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Abstract

There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme
responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18
mutations in the promoter and 39 non-coding region of the pig SCD gene and provide evidence that allele T at
AY487830:g.2228T.C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to
4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness).
No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a
purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C.T; g.2228T.C;
g.2281A.G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat,
but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line
with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype
was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-
based crossbreds. Second, the g.2281A.G and the g.2108C.T SNPs were excluded as causative mutations using new and
previously published data, restricting the causality to g.2228T.C SNP, the last source of genetic variation within the
haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that
there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of
monounsaturated to saturated fat.
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Introduction

Good eating habits are conducive to good health. Total fat and

fatty acid content in food affect both human health and food

quality and, consequently, they are becoming increasingly

important to consumers. There is convincing evidence that a high

dietary intake of saturated fat (SFA) increases the risk of lipid

metabolism disorders which are common to many human chronic

diseases [1]. Conversely, the intake of monounsaturated (MUFA)

and polyunsaturated (PUFA) fat has beneficial effects over human

health [2]. In this regard, dietary guidelines advice that optimal

intake of SFA should account for no more than 10% of the total

diet energy, in line with recent findings suggesting that dietary

composition may matter for longevity more than calorie count [3].

Worldwide, the demand for meat, but specifically pork, has

increased from the 1980s onwards driven by growing human

population and incomes [4]. Although pork is rich in bioavailable

macro- and micronutrients, it is also a source of dietary SFA [5].

In addition to nutritional aspects, fat content and fatty acid

composition also influence relevant manufacturing and organo-

leptic properties of pork [6,7]. Thus, high levels of intramuscular

fat (IMF) and MUFA are favorably associated to texture, juiciness,

flavor, and general acceptability of high-quality products [6,7]

(Figure 1). Therefore, a reasonable strategy to deal with both

healthy and quality constraints is to substitute dietary SFA with

MUFA.

The pork fatty acid composition varies across fat tissues and

muscles and it is greatly influenced by the genetic type of the pig,

the diet and, in general, by any factor affecting fatness, such as

gender or age [8,9]. In this regard, the use of the Duroc breed is

becoming very popular in quality conscious consumer segments

because of their high level of IMF relative to subcutaneous fat.

However, regardless of the genetic type, the deposition of dietary

fatty acids is small compared to fatty acid synthesis, with

endogenous oleic (18:1), palmitic (16:0), and stearic (18:0) acids

representing more than 80% of the total deposited fatty acids [10].

The stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme

required for the biosynthesis of MUFA from SFA. In particular,

SCD catalyzes the desaturation of palmitoyl-CoA and stearoyl-

CoA substrates at the D9 position to produce de novo palmitoleoyl-

CoA and oleoyl-CoA, respectively. Maintaining a balance in the

SCD activity is paramount to optimize health [11,12] and,

therefore, SCD expression, both in normal and in disease states, is

tightly controlled by dietary and hormonal factors [13]. SCD is

largely expressed in liver and adipose tissue, responding positively
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to high carbohydrate diets and negatively to starvation and PUFA

rich diets. The ratio of 18:1 to 18:0 (18:1/18:0) is commonly used

as an indirect indicator of SCD activity. Alterations in this

desaturation ratio have been linked to cardiovascular disease,

obesity, diabetes, and cancer [11–15], and correlated with

longevity [16]. Recent evidence indicates that SCD also plays an

important role in defining plasma and tissue lipid profiles [12].

In pigs, the SCD gene is assigned to chromosome SSC14q27

[17]. The position of this gene co-localizes with quantitative trait

loci for muscle content of 18:0 and 18:1 described in Duroc-based

populations [18,19]. SCD is, therefore, an attractive positional

candidate gene [20]. In fact, findings so far support that there is

genetic variation in the SCD gene affecting fatty acid composition

of muscle and adipose tissue. Several single nucleotide polymor-

phisms (SNP) in the SCD promoter region have been associated to

18:0 and 18:1 content. Yet, results are inconclusive, as either the

location of haplotypes is not coincident [21,22], favorable alleles

are swapped [23], or even no association was found [24]. We have

been collecting since 2002 samples of subcutaneous fat, muscle,

and liver from a full-pedigreed Duroc line [25] and muscle

samples from three ad hoc pig crossbreds divergent for fatness. Fat

content and composition data is currently available for all these

samples. Here we use this repository to provide evidence that allele

T at SNP AY487830:g.2228T.C in the SCD gene is a causative

mutation that promotes fat desaturation in muscle and subcuta-

neous fat.

