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Abstract

Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with
speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in
obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are
very few existing databases of impaired speech, which are also limited in size, the obvious solution to build a speech
acoustic model of impaired speech is by employing adaptation techniques. However, issues that have not been addressed
in existing studies in the area of adaptation for speech impairment are as follows: (1) identifying the most effective
adaptation technique for impaired speech; and (2) the use of suitable source models to build an effective impaired-speech
acoustic model. This research investigates the above-mentioned two issues on dysarthria, a type of speech impairment
affecting millions of people. We applied both unimpaired and impaired speech as the source model with well-known
adaptation techniques like the maximum likelihood linear regression (MLLR) and the constrained-MLLR(C-MLLR). The
recognition accuracy of each impaired speech acoustic model is measured in terms of word error rate (WER), with further
assessments, including phoneme insertion, substitution and deletion rates. Unimpaired speech when combined with
limited high-quality speech-impaired data improves performance of ASR systems in recognising severely impaired
dysarthric speech. The C-MLLR adaptation technique was also found to be better than MLLR in recognising mildly and
moderately impaired speech based on the statistical analysis of the WER. It was found that phoneme substitution was the
biggest contributing factor in WER in dysarthric speech for all levels of severity. The results show that the speech acoustic
models derived from suitable adaptation techniques improve the performance of ASR systems in recognising impaired

speech with limited adaptation data.
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Introduction

Speech is second nature for most of us, to the extent that we
cannot imagine how life would be like without it, as speech
communication is a vital skill in our society. Inability to
communicate verbally is a serious disability that can drastically
affect a person’s life. Speech impairment deprives a person of
communicating with others, and severe speech impairment can be
frustrating for both sufferers and listeners.

Several studies show that about 60% of individuals with speech
impairments have difficulties in communicating orally with others;
such disability severely affects their social life [1]. Speech
impairment is sometimes, but not always, the result of cognitive
impairment. Thus, some sufferers can learn and make sound
judgments, but, due to their poor speaking ability, they have
difficulties in communicating with others; this condition affects
their ability in learning and restricts their chances of gaining a
proper education.

Dysarthria is one of the common types of speech impairments in
several studies on ASR systems for impaired speech. It is a motor
speech impairment caused by neurological diseases such as
cerebral palsy, neurological injuries such as stroke or various
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other traumatic brain or nerve injuries [2]. Dysarthric speech is
characterised by weakness, paralysis or poor coordination of the
muscles responsible for speech [3]. As a result, the speech has poor
articulation, low precision, and badly pronounced phonemes; it is
spoken at a very slow rate and has variable intensity. It is difficult
for human listeners to understand this defective speech [4]. On top
of that, dysarthria itself is often a symptom of a gross-motor
disorder, whose other symptoms often hinder a sufferer from using
a keyboard and mouse. Published case studies have shown that
some dysarthric users may find it easier to use speech technology
such as automatic speech recognition (ASR) systems [5—7], instead
of a keyboard.

The traditional approach to alleviate the problem faced by
speech-impaired individuals is to improve their speaking skill with
the assistance of a speech therapist [8]. However, engaging a
personal speech therapist is an expensive solution that may not be
affordable to most sufferers, where the improvement in speaking
skill requires a long period of time.

Recently, speech technology such as automatic speech recog-
nition (ASR) system has offered an alternative solution for
individuals with speech impairment to improve their ability to
communicate orally. Although ASR was originally intended for
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enabling oral communication between man and machine, it has
been increasingly adopted as an assistive tool for individuals
suffering from speech impairments.

An ASR tool is a system where a machine such as a computer is
programmed to recognise and act on spoken language. The most
familiar usage of ASR systems is the conversion of speech input
into text output. ASR systems use several components to recognise
speech, one of the most important being the acoustic model. An
acoustic model is created by taking audio recordings of speech and
their text transcripts, and using software to create a statistical
knowledge base of the sounds that make up each word in a process
known as speech training.

The issue of building a high-quality acoustic model is arguably
the most complex and the most important one in ASR systems [9—
11]. This is because the acoustic model depends on both the
quality and quantity of the recordings. However, in ASR system
development, one prominent issue in acoustic model building is
the availability of a speech database with sufficient quality and
quantity. The lack of speech database is more apparent for the
speech-impaired community, where their physical limitation
hinders the accumulation of sufficient data to fill a speech
database large enough for building an effective speech acoustic
model [12-14].

