.384, p = 0.00)

doi:10.1371/journal.pone.0086285.t005
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techniques at p,0.05 (degree of freedom of 193 for TIMIT and

174 for TORGO. The F value is 4.759 for TIMIT and 6.880 for

TORGO). Figures 1 and 2 show the box plot for the WER arising

from the use of TIMIT and TORGO adapted models. For

TIMIT based SI model as shown by Figure 1, the box plot of

MLLR is relatively short as compared with that of CMLLR, which

indicates that the WER of MLLR is significantly closer for all

levels of severity. The box plot also shows that there is significant

difference in WER between MLLR and CMLLR techniques.

Similar results are also found for the TORGO-based SI model as

shown in Figure 2. This shows that the adaptation technique plays

an important role in recognition of dysarthric speech.

For each severity level, the results of the ANOVA test are

presented in Table 5. Based on Table 5, it can be seen that the

WER of the mildly and severe dysarthric speech is significantly

different for the MLLR (denominator) and CMLLR (numerator)

techniques for both the TIMIT and TORGO adapted models.

However, we found no significant difference in mean for the

moderately dysarthric speech.

Our further analysis of WERs shows that phoneme substitution

contributes to the highest WER in recognising the dysarthric

speech for all experiments. Figure 3 shows the WER analysis in

terms of phoneme deletion, insertion and substitution.

For phoneme insertion, the adapted model of TORGO shows a

higher WER for the mildly and the moderately impaired speech,

while the phoneme insertion is greater for the TIMIT, especially

the severely impaired dysarthric speech. Plosives show the highest

WER arising from phoneme insertion for all severity levels,

followed by affricatives and fricatives. Nasals exhibit the lowest

effect of phoneme insertion for both the TIMIT and the

TORGO-adapted speech acoustic models.

For phoneme substitution, TORGO shows higher WER

compared with TIMIT for the mildly dysarthric speech, whereas

the phoneme substitution for the moderately and severely

impaired speech is higher for TIMIT compared with TORGO.

We found that the effect of phoneme substitution was the highest

for plosives at all severity levels, followed by affricatives and

fricatives.

For the WERs caused by phoneme deletion, the TIMIT

adapted model shows greater WER for the severely impaired

speech. On the other hand, the TORGO speech acoustic model

has a higher phoneme deletion for the mildly and moderately

impaired speech. The effect of phoneme deletion is the highest for

plosives.

Table 6 shows the results for the ANOVA test to determine any

significant difference in the mean of WER for each type of

phoneme, particularly vowels, nasals and plosives for different

adaptation models of TIMIT (denominator) and TORGO

(numerator). For phoneme deletion, we did not find any significant

difference in the mean of WER for vowels (mild, moderate and

severe dysarthric speech), nasals (severe dysarthric speech), plosives

(mild, moderate and severe dysarthric speech), and others

(moderate and severe dysarthric speech) at p,0.05.

For phoneme insertion, there is no significant difference in the

mean of WER for vowels (mild, moderate and severe dysarthric

speech), nasals (moderate and severe dysarthric speech), plosives

(severe dysarthric speech), and others (moderate and severe

dysarthric speeches). For phoneme substitution, we found that

there is no significant difference in the mean WER for nasals

(severe dysarthric speech), and others (severe dysarthric speech) at

p,0.05.

Based on the ANOVA test, we found that the WER of TIMIT

and TORGO did not show any significant difference in phoneme

deletion and insertion, particularly for vowels and plosives at most

of the severity levels. However, we did find significant difference in

WER for phoneme substitution at all severity levels.

Discussion

In this research, we have determined the performance of the

ASR system in recognising impaired speech; the target model was

adapted using the source model of both the unimpaired speech of

TIMIT and the impaired speech of TORGO. The WERs of the

two source models are different, with TORGO being better for

recognising severe dysarthric speech while TIMIT is better for

recognising mild dysarthric speech.

The adapted model built using CMLLR performed better than

the model built using MLLR for all three levels of severity (mild,

moderate and severe). This is because the CMLLR technique is

used to extract features that are more specifically focused on the

speaker-related speech properties rather than the standard spectral

Figure 3. WER analysis in terms of phoneme deletion, insertion and substitution.
doi:10.1371/journal.pone.0086285.g003
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envelops [31]. This is supported by the ANOVA results that show

a significant difference in the mean of WER for mild and severe

dysarthric speech. However, we did not find any significant

difference in variance of WERs for the moderate test data. The

similarity in the ANOVA results reveals that the recognition of

dysarthric speech depends more on the adaptation techniques

rather than the type of adaptation source model.