Results

Sequence Variation in the SCD Gene in Duroc Pigs
The 59 and 39 non-coding regions, coding region, and 680 bp

upstream on the proximal promoter of the pig SCD gene were

sequenced in 12 Duroc pigs representing extreme phenotypes for

muscle oleic acid content. A total of 18 polymorphisms were

identified: three in the promoter and 15 in the 39 non-coding

region (Table S1). No variation was found in the sequence

corresponding to the SCD coding and 59 non-coding regions.

The SCD transcription unit spans 16,186 bp and includes a

coding region of 1,079 bp plus an unusually long 39UTR of

4,047 bp. Despite being over 12 kb apart, in the Duroc animals

analyzed the polymorphisms of promoter and 39UTR regions

formed one haplotype block which displayed .95% overall

linkage disequilibrium (r2 = 0.965 between SNPs g.2108C.T in

the promoter and g.15109A.G in the 39UTR). The three SNPs in

the promoter region were close together in a 173 bp fragment

(Figure 2). Given the lack of sequence variation in the coding

region of the gene, we focus on the study of the three SNPs in the

promoter region as these might potentially influence the SCD

mRNA expression levels affecting, therefore, the total SCD activity

of the cells.

Association of SCD Haplotypes with Desaturation Ratios
In a first experiment we genotyped all the available purebred

Duroc pigs in the repository (n = 891) which had at least one tissue

analyzed for fatty acid composition (Exp 1; Table 1). The

segregation analysis of the three SNP in this population revealed

that they are in strong linkage disequilibrium (r2.0.97), with two

clearly predominant haplotypes (H1: C-T-A, frequency 43.7%;

and H2: T-C-G, frequency 55.5%). The results of the association

analysis confirmed that pigs carrying the H1 haplotype had higher

18:1/18:0 ratio in the three muscles analyzed (gluteus medius,

longissimus dorsi, and semimembranosus) and subcutaneous fat but not

in liver (Figure 3). We proved that this haplotype behaved

additively, with an average additive effect for 18:1/18:0 in the

muscle gluteus medius of 0.33 (Table 2), but also that it did not

affect the amount of 18:0+18:1. Moreover, these effects were

consistent across batches, thereby showing both genetic stability

over generations and environmental stability against occasional

dietary and management changes. A similar trend was found for

the 16:1/16:0 and the MUFA/SFA ratios (Table S2). As a result,

the substitution effect of H1 for H2 for MUFA, 18:1, and 16:1 in

the gluteus medius muscle was 1.02%, 0.70%, and 0.30%,

respectively. Adjusting these values for the age at slaughter and

fat content did not change the results. Because segregation was at

intermediate frequencies, the above haplotype variants were able

to explain a relevant fraction of the total additive genetic variance

for MUFA/SFA (31%), 18:1/18:0 (37%), 16:1/16:0 (35%),

MUFA (20%), C18:1 (13%), and C16:1 (25%). However, they

did not affect fat content-related traits, including carcass weight,

backfat thickness, lean content, and IMF content (Table S2), or

standard blood lipid indicators (Table S3). The favorable effect of

H1 on 18:1/18:0 was internally validated by comparing opposite

homozygote siblings (Figure 4). In line with the population-wide

results, H1H1 pigs had a greater 18:1/18:0 ratio in gluteus medius

muscle than their corresponding H2H2 sib pairs, with no change

in the total content of 18:0+18:1.

To assess the functional impact of the haplotype association we

analysed the SCD mRNA expression in muscle, subcutaneous

adipose tissue, and liver across diplotypes. In accordance with the

association results, we found that H1H1 animals showed greater

SCD mRNA expression than H2H2 pigs in muscle (Figure 5).

Despite the trend was the expected, we were not able to detect

significant differences in SCD mRNA expression between

diplotypes in subcutaneous fat. The haplotype had no effect on

the SCD mRNA expression in liver.

Validation and Haplotype Determination
We next validated the effect of the haplotypes on experimental

Duroc crossbreds (Exp 2; Table 1). To that end, Duroc sows from

Figure 1. Pork loins with optimal intramuscular fat but
different monounsaturated fatty acid content. The monounsat-
urated pamitoleic (16:1) and oleic (18:1) acids are more abundant in the
loin in panel A (4.0% and 44.2%, respectively) than in the loin in panel B
(3.0% and 41.4%), expressed as percentage with respect to total fatty
acids. The peaks of these two fatty acids in the chromatograms below
are labelled accordingly, along with those of their respective precursors,
palmitic (16:0) and stearic (18:0) acids. The desaturation ratios 16:1/16:0
and 18:1/18:0 are higher in loin A (0.16 and 3.7, respectively) than in loin
B (0.12 and 2.8, respectively). Genotyping for g.2228T.C in the
promoter region of the SCD gene revealed that loin A was homozygous
for allele T and loin B homozygous for allele C.
doi:10.1371/journal.pone.0086177.g001