Due to the scarcity of speech databases available for dysarthric
speakers, the creation of an acoustic model trained exclusively in
pathological speech is a difficult task. As such, two alternatives can
be considered when developing ASR systems for people with
dysarthria. The first one, which is a crude approach, is to use an
unimpaired (normal speech) speech acoustic model to recognise
impaired (dysarthric) speech. However, the speech of a dysarthric
speaker has very low speech intelligibility, causing typical measures
of speech acoustics to have values in ranges that are very different
from those for unimpaired speech [15]. It is unlikely then that the
acoustic models trained in unimpaired speech will be able to adjust
to this mismatch [16,17].

An alternative solution to the scarcity of dysarthric speech is the
use of adaptation techniques where a source model, which can be
an unimpaired speech acoustic model, is transformed to be more
reflective of the speech features of dysarthric speakers. Adaptation
seems to be an approach worth pursuing to overcome the obstacles
in developing ASR systems for dysarthric speech.

However, some of the issues that are not well addressed in
existing research on ASR systems for dysarthric speakers include
the use of the most effective adaptation technique and the most
suitable source model for performing model adaptation. This is
because an acoustic model derived from model adaptation must be
able to interpret variations of speech properties for differing levels
of severity of dysarthric speech [4,5,18].

The remaining sections of the paper are organised as follows. In
Section 2, we briefly describe types of existing ASR speech
acoustic models and available types of speech acoustic models for
dysarthric speakers. Section 3 describes various techniques for
adaptation of dysarthric speech and the most suitable source
model for adaptation. Section 4 describes the methodology used in
this research and includes information on the comprehensive
development of different techniques for adaptation, dataset for
training the speech acoustic model, performance measurement
methods and procedures. Results and discussions are presented in
Section 5 and 6 respectively. Finally, Section 7 serves as the
conclusion with a summary of the major findings.

A. ASR Speech Acoustic Models

There are three categories of speech acoustic models for ASR
differentiated by the degree of user training required before use,
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which are speaker dependent, speaker independent and speaker
adaptation ASR.

Speaker dependent (SD) acoustic modelling requires speaker
training or enrolment before use, and a primary user trains the
speech recogniser with samples of his/her own speech. These
systems typically work well only for the person who trains it. The
recognition accuracy of the SD ASR system is very high when
recognising speech of the intended speaker but yields poor results
for users who did not perform voice training before using the
system [9,10,13].

The speaker independent (SI) acoustic model is the exact
opposite of the SD model; this form of ASR does not require any
speaker training before use. SI ASR system is pre-trained during
system development with speech samples from a collection of
many different speakers. An ASR system with SI acoustic model
can be used to recognise voices of many different speakers with
relatively high accuracy if their speech falls within the range of the
collected samples. However, the accuracy of a speaker-indepen-
dent ASR system will generally be lower than that produced by a
speaker-dependent ASR system. While an ASR system with SI
model can show impressive performance, its recognition error (in
terms of word error rate) can be twice or three times greater than
that for the SD acoustic model [9,10].

The speaker adaptation (SA) speech acoustic model is similar to
the speaker-independent ASR in that no initial speaker training is
required before use, and it has attracted much attention over the
last decade. However, unlike SI ASR systems, as the SA ASR
system is used, the model gradually adapts to the speech of the
user. Hence, the rationale for developing an ASR system that
applies the SA model is its ability to recognise speech comparable
to that of the SD model, but requires only a small fraction of
speaker-specific training data needed to build a full SD system.
The SA model is also useful when there is a scarcity of speech
samples of intended users such as those suffering from speech
impairment [12-14,19].

I. Speech Model for
Speakers. Farlier research has evaluated different types of
speech acoustic models and performance of ASR systems in
recognising dysarthric speech [1,12-14,16]. Sanders et al. [17]
conducted a comparative study to evaluate the performance of SD
and SI models with dysarthric speech. The SI systems were trained
with unimpaired speech of 5,000 speaker corpuses (40 items per
speaker), whereas the SD systems were trained with the speech of
two dysarthric speakers for 8.5 and 12.8 minutes of speech
respectively. The SI and SD speech acoustic models were tested
using ten dysarthric speakers; each speaker uttered ten utterances.
It was found that the performance of the ASR systems using the
SD model was better than that of the systems using the SI model.
The recognition error of the SI system was between 67-100%,
whereas the recognition error of the SD system was 19-50%; this
marks an improvement in recognition of 50-100% over that of the
SI model. Similar findings were also reported in [15,19]. However,
building SD model for speech-impaired individuals is non-trivial
because of difficulties in obtaining sufficient speech data for
training from an individual afflicted with dysarthria, particularly at
the more severe level [1,12,17].