In recognising the severely impaired dysarthric speech, the

performance of the TORGO SI model is better than that of

TIMIT although the former has a relatively smaller database. The

better performance of the TORGO SI model is because the more

severely impaired dysarthric speech has properties that are clearly

different from those of the unimpaired speech, which are difficult

to be integrated with the severely impaired dysarthric speech.

The results of the WER analysis show that the major factor

causing the recognition error of dysarthric speech is phoneme

substitution. Based on the ANOVA test, we found that the mean

of WER of phoneme substitution is significantly different for the

TIMIT and TORGO source models, especially for mildly and

moderately dysarthric speech. From this test, we found that

phoneme substitution is influenced by the level of severity of

dysarthric speech.

The recognition error of consonants is much higher than that of

vowels for all experiments. Among consonants, plosives have the

highest occurrence of WERs in terms of phoneme insertion,

Table 6. The results of the ANOVA test to determine any significant difference in the mean of WER for each type of phoneme,
particularly vowels, nasals and plosives for different adaptation models (TIMIT and TORGO).

Types Severity Phoneme type ANOVA df F p

Phoneme deletion Mild vowel no significant difference 21 0.731 0.676

nasal significant difference 4 0.000 0.000

plosives no significant difference 21 0.816 0.648

others significant difference 4 0.000 0.000

Moderate vowel no significant difference 39 0.651 0.781

nasal significant difference 9 0.000 0.000

plosives no significant difference 39 0.506 0.925

others no significant difference 15 1.358 0.450

Severe vowel no significant difference 54 0.774 0.689

nasal no significant difference 16 3.500 0.399

plosives no significant difference 54 0.645 0.869

others no significant difference 26 0.680 0.763

Phoneme Insertion Mild vowel no significant difference 16 0.943 0.308

nasal significant difference 2 0.000 0.000

plosives significant difference 48 8.569 0.000

others significant difference 20 20.175 0.000

Moderate vowel no significant difference 31 0.871 0.603

nasal no significant difference 8 1.761 0.524

plosives significant difference 48 5.770 0.000

others no significant difference 20 6.301 0.070

Severe vowel no significant difference 41 0.797 0.701

nasal no significant difference 9 0.668 0.713

plosives no significant difference 48 0.738 0.775

others no significant difference 20 0.519 0.855

Phoneme Substitution Mild vowel significant difference 90 30.777 0.000

nasal significant difference 20 7.322 0.001

plosives significant difference 90 30.600 0.000

others significant difference 32 9.704 0.000

Moderate vowel significant difference 90 11.256 0.000

nasal significant difference 20 5.150 0.014

plosives significant difference 90 8.340 0.000

others significant difference 32 8.443 0.000

Severe vowel significant difference 90 3.383 0.000

nasal no significant difference 20 0.590 0.800

plosives significant difference 90 9.721 0.000

others no significant difference 32 0.428 0.952

doi:10.1371/journal.pone.0086285.t006
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substitution and deletion. The next highest WERs for consonants

are affricatives and fricatives. The high WERs for these types of

consonants are attributed to the speech properties of dysarthric

speakers, especially imprecise articulation of consonants, pro-

longed phoneme and loudness decay.

Conclusion

The biggest setback to the development of an ASR system for

impaired speech is the small size of speech that can be acquired

from a speaker with speech impairment. As such, it is vital for

developers of ASR systems of impaired speech to seek alternative

means for such development. Although the acoustic characteristics

for unimpaired and impaired speech are indeed very different, the

acoustic model of the former can be used as a source model for

adapting the targeted impaired speech. The performance of the

unimpaired speech acoustic model can be further improved using

an effective adaptation technique. In this research, it was found

that the CMLLR technique performs better than MLLR when

using an unimpaired speech model.

The performance of the ASR system in recognising the speech

of each speaker in the Nemours database is different, indicating a

significant intra-speaker variation among dysarthric speakers.

However, intra-speaker variability cannot be determined in this

research due to the very small number of speakers in the Nemours

database. Hence, intra-speaker acoustic variability warrants

consideration in future work.
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