SCD Variant Increases Monounsaturated Pork Fat
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the line used in Exp 1 were mated, in addition to Duroc boars

from the same line (genetic type control), to either Duroc boars

from a leaner commercial line or to Iberian boars where the H1

haplotype was fixed. Barrows from contemporary offspring of the

three mating types were raised in two batches. The Duroc

crossbred types reproduced not only the favorable effect of H1 on

the 18:1/18:0 ratio, but also, when compared to purebred Duroc,

replicated the magnitude of the effect as well (Figure 6). Thus, the

substitution effect of H1 for H2 for 18:1/18:0 remained close to

0.40. Moreover, as expected, the H1 variant increased the 16:1/

16:0 ratio, but did not affect body growth and fatness (Table S4).

To refine the haplotype block determination and disentangle

which SNP was the responsible of the haplotype effect, we

investigated the progeny of two heterozygote C-T-A/T-C-A

(H1H3) Large White boars. Barrows from mating these boars

with H1H1 Landrace sows were contemporaneously raised with

pigs in Exp 2, with the expectation to obtain half of the offspring

C-T-A/C-T-A (H1H1) and half C-T-A/T-C-A (H1H3) (i.e.,

segregating at g.2108C.T and g.2228T.C, while fixed at

g.2281A.G). The haplotype segregation was as expected

(Table 1). This experiment showed that, similarly to contempo-

raneously purebred and crossbreds Duroc in Exp 2, H1H1 Large

White6Landrace barrows still displayed a greater 18:1/18:0 ratio

Figure 2. Characterization of the 59 flanking region to the transcription start site of the pig SCD gene. (A) Schematic representation of
recognition motifs for several transcription factor binding sites in the proximal 59 flanking region of the pig SCD gene. The relative position of the
three SNPs polymorphisms identified in this promoter (AY487830: g.2108C.T, g.2228T.C and g.2281A.G) are indicated. (B) Sequence encompassing
three SNPs polymorphisms in the promoter region of the pig SCD gene. Position numbering is relative to the translation START codon (in blue). The
transcription start site is at position 2175 (arrow). Coding sequence and the 59 non-coding region is shown in uppercase and italics, respectively. The
motifs for transcription factors SP1, PPARG, NF-1, RAR:RXR and the TATA-box are underlined and notated above the sequence.
doi:10.1371/journal.pone.0086177.g002

SCD Variant Increases Monounsaturated Pork Fat

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86177



T
a

b
le

1
.

H
ap

lo
ty

p
e

fr
e

q
u

e
n

ci
e

s
o

f
si

n
g

le
n

u
cl

e
o

ti
d

e
p

o
ly

m
o

rp
h

is
m

s
(S

N
P

s)
A

Y
48

78
30

:g
.2

10
8C

.
T,

g
.2

22
8T

.
C

,a
n

d
g

.2
28

1A
.

G
at

th
e

p
ro

m
o

te
r

re
g

io
n

o
f

th
e

SC
D

g
e

n
e

in
d

if
fe

re
n

t
p

ig
p

o
p

u
la

ti
o

n
s. P
o

si
ti

o
n

a
t

A
Y

4
8

7
8

3
0

G
e

n
e

ti
c

ty
p

e
a

P
u

re
b

re
d

C
ro

ss
b

re
d

S
N

P
E

x
p

1
O

th
e

r
E

x
p

2
O

th
e

r

H
a

p
lo

ty
p

e
g

.2
1

0
8

C
.

T
g

.2
2

2
8

T
.

C
g

.2
2

8
1

A
.