One of the earlier speech databases available for dysarthric
speakers is Nemours [20], which has been applied in numerous
research projects on ASR for speech impairment [16,21,22]. The
Nemours database contains the voices of 11 dysarthric speakers,
each uttering 74 nonsensical sentences. It also contains the speech
of 11 non-dysarthric speakers uttering the same sentence sets for
control purposes. However, it is not large enough for building SI
model for dysarthric speech.

Acoustic Dysarthric
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Recent and larger speech databases such as the TORGO [23]
and the UAspeech databases [24] offer researchers the opportunity
to build efficient SI and SA ASR systems for dysarthric speech.
The TORGO database consists of more than two hours of
recordings of dysarthric speakers, which are suitably applied to the
SI dysarthric speech acoustic model. However, the UAspeech
database, which is based on isolated words (digits), is not a suitable
database to develop a continuous speech recognition system.

As mentioned earlier, the speaker adaptation model seems
useful for dysarthric speech recognition since dysarthric subjects
find it very exhausting to record large amounts of speech for
training ASR systems. Several studies have been carried out on the
SA model for dysarthric speech [16,17,25]. These studies have
shown that the SA model can be a good alternative to ASR
systems, especially for more severely speech-impaired dysarthric
speakers with limited or no database. However, the researchers did
not consider the adaptation techniques and the source models that
can be suitably applied to optimise the performance of ASR
systems in recognising dysarthric speech.

Raghavendra et al. [26] compared recognition accuracy of SA
ASR system with that of SD ASR system; the authors found that
the SA ASR system adapted well to speech of speakers with mild
or moderate dysarthria, but the subject with severe dysarthria was
able to achieve better performance with the SD system than with
the SA system. These findings were also supported by Rudzicz
[25] who compared the performance of SD and SA systems using
the Nemours database; the researcher independently varied the
quantity of data for training and the number of Gaussian
components used for modelling the output probability distribu-
tions. The SA technique implemented is not a speaker adaptation
approach in the conventional sense: it uses parameter values for
the SI system as the starting point to train the speech acoustic
model for a particular dysarthric speaker.

Recently, Sharma and Hasegawa-Johnson [27] investigated the
development of medium vocabulary recognisers for dysarthric
speech of various degrees of severity. The most interesting
outcome of their study was that for subjects with very severe
dysarthria, model adaptation was able to achieve substantial
improvement in recognition accuracy compared with the SD
systems. This finding is significant in that it is contrary to the
conclusions of previously published studies [25,26]. Although some
of the existing studies on adaptation for dysarthric speech did not
disclose the adaptation technique used, they can be broadly
categorised into two areas, which are MAP and MLLR. These
techniques are described below (refer to Section 3).

B. Adaptation of Dysarthric speech

A good source model is vital for performing SA, as it will
directly affect the target speech acoustic model. For ASR systems
of impaired speech, some of the source models applied includes
unimpaired and impaired speech models (preferably SI mod-
el).The effect of the adaptation technique is influenced by the
amount of adaptation data that are used to build a target model
based on a source model. When adaptation data consist of those of
a single speaker, a general SI acoustic model can be transformed
mto SD acoustic model. When enough adaptation data are
available in a new domain for every single speaker, it is possible to
create SD acoustic model for every speaker. Unfortunately, there
is not always enough adaptation data available to create SD model
for every speaker in a new task.

The issue to be addressed is the way to optimise the use of such
limited data. Adaptation techniques, notably the maximum
likelihood linear regression (MLLR) [28] and the maximum a
posteriori (MAP) [29], are used in large vocabulary continuous
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speech recognition (LVCSR) to tune SI recognisers to the speech
of an individual, resulting in SD model, with a relatively small
amount of adaptation data. There is, however, an assumption in
these procedures that the target speech is not a gross mismatch to
that used to train the SI models.

MLLR is a technique typically used for speaker adaptation
purposes in speech recognition systems. MLLR [28] adapts the
observation probability of the hidden Markov models (HMM:s) in
a parametric way, where it finds a transform vector that maximises
the likelihood of the adaptation data from a set of transformed
Gaussian parameters. HMMs are widely used in pattern
recognition applications, most notably speech recognition. A
HMM consists of a recurrent finite-state Markov chain, and a
distribution over that state for each transition in the Markov
Chain. The states and transitions of the Markov chain are hidden
from observation so that only the output symbols are visible [30].
Transitions between the states are governed by a set of
probabilities called transition probabilities, using the following
formula:

anam:aner (1)

Where aj;; is the state transition probability, q. denotes the
current state, and N is the number of states. Unlike the standard
MAP adaptation, which adapts only the observed Gaussian
components, MLLR transforms are typically estimated across a
set of Gaussians, a regression class that shares the same
transformation parameters [31]. In the general MLLR framework,
both mean and variance parameters are transformed as follows

[31]:

pa=Au+b (2)

S—HIHT (3)

Where 1 is a mean vector in the model, X is its corresponding

covariance matrix, ft and % are the adapted mean and covariance
matrix, respectively. The likelihood function of the adaptation
data are to be maximised with respect to the transform parameters
(Asb;H). This is performed using the expectation maximisation
(EM) in two steps [28], by estimating the covariance transforma-
tion, H after the mean transform of A and b.