G
D

u
ro

c-
1

D
u

ro
c-

2
L

a
n

d
ra

ce
-1

P
ie

tr
a

in
Ib

e
ri

a
n

-1
W

il
d

b
o

a
r

D
U

-3
6

D
U

-1
IB

-2
6

D
U

-1
L

W
-1
6

L
-2

L
W

-2
6

L
-3

(L
W

-3
6

L
-4

)6
D

U
-4

1
C

T
A

7
7

8
2

6
4

0
3

9
8

1
1

4
6

7
7

6
8

1
3

7
1

8

2
T

C
G

9
8

9
1

1
0

1
0

0
4

8
3

9
0

0
1

1

3
T

C
A

0
3

0
0

0
0

0
0

2
6

3
9

4
T

T
G

2
0

0
0

0
0

0
0

0
0

0

5
T

T
A

6
0

0
0

1
0

0
1

0
0

2

6
C

C
G

4
0

0
0

0
0

1
0

0
0

0

7
C

C
A

0
0

0
0

0
0

0
0

1
0

0

8
C

T
G

3
0

0
0

0
0

0
0

0
0

0

N
o

o
f

an
im

al
s

8
9

1
2

0
2

0
2

0
4

1
7

5
8

5
8

5
4

2
0

2
0

a
P

u
re

b
re

d
p

ig
s

in
cl

u
d

e
D

u
ro

c
(D

U
),

La
n

d
ra

ce
(L

),
P

ie
tr

ai
n

,I
b

e
ri

an
(I

B
),

an
d

w
ild

b
o

ar
.N

u
m

b
e

rs
af

te
r

th
e

b
re

e
d

re
fe

r
to

in
d

e
p

e
n

d
e

n
t

lin
e

s
fr

o
m

th
e

sa
m

e
b

re
e

d
.T

h
e

D
u

ro
c-

1
w

as
th

e
lin

e
u

se
d

fo
r

th
e

as
so

ci
at

io
n

an
al

ys
is

(E
xp

1
)

an
d

cr
o

ss
b

re
d

s
in

Ex
p

2
w

h
e

re
th

o
se

u
se

d
fo

r
th

e
va

lid
at

io
n

an
al

ys
is

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

8
6

1
7

7
.t

0
0

1

SCD Variant Increases Monounsaturated Pork Fat

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86177



than heterozygotes carrying the H3 haplotype (Figure 6). As with

other genetic types in Exp 2, the haplotype in Large White 6
Landrace had no effect on traits other than those directly affected

by SCD (Table S4). Importantly, the results of this last validation

experiment allow us to exclude SNP g.2281A.G as the causative

mutation of the effect over the desaturation index.

In silico Analysis of SCD Promoter Polymorphisms
To assess if polymorphisms in the promoter region could affect

SCD expression through the disruption of transcription factor

binding sites, a computer-assisted identification of potential cis-

acting DNA-sequence motifs was carried out. As a first step, we

analyzed in parallel the promoter region (2500 to +100 from the

transcriptional start site) of human, cow, pig, and sheep SCD gene

with the view of identifying common regulatory modules. The

promoter sequence displays stretches of strong conservation

between these four species interspersed with fragments of lower

conservation (Figure S1). A conserved polyunsaturated fatty acid

response element (PUFA-RE), which includes a sterol regulatory

element (SRE), two CCAAT boxes (NF-Y) and two nuclear factor

(NF)-1 binding sites, has been described approximately at positions

2450/2550, which is highly conserved between species [26–29]

(Figure S1) and is essential for correct SCD gene regulation by

PUFA and cholesterol [26,27]. The transcription factor SRE

binding protein-1 down-regulates SCD expression through the

interaction with the SRE element in this regulatory region [26]. In

addition to the PUFA-RE element, our in silico analyses revealed a

conserved peroxisome proliferator-activated receptor gamma

(PPARG) motif at position 2400/2420. Another region contain-

ing many potential binding motifs lays in the sequence around the

g.2228T.C polymorphism, about 40 bp upstream of the TATA-

box. Several transcription factor-binding motifs partially overlap

in this region. There is a conserved PPARG and NF-1 motif on the

negative strand, which lay adjacent to a CCAAT/enhancer

binding protein motif (C/EBP) in cow, sheep and humans.

However, our analysis failed to recognize this C/EBP motif in the

pig sequence, although it has been postulated before [27]. In pig

this motif is replaced by two PPARG binding sites, a half-site in

the positive strand and a full homodimer motif with 3-bp inter

half-site spacing between inverted repeats (IR3) where PPARG

binds to both complementary strands (Table S5). In addition,

bridging these PPARG sites together, there are two binding motifs

for the retinoid X receptor and the retinoic acid receptor a
(RXR:RARa) response elements (direct repeats with 1-bp (DR1)

and 5-bp (DR5) spacer sequence, respectively). The g.2228T.C

polymorphism lies in the core of the IR3 motif in the positive

strand and at the end of the DR5 element (Figure S1).

Discussion

We have shown that the C-T haplotype at SNPs g.2108C.T

and g.2228T.C in the promoter region of the SCD gene increases

fatty acid desaturation in muscle and subcutaneous fat, in line with

some previous findings in Duroc [21]. The third polymorphism

screened in the promoter (g.2281A.G) was excluded as a causal by

the results in our external validation experiment (Exp 2), where

Large White 6Landrace pigs were all homozygous for this SNP

but still presented the same effect over the desaturation index.

Conversely, as in all the screened populations SNPs g.2108C.T

and g.2228T.C were in almost complete linkage disequilibrium,

we were not able to disentangle which one of the two is the

causative mutation. However, considering the results from a

Landrace6Korean native pig intercross in which these two SNPs

segregated independently [22], we can conclude that fatty acid

composition was associated to an haplotype comprised, in its 59

extreme, not beyond the g.2109 position and, in its 39 end, not

past the g.2280 nucleotide (Figure 2). However, no other

mutations have been described in this short 173 bp region in

Table 2. Desaturation 18:1/18:0 ratio and content of 18:0+18:1 by batch and SCD diplotype in purebred Duroc.

18:1/18:0 18:0+18:1 (%)

Diplotype
Additive (a) and dominant (d)
values Diplotype

Batch Year n f(H1) H1H1 H1H2 H2H2 p-value a p-value d p-value H1H1 H1H2 H2H2 p-value

1 2002 109 0.33 3.37a 3.34a 3.04b ,0.001 0.16 0.004 0.14 0.07 53.98 54.55 54.35 0.53

2 2003 71 0.51 3.45a 3.19b 3.05b 0.002 0.20 ,0.001 20.06 0.36 55.03b 56.13a 55.72ab 0.04

3 2003 28 0.46 3.18a 2.96a 2.65b 0.001 0.27 ,0.001 0.04 0.62 55.09 55.64 56.14 0.30

4 2006 28 0.57 4.33 3.98 3.70 0.10 0.32 0.038 20.04 0.88 55.00 54.24 53.90 0.53

5 2006 22 0.55 4.86a 4.43b 3.75c ,0.001 0.55 ,0.001 0.12 0.42 55.49 55.84 54.37 0.38

6 2006 109 0.44 6.20a 5.83a 5.37b ,0.001 0.42 ,0.001 0.05 0.69 57.10 57.31 56.77 0.55

7 2007 101 0.46 4.92a 4.54b 4.29b ,0.001 0.31 ,0.001 20.07 0.50 56.38 56.94 56.90 0.75

8 2008 66 0.44 5.96a 5.12b 4.54b ,0.001 0.71 ,0.001 20.13 0.56 58.26 56.65 56.64 0.05

9 2008 72 0.38 4.35a 3.77b 3.50c ,0.001 0.43 ,0.001 20.15 0.07 55.46a 53.90b 54.46ab 0.02

10 2010 84 0.39 4.35a 4.29a 3.89b 0.006 0.23 0.011 0.17 0.20 56.91 56.60 56.50 0.80

11 2010 95 0.50 4.34a 4.04b 3.72c ,0.001 0.31 ,0.001 0.01 0.87 55.79 55.75 56.30 0.36

12 2011 81 0.46 4.01a 3.82ab 3.73b 0.016 0.14 0.005 20.05 0.43 57.94 57.67 57.98 0.38

All – 866 0.44 4.43a 4.11b 3.78c ,0.001 0.33 ,0.001 0.00 .0.99 56.10 56.03 55.98 0.81

The haplotype H1 affects the 18:1/18:0 ratio in the muscle gluteus medius but not the 18:0+18:1 content (in percentage of total fatty acids). H1 exerts a consistent
favourable additive effect on the desaturation ratio across all time-batches. Analyses were performed both within batch (1 to 12) and across batches (All). Values are
expressed as the least square mean for each trait by genotype. Means lacking a common superscript within trait differ (p,0.05). The number of pigs (n) genotyped per
batch ranged from 22 to 109. The frequency of the haplotype H1 (f (H1)) by batch ranged from 0.33 to 0.57.
doi:10.1371/journal.pone.0086177.t002
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other studies which have extensively sequenced the SCD promoter

in independent Duroc lines [21–24], including the present study.

In contrast, the g.2228T.C SNP is common to all the studies

which have found a significant relationship between the SCD

promoter genotype and fatty acid composition [21,22]. Taken

together, these findings strongly support that allele T at

g.2228T.C is the causative mutation leading to increased fatty

acid desaturation. Interestingly, this allele is virtually absent in the

Asian breeds [30] and, in contrast, almost fixed in other breeds,

including Landrace, Pietrain, Iberian, and wild boar (Table 1;

[24]). This explains why whole-genome analyses based on these

latter breeds failed to identify SCD as a positional candidate gene

for fatty acid composition. It remains unclear why Duroc is the

only breed where g.2228T.C is segregating at intermediate

frequencies.