The MLLR transformation is applied to all model parameters
irrespective of whether they have been observed in the adaptation
data. This is achieved by allowing transformation to be shared
among the groups of model parameters, by using regression
classes. The basic assumption is densities that are assigned to the
same transformation class exhibit similar acoustic properties and
can therefore be transformed in the similar way. This means that
the MLLR technique is suitable for target data that are of small
amounts and are incomplete.

The main problem of the MLLR adaptation technique is the
reliability of estimating the regression coefficients from the
available training data. The constrained MLLR (CMLLR) [32]
is an extension of the MLLR technique whereby the former
performs transformation of the mean vectors while the latter
performs both the mean vectors and the covariance matrix
adaptation. CMLLR simplifies the regression model by using
diagonal or block-diagonal covariance matrices [28], thereby
reducing the number of parameters in the linear regression model,
or to share the mean and the variance transforms. For an arbitrary
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Gaussian component in a regression class, the parameters are

transformed using CMLLR as follows [31]:

fi=Ap+b (4)

=434 (5)

Where the linear transform A is used for the adaptation of both p
and 2. The main difference in CMLLR from MLLR is that, using
the same number of parameters, the covariance matrices are also
adapted. The algorithm used for the CMLLR adaptation is
normally the same as that used for MLLR such as EM. In
CMLLR, sufficient statistics are computed for the current
estimates, and the likelihood function is maximised with respect
to these parameters [31]. CMLLR can be used in speaker-
recognition systems to extract features that are more specifically
focused on the speaker-related characteristics than the standard
spectral envelope features [33].

MAP considers model parameters to be random variables with a
known prior distribution [27]. Given a model parameter 0 with a
prior distribution f (0) and sequence of observations
0=1{0;,050,}, the MAP estimate for 6 is given by:

9MAP=argm9axp(O|0) (6)

= argmax (0|0} (0) (1)

Where % (0]0) is the density function for observation O, from
which the model parameters estimate 6 is to be estimated. In the
case where no knowledge exists regarding the prior distribution f
(@), the MAP estimate equates to the maximum likelihood
estimates. In contrast to MLLR, in MAP, only the parameters
for which observation exists are adapted. As the amount of
adaptation increases, most of the original parameters are adapted
and, in principle, the MAP estimates converge towards the
maximum likelihood estimates.

MAP and MLLR have been applied in several studies for the
adaptation of dysarthric speech. For instance, the MAP technique
has been applied in [27,34], and the MLLR technique has been
applied in [19,34,35] with acceptable recognition rates. In [36], a
comparative study has been conducted to compare the perfor-
mance of the MAP and MLLR techniques in terms of the
recognition of impaired speech; it was found that MLLR
performed better compared with MAP. However, no existing
work has been carried out on the performance of CMLLR for
dysarthric speech.

Methods

This research experiments with different adaptation techniques
and source models that can be suitably applied for the optimum
performance of an ASR system in recognising dysarthric speech.
An adapted acoustic model for recognising the dysarthric speech
of Nemours was built by adapting two SI models based on the
unimpaired TIMIT [37] and the impaired TORGO [23] speech;
the aim was to assess the suitability of these two SI models as the
source model and identify any emerging differences between the
models. The performance of the ASR system under each identified
adaptation technique (MLLR and C-MLLR) and the source
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model (unimpaired and impaired speech) is measured in terms of
the word error rate (WER) for each level of severity of impaired
speech (mild, moderate and severe). We have performed a
statistical analysis to determine any significant difference in the
variance of WER. This section describes the databases, research
methodology, performance measures and equipment involved in
our experiments.