In pig, the g.2228T.C SNP is positioned at 58 nt from the SCD

transcription start site, in a stretch of moderate sequence

conservation with cow, sheep, and human SCD sequences (Figure
S1). In silico analysis of this region has identified several

overlapping putative transcription factor binding sites, some of

which are unique to the pig promoter and contain the T.C

mutation at position g.2228 (Figure 2). Among them, there are

the two putative DR1 and DR5 retinoic acid response elements

overlapping to two PPARG motifs. The DR1 is a high affinity

response element for RXR:RARa and PPARG:RARa heterodi-

mers [31], which regulate gene expression in response to their

ligands, all-trans or 9-cis retinoic acid. A recent genome-side study

revealed that the consensus PPARG/RXRa DR1-binding motifs

co-localized at nearly all locations tested [31]. Bioinformatics

analysis also revealed C/EBP-binding motifs in the vicinity of most

PPARG-binding sites in genes induced in adipogenesis. Thus,

PPARG and C/EBP factors cooperatively regulate adipocyte-

specific gene expression by adjacent binding [31]. Unlike other

authors [27,29], we failed to identify the C/EBP motif in the pig

promoter, although it has been described for instance in the

human, mouse, sheep and cow promoters [26,28,32].

Figure 3. Desaturation ratio by SCD diplotype and tissue in purebred Duroc. The presence of haplotype H1 is associated to higher 18:1/18:0
ratio both in intramuscular and subcutaneous fat. The H1H1 pigs have a greater 18:1/18:0 ratio than the H2H2 animals in the muscles gluteus medius
(H1H12H2H2:0.65), longissimus dorsi (H1H12H2H2:0.67), and semimembranosus (H1H12H2H2:0.57), and in the subcutaneous fat (H1H12H2H2:0.50),
with the heterozygote H1H2 showing an intermediate effect. No difference is observed among diplotypes in liver. Error bars represent standard
errors. Columns lacking a common letter within tissue differ (p,0.01, for gluteus medius and longissimus dorsi; p,0.05, for semimembranosus and
subcutaneous fat).
doi:10.1371/journal.pone.0086177.g003

Figure 4. Desaturation ratio in opposite homozygous siblings
for SCD haplotypes H1 and H2. (A) Ratio 18:1/18:0, and (B)
18:0+18:1 content (in percentage of total fatty acids) in the muscle
gluteus medius of homozygous H1H1 and H2H2 sibling pairs (n = 25) are
plotted against the sibling pair mean value. The H1H1 pigs showed a
greater desaturation ratio (p,0.01) than their H2H2 sibs but the same
18:0+18:1 (p = 0.94) content. The associated p-values were determined
using a paired t-test. Regression lines were fitted for each diplotype
(blue: H1H1; red: H2H2). The difference between homozygotes for 18:1/
18:0 increased with 18:1/18:0 (p,0.05), with H1H1 sibs showing a trend
higher than the expected (1.1760.10) and H2H2 sibs lower (0.8360.10).
The regression of 18:0+18:1 on the litter mean value was not different
from the average trend (unity) in both genotypes (p = 0.89).
doi:10.1371/journal.pone.0086177.g004
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By which mechanism the g.2228T.C polymorphism enhances

SCD expression is unknown, although we can postulate three

possible scenarios. In the first one, the T.C mutation, which

affects a core nucleotide of the PPARG homodimer motif, might

alter the PPARG binding affinity to this site. In a second scenario,

the mutation might alter the affinity of the RXR:RARa to their

target DNA motifs, enhancing or repressing transcription

depending on the nature of the motif. And lastly, our third

possible scenario relies on the cooperative binding between

RXR:RARa and PPARG sites, which is a wide-spread feature

in the genome [31], and that the g.2228T.C mutation alters the

relative affinity of one or both of these regulatory partners. This

mechanism is additionally fine-tuned by the availability and

concentration of different ligands, which not only modulates their

affinity for the DNA binding sites, but also their ability to interact

with other co-activators, thus defining their enhancing or

inhibitory action over gene expression [33].

In this regard, we were able to prove increased SCD

transcription in TT pigs as compared to CC pigs in muscle,

indicating that higher product-to-precursor ratios in pigs carrying

the allele T are a consequence of increased SCD expression rather

than a more active version of the protein, as the two main

haplotypes did not differ in the coding region sequence. Moreover,

our results indicate that the enhanced activity of the allele T of the

Figure 5. The haplotype H1 upregulates SCD mRNA expression in muscle. Pigs H1H1 had higher SCD mRNA expression than the H2H2 pigs
in muscle semimembranosus but not in subcutaneous fat and liver. Values are expressed relative to the mean expression in the diplotype with the
greater expression in each tissue. Error bars represent standard errors. Columns lacking a common letter within tissue differ (p,0.05). Haplotype H1
had a favorable additive effect on SCD mRNA expression in muscle (24.968.2, p,0.01) but not in subcutaneous fat (7.2612.5, p = 0.57) and liver
(21.5615.0, p = 0.91).
doi:10.1371/journal.pone.0086177.g005