A. Speech Databases

The Nemours database contains the speech samples of 11
dysarthric males and one non-dysarthric male, each uttering 74
syntactically invariant short English sentences and two additional
paragraphs [20]. The speakers of the Nemours database have been
categorised according to three types of speech impairment
severity, which are mild, moderate and severe. These classifica-
tions were based on the intelligibility scores in [26,38]; speakers
with intelligibility scores exceeding 80% were classified as mild,
whereas speakers with intelligibility scores of less than 60% were
classified as severe, and the rest of the speakers were classified as
moderate as shown in Table 1. The classification is crucial to
determine the performance of the ASR system in recognising the
dysarthric speech for the different levels of severity. From the 11
speakers of Nemours, nine speakers were chosen; the speech of
speaker KS was omitted because of missing and incomplete
records, and the speech of speaker LL was left out to maintain the
same number of speakers for each severity type.

The TIMIT Acoustic-Phonetic Continuous Speech Corpus is
widely used for both speech and speaker recognition tests, and
each utterance is phonetically hand-labelled. TIMIT contains
recordings from 630 English speakers (438 males and 192 females).
After excluding dialectal variants, a total of 5,040 sentences were
used as the training data to build the SI model of unimpaired
speech. An experiment conducted in [40] showed that phoneme
recognition performed well on the TIMIT speech corpus when the
HTK toolkit used the Bigram language model.

TORGO consists of seven dysarthric subjects’ speech, each
uttering three hours of data (about 500 utterances each). 3,500
sentences were used for the training data to build the SI model of
impaired speech.

Table 1. The classification of speakers in Nemours database.
Speakers Intelligibility score Severity Types
FB 929 Mild

MH 92.1 Mild

BB 89.7 Mild

LL* 844 Mild

JF 785 Moderate

RL 733 Moderate

RK 68.6 Moderate

BK 58.2 Severe

BV 57.5 Severe

SC 51.5 Severe

KS* Not available Unknown

*Not included for model adaptation.
doi:10.1371/journal.pone.0086285.t001
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B. Research Procedures

The procedure of this research begins with the process of
building SI model for TIMIT and TORGO. This is followed by
the model adaptation of Nemours for building SA (adapted)
speech acoustic model to be applied by an ASR system for
recognising impaired speech. The detailed procedure is described
below.

I. Building Source SI Models. The baseline SI model built
with TIMIT and TORGO was developed using the HTK toolkit
[39]. A Hamming window of 25 milliseconds moving at a frame
rate of 10 milliseconds was applied to the waveform data to
convert them to 12 MFCCs (using 26 filterbanks); the energy, delta
and acceleration coefficients were then added. The standard three
state left-to-right HMM topology was applied during training with
the standard maximum-likelihood technique.

II. MLLR and C-MLLR Adaptation for Dysarthric
Speech. Each of the baseline SI models (TIMIT and TORGO)
is adapted using Nemours, which has been categorised into three
levels of severity: mild, moderate and severe. All the adaptations

Table 2. The experimental set-up of this study.

Experiment Source SI model Severity level Adapted dysarthric model Test data
MILD-A TIMIT Mild 1. Speaker FB 1. Speaker FB
MILD-B 2. Speaker BB 2. Speaker BB
MILD-C 3. Speaker MH 3. Speaker MH
MOD-A Moderate 1. Speaker JF 1. Speaker JF
MOD-B 2. Speaker RK 2. Speaker RK
MOD-C 3. Speaker RL 3. Speaker RL
SEV-A Severe 1. Speaker SC 1. Speaker SC
SEV-B 2. Speaker BK 2. Speaker BK
SEV-C 3. Speaker BV 3. Speaker BV
MILD-A TORGO Mild 1. Speaker FB 1. Speaker FB
MILD-B 2. Speaker BB 2. Speaker BB
MILD-C 3. Speaker MH 3. Speaker MH
MOD-A Moderate 1. Speaker JF 1. Speaker JF
MOD-B 2. Speaker RK 2. Speaker RK
MOD-C 3. Speaker RL 3. Speaker RL
SEV-A Severe 1. Speaker SC 1. Speaker SC
SEV-B 2. Speaker BK 2. Speaker BK
SEV-C 3. Speaker BV 3. Speaker BV
doi:10.1371/journal.pone.0086285.t002

(MLLR and CMLLR) make use of a single Gaussian mixture
model [31], and we have applied the BiGram statistical language
model of the respective speech databases.

The MLLR and CMLLR adaptations of the Nemours database
based on the severity levels are described in Table 2, including the
source models of TIMIT and TORGO, the severity levels (mild,
moderate and severe), the adapted models (mild, moderate and
severe) and the test data of Nemours. The adapted model was built
using 50 sentences from each dysarthric speaker of Nemours, while
the remaining 24 were used for testing.