Figure 6. Desaturation ratio by SCD diplotype in experimental crossbreds. The effect of SCD haplotypes on the 18:1/18:0 ratio was validated
in three experimental genetic types. Sows from the investigated Duroc line (Duroc-1), which was used as control, were sired by boars from an
independent Duroc line (DU-36DU-1) and by Iberian boars (IB-26DU-1), and their progeny contemporarily compared with Large White6Landrace
barrows (LW-16L-2). The results confirmed that the H1 haplotype increased the 18:1/18:0 ratio in the gluteus medius muscle in all genetic types. The
H1H1 pigs showed a higher desaturation ratio than H2H2 (0.81 more in Duroc-1 and and 0.61 more in DU-3 6DU-1), H1H2 (0.37 more in IB-2 6DU-
1), and H1H3 (0.38 more in LW-1 6L-2) pigs. All LW-1 6L-2 pigs were AA for SNP g.2281A.G, thereby excluding this SNP as a causative mutation.
Error bars represent standard errors. Columns lacking a common letter within genetic type differ (p,0.05).
doi:10.1371/journal.pone.0086177.g006
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SCD gene is tissue-specific, with preference for muscle, and

substrate-specific, with preference for 18:0 rather than 16:0. In

contrast to subcutaneous fat, IMF is less sensitive to dietary fat

and, conversely, more prone to endogenous fatty acid synthesis

and remodeling, particularly regarding 18:1 [8]. Therefore,

differences across SCD genotypes are expected to be better

accounted for in muscle than in the subcutaneous tissue. We have

seen in a previous experiment that genetic selection of pigs against

fatness led to differential responses in SCD protein expression in

muscle and subcutaneous adipose tissue [34]. The tissue-specific

behavior of the pig SCD gene is also shown by distinct patterns of

CpG methylation in the proximal promoter in muscle as

compared to subcutaneous fat [35]. In contrast, the SCD promoter

genotypes had no impact on liver fatty acid composition, which is

in line with the fact that, in pigs, the adipose tissue, and not the

liver, is the principal site of de novo fatty acid synthesis [36].

Moreover, in liver, genes encoding for fatty acid remodeling

enzymes, such as SCD, respond differently to steroid hormone

stimulation that genes involved in the fatty acid biosynthesis. For

instance, unlike fatty acid synthase or malic enzyme gene, the

hepatic pig SCD gene undergoes a negative response to thyroid

hormone occurring through a thyroid receptor response element

located downstream the g.2228T.C [37]. Although indirectly, the

results here also indicate that the expected extra SCD produced by

allele T prefers 18:0 rather than 16:0 as a substrate. Thus, we

observed that allele T has a consistent negative side effect on the

18:0/16:0 ratio. Because there is no reason for differential dietary

deposition of fatty acids across genotypes (they were subjected to

the same diet), a likely interpretation is that 18:0 is consumed more

steadily than 16:0, which may occur if SCD desaturates 18:0 to

18:1 more efficiently than 16:0 to 16:1 [9]. Comparison of the

means of 16:0, 16:1, 18:0, and 18:1 for the two extreme genotypes

(Table S2) shows that, in gluteus medius, TT homozygotes desaturate

10.9% more 18:0 than the CC but only 2.1% more C16:0. As for

the subcutaneous fat, these values were 8.5% and 3.0%,

respectively, thereby reproducing the same pattern. The substrate

specificity may be due to different SCD isoforms [12]. A recent

update of the pig SCD annotation in Ensembl, corresponding to

assembly Sscrofa10.2 release 72 (performed on June 2013)

reported three new isoforms for the SCD gene, bringing the total

number to four. They are translated into four different peptides.

The tissue-dependent expression of these isoforms is another level

of complexity of the activity of the SCD expression that has not yet

been explored in pigs.

In addition, the regulation of SCD expression is a complex

phenomenon. The intracellular concentration of desaturases

fluctuates in response to a large number of effectors including

hormonal and dietary factors [11]. However, the influence of

dietary treatment on muscle fatty acid composition is not evident

[38], likely because deposition of dietary fat can be offset by

endogenous synthesis. It has been shown experimentally in pigs

that a reduced protein diet enhances SCD expression in muscle but

not in subcutaneous adipose tissue [39]. The favorable effect of the

allele T on 18:1/18:0, although consistent, varied across batches.

A key component of all the environmental factors accounted for in

the batch effect is the diet. We have seen that there is a negative

relationship of the additive effect of this allele in muscle with

dietary protein (R2 = 0.38, p,0.05). In contrast, the dietary 18:1/

18:0 ratio exerted a positive effect on the additive effect of allele T

in muscle (R2 = 0.39, p,0.05). These effects were not detected in

the subcutaneous fat. Overall, these findings not only give

additional evidence that the effect of the SCD genotypes is most

noticeable in muscle, but also that it is tuned by the diet. In this

regard, an interesting topic for future research will be to study the

effect of these haplotype variants in pigs subjected at diets differing

in vitamin A, or some other metabolic precursor of retinoic acid.