C. Performance Measure

We have applied the leave-one-out evaluation for measuring the
effectiveness of the two SI models. The effectiveness of an ASR
system is generally measured in terms of word error rate (WER).
WER measures global and incorrect word recognition in a total
recognition task. As an alternative, an error rate may also be
measured in smaller units such as phonemes, syllables or detailed
errors, including phoneme insertion, substitution and deletion
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Table 3. The WER calculation for the uttered sentences “The two weeping the bit” in terms of phoneme addition, substitution and
omission.
Error
Input word Phoneme Insertion Phoneme Substitution Phoneme Deletion
The
two big
weeping sleeping sleeping
the -
bit bet
doi:10.1371/journal.pone.0086285.t003
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Table 4. WERs in recognising dysarthric speech using the
adapted models of TIMIT and TORGO.

Experiment

Adapted Models

TIMIT TORGO

MLLR CMLLR MLLR CMLLR
MILD-A 9.23% 8.74% 10.65% 9.84%
MILD-B 13.95% 13.05% 15.54% 14.12%
MILD-C 11.06% 9.87% 11.98% 10.96%
MOD-A 30.17% 27.28% 33.98% 30.14%
MOD-B 50.24% 44.62% 44.03% 39.27%
MOD-C 42.62% 39.38% 37.94% 34.46%
SEV-A 77.82% 67.14% 67.92% 59.96%
SEV-B 67.68% 58.43% 58.42% 51.41%
SEV-C 71.44% 61.56% 62.95% 55.36%

doi:10.1371/journal.pone.0086285.t004

Severity-Based Adaptation for Dysarthric Speakers

rates [41] as follows:

Insertion+ Substitution + Deletion
WER= 100% 8
Number of Words x o @)

Where:

® Phoneme insertion: An extra sound or sounds added to the
mntended word due to slow speaking rate of a dysarthric
speaker, which causes a monosyllabic word to be interpreted as
two syllables.

® Phoneme substitution: One phoneme is substituted with another
due to errors in pronunciation made by people suffering from
dysarthria, c.g. twee instead of tree.

® Phoneme deletion: Certain sounds are not produced by the people
suffering from dysarthria, which causes all the syllables or
specific sounds to be omitted.

For example, the sentence “the two weeping the bit” uttered by
speaker BB is recognised by the ASR system as “the big is sleeping
the bet”. The WER for this test data is calculated as shown in
Table 3.

Based on Table 3, the WER of the sentence “the two weeping
the bit” can be calculated as follows:

60

40 =

20 -

I
MLLR

|
CMLLR

Figure 1. The box plot for the WER arising from the use of TIMIT adapted models.

doi:10.1371/journal.pone.0086285.g001
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60 -
40 -
20 4
s537
3
0- 1
MLLR CMLLR

Figure 2. The box plot for the WER arising from the use of TORGO adapted models.

doi:10.1371/journal.pone.0086285.9002

WER=3/5 x 100%=60% (9)

The WER of the sentence can be analysed into addition as 15%
(1/4%x60%), substitution as 45% (3/4x60%) and omission as 0%
(non-occurrence). The sum of all the three errors of addition,
substitution and deletion is equal to the WER of the sentences “the
two weeping the bit”, which is 60%.

D. Statistical analysis

We have performed the ANOVA test to measure any significant
difference in the WER between the two techniques globally and at
each level of severity with TIMIT being the denominator and
TORGO as the numerator. The ANOVA test is also performed

for the WERSs arising from the phoneme insertion, substitution and
deletion for the different levels of severity.

Results

The recognition of dysarthric speech using the TIMIT SI model
is more accurate for the mildly impaired speech (for both
adaptation techniques), while the one based on TORGO performs
well in recognising the moderately impaired and the severely
impaired speech (for both adaptation techniques) except for
experiment MOD-A. The CMLLR technique shows a lower
WER than the MLLR technique for both the TIMIT and
TORGO adapted model. Table 4 presents the WERs in
recognising the dysarthric speech of Nemours.

For the TIMIT and TORGO databases, we found that there is
a significant difference in WER for MLLR and CMLLR

Table 5. Results of the ANOVA test on WER for each severity level using the adapted models of TIMIT and TORGO.

Adapted Models

Severity

TIMIT TORGO
Mild significant difference in mean at p<<0.05 (df =17, F=0.00, p =0.00) significant difference in mean at p<<0.05 (df=21, F=3.876, p=0.00)
Moderate no significant difference in mean at p<0.05 (df =65, F=1.307, p=0.300) no significant difference in mean at p<0.05 (df =63, F=0.736, p=0.787)
Severe significant difference in mean at p<<0.05 (df =109, F=2.080, p=0.032) significant difference in mean at p<<0.05 (df =88, F=98.384, p=0.00)

doi:10.1371/journal.pone.0086285.t005

PLOS ONE | www.plosone.org

January 2014 | Volume 9 | Issue 1 | 86285



Severity-Based Adaptation for Dysarthric Speakers

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

M Phoneme Deletion M Phoneme Insertion

1 Phoneme Substitution

Figure 3. WER analysis in terms of phoneme deletion, insertion and substitution.

doi:10.1371/journal.pone.0086285.g003

techniques at p<<0.05 (degree of freedom of 193 for TIMIT and
174 for TORGO. The F value is 4.759 for TIMIT and 6.880 for
TORGO,). Figures 1 and 2 show the box plot for the WER arising
from the use of TIMIT and TORGO adapted models. For
TIMIT based SI model as shown by Figure 1, the box plot of
MLLR is relatively short as compared with that of CMLLR, which
indicates that the WER of MLLR is significantly closer for all
levels of severity. The box plot also shows that there is significant
difference in WER between MLLR and CMLLR techniques.
Similar results are also found for the TORGO-based SI model as
shown in Figure 2. This shows that the adaptation technique plays
an important role in recognition of dysarthric speech.

For each severity level, the results of the ANOVA test are
presented in Table 5. Based on Table 5, it can be seen that the
WER of the mildly and severe dysarthric speech is significantly
different for the MLLR (denominator) and CMLLR (numerator)
techniques for both the TIMIT and TORGO adapted models.
However, we found no significant difference in mean for the
moderately dysarthric speech.

Our further analysis of WERs shows that phoneme substitution
contributes to the highest WER in recognising the dysarthric
speech for all experiments. Figure 3 shows the WER analysis in
terms of phoneme deletion, insertion and substitution.

For phoneme insertion, the adapted model of TORGO shows a
higher WER for the mildly and the moderately impaired speech,
while the phoneme insertion is greater for the TIMIT, especially
the severely impaired dysarthric speech. Plosives show the highest
WER  arising from phoneme insertion for all severity levels,
followed by affricatives and fricatives. Nasals exhibit the lowest
effect of phoneme insertion for both the TIMIT and the
TORGO-adapted speech acoustic models.

For phoneme substitution, TORGO shows higher WER
compared with TIMIT for the mildly dysarthric speech, whereas
the phoneme substitution for the moderately and severely
impaired speech is higher for TIMIT compared with TORGO.
We found that the effect of phoneme substitution was the highest
for plosives at all severity levels, followed by affricatives and
fricatives.

For the WERs caused by phoneme deletion, the TIMIT
adapted model shows greater WER for the severely impaired

PLOS ONE | www.plosone.org

speech. On the other hand, the TORGO speech acoustic model
has a higher phoneme deletion for the mildly and moderately
impaired speech. The effect of phoneme deletion is the highest for
plosives.

Table 6 shows the results for the ANOVA test to determine any
significant difference in the mean of WER for each type of
phoneme, particularly vowels, nasals and plosives for different
adaptation models of TIMIT (denominator) and TORGO
(numerator). For phoneme deletion, we did not find any significant
difference in the mean of WER for vowels (mild, moderate and
severe dysarthric speech), nasals (severe dysarthric speech), plosives
(mild, moderate and severe dysarthric speech), and others
(moderate and severe dysarthric speech) at p<<0.05.

For phoneme insertion, there is no significant difference in the
mean of WER for vowels (mild, moderate and severe dysarthric
speech), nasals (moderate and severe dysarthric speech), plosives
(severe dysarthric speech), and others (moderate and severe
dysarthric speeches). For phoneme substitution, we found that
there is no significant difference in the mean WER for nasals
(severe dysarthric speech), and others (severe dysarthric speech) at
p<<0.05.

Based on the ANOVA test, we found that the WER of TIMIT
and TORGO did not show any significant difference in phoneme
deletion and insertion, particularly for vowels and plosives at most
of the severity levels. However, we did find significant difference in
WER for phoneme substitution at all severity levels.

Discussion

In this research, we have determined the performance of the
ASR system in recognising impaired speech; the target model was
adapted using the source model of both the unimpaired speech of
TIMIT and the impaired speech of TORGO. The WERs of the
two source models are different, with TORGO being better for
recognising severe dysarthric speech while TIMIT is better for
recognising mild dysarthric speech.

The adapted model built using CMLLR performed better than
the model built using MLLR for all three levels of severity (mild,
moderate and severe). This is because the CMLLR technique is
used to extract features that are more specifically focused on the
speaker-related speech properties rather than the standard spectral
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envelops [31]. This is supported by the ANOVA results that show
a significant difference in the mean of WER for mild and severe
dysarthric speech. However, we did not find any significant
difference in variance of WERs for the moderate test data. The
similarity in the ANOVA results reveals that the recognition of
dysarthric speech depends more on the adaptation techniques
rather than the type of adaptation source model.

In recognising the severely impaired dysarthric speech, the
performance of the TORGO SI model is better than that of
TIMIT although the former has a relatively smaller database. The
better performance of the TORGO SI model is because the more
severely impaired dysarthric speech has properties that are clearly

PLOS ONE | www.plosone.org

Table 6. The results of the ANOVA test to determine any significant difference in the mean of WER for each type of phoneme,
particularly vowels, nasals and plosives for different adaptation models (TIMIT and TORGO).
Types Severity Phoneme type ANOVA df F p
Phoneme deletion Mild vowel no significant difference 21 0.731 0.676
nasal significant difference 4 0.000 0.000
plosives no significant difference 21 0.816 0.648
others significant difference 4 0.000 0.000
Moderate vowel no significant difference 39 0.651 0.781
nasal significant difference 9 0.000 0.000
plosives no significant difference 39 0.506 0.925
others no significant difference 15 1.358 0.450
Severe vowel no significant difference 54 0.774 0.689
nasal no significant difference 16 3.500 0.399
plosives no significant difference 54 0.645 0.869
others no significant difference 26 0.680 0.763
Phoneme Insertion Mild vowel no significant difference 16 0.943 0.308
nasal significant difference 2 0.000 0.000
plosives significant difference 48 8.569 0.000
others significant difference 20 20.175 0.000
Moderate vowel no significant difference 31 0.871 0.603
nasal no significant difference 8 1.761 0.524
plosives significant difference 48 5.770 0.000
others no significant difference 20 6.301 0.070
Severe vowel no significant difference 41 0.797 0.701
nasal no significant difference 9 0.668 0.713
plosives no significant difference 48 0.738 0.775
others no significant difference 20 0.519 0.855
Phoneme Substitution Mild vowel significant difference 90 30.777 0.000
nasal significant difference 20 7.322 0.001
plosives significant difference 90 30.600 0.000
others significant difference 32 9.704 0.000
Moderate vowel significant difference 90 11.256 0.000
nasal significant difference 20 5.150 0.014
plosives significant difference 90 8.340 0.000
others significant difference 32 8.443 0.000
Severe vowel significant difference 90 3.383 0.000
nasal no significant difference 20 0.590 0.800
plosives significant difference 90 9.721 0.000
others no significant difference 32 0.428 0.952
doi:10.1371/journal.pone.0086285.t006

different from those of the unimpaired speech, which are difficult
to be integrated with the severely impaired dysarthric speech.

The results of the WER analysis show that the major factor
causing the recognition error of dysarthric speech is phoneme
substitution. Based on the ANOVA test, we found that the mean
of WER of phoneme substitution is significantly different for the
TIMIT and TORGO source models, especially for mildly and
moderately dysarthric speech. From this test, we found that
phoneme substitution is influenced by the level of severity of
dysarthric speech.

The recognition error of consonants is much higher than that of
vowels for all experiments. Among consonants, plosives have the
highest occurrence of WERs in terms of phoneme insertion,
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substitution and deletion. The next highest WERSs for consonants
are affricatives and fricatives. The high WERs for these types of
consonants are attributed to the speech properties of dysarthric
speakers, especially imprecise articulation of consonants, pro-
longed phoneme and loudness decay.

Conclusion

The biggest setback to the development of an ASR system for
impaired speech is the small size of speech that can be acquired
from a speaker with speech impairment. As such, it is vital for
developers of ASR systems of impaired speech to seck alternative
means for such development. Although the acoustic characteristics
for unimpaired and impaired speech are indeed very different, the
acoustic model of the former can be used as a source model for
adapting the targeted impaired speech. The performance of the
unimpaired speech acoustic model can be further improved using
an effective adaptation technique. In this research, it was found
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Severity-Based Adaptation for Dysarthric Speakers

that the CMLLR technique performs better than MLLR when
using an unimpaired speech model.

The performance of the ASR system in recognising the speech
of each speaker in the Nemours database is different, indicating a
significant intra-speaker variation among dysarthric speakers.
However, intra-speaker variability cannot be determined in this
research due to the very small number of speakers in the Nemours
database. Hence, intra-speaker acoustic variability warrants
consideration in future work.
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