In line with two of our hypothetical scenarios, it has been shown

experimentally that retinoic acid inhibits porcine preadipocyte

differentiation by upregulating RAR and downregulating RXR

[40] but the effects of dietary vitamin A on IMF content and fatty

acid composition in pigs are scarce and inconclusive [41], with

results depending on the genetic type [42]. The study of the

g.2228T.C mutation may contribute to unravel the biological

causes of the interaction between dietary vitamin A and gene

expression. Moreover, because the RAR and RXR mRNA levels

decline with age [43], it may also help to explain the favorable

evolution of the 18:1/18:0 ratio with age [8].

We provide evidence that there exists genetic variation in the

SCD gene with the potential to increase MUFA content in pork.

Strict values on fatty acid content are becoming a common feature

in regulations for foods bearing nutritional or health claims

concerning fat properties. The MUFA content can be also

subjected to such regulations. Selective lipid deposition in meat

animals is a relevant issue not only in terms of animal agriculture

but also in biomedicine. Evidence is also emerging indicating the

existence of allelic variations in the human SCD gene affecting

enzyme activity and, consequently, disease risk factors [10].

Therefore, research in meat animals may well not only lead to a

new understanding of the regulation of lipid metabolism [36] but

also to integrate agriculture science, nutrition, and pharmacology

for improved treatment of important chronic diseases [44].

Materials and Methods

Ethics Statement
The experimental protocol was approved by the Committee on

the Ethics of Animal Experiments of the University of Lleida.

Animals and Tissue Sampling
The association analysis (Exp 1) was done using genomic DNA

and phenotypic data of twelve batches (n = 891) of purebred

Duroc barrows from the line described in [25] (Duroc-1; Table 1).

In two of these batches, crossbred Duroc (DU-3 6DU-1), Duroc

6 Iberian (IB-2 6DU-1), and Large White 6Landrace (LW-1 6
L-2) barrows (Exp 2) were contemporaneously raised to Duroc-1

barrows, for validation purposes (n = 170; Table 1). Pigs in the

same batch were raised from 75 days of age until slaughter at 205

days in the same farm under identical conditions. All batches were

managed following the same standard protocol for data recording

and tissue sampling [23]. Barrows had ad libitum access to

commercial diets. From 160 days of age onwards they were fed

a pelleted finishing diet with an average composition of 16.9%

crude protein, 6.6% fiber, and 6.7% fat (16:0: 20.8%; 18:0: 7.1%;

18:1: 35.4%; 18:2: 27.4%). In two of the Duroc batches at 180

days of age three 10-mL samples of blood per barrow were

obtained between 8 and 10 a.m. after an overnight fast. All pigs

were slaughtered in the same commercial abattoir, where lean

content and other carcass traits were measured by using an on-line

ultrasound automatic scanner. Immediately after slaughter,

samples of the semimembranosus muscle, subcutaneous adipose tissue

at the level of the third and fourth ribs, and liver were collected,

snap-frozen, and stored at 280uC. After chilling for about 24 h at

2uC, a sample of the gluteus medius muscle was excised from the left

side ham, vacuum packaged, and stored at 280uC. Finally, we

used genomic DNA representing European wild boar and several

domestic breeds of pigs and commercial crossbreds for monitoring

haplotype segregation.
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Fatty Acid and Blood Lipid Indicator Analysis
A representative aliquot from the pulverized freeze-dried tissue

was used for fat analysis. Fat content and fatty composition was

determined in duplicate by quantitative determination of the

individual fatty acids by gas chromatography [45]. Fatty acid

methyl esters were directly obtained by transesterification using a

solution of 20% boron trifluoride in methanol and then

determined by gas chromatography using a capillary column

SP2330 (30 m 6 0.25 mm, Supelco, Bellefonte, PA). Quantifica-

tion was carried out through area normalization after adding into

each sample 1,2,3-tripentadecanoylglycerol as internal standard.

Fatty acids were identified by comparing their relative retention

times with those of the external standard and confirmed by

comparing their mass spectra to the computer library of the GC/

MS database Wiley 275.L and NBS 75 K.L. The proportion of

individual fatty acids, as well as that of SFA (14:0; 16:0; 18:0; and

20:0), MUFA (16:1; 18:1; and 20:1), and PUFA (18:2; 18:3; 20:2;

and 20:4), were calculated as percentages relative to total fatty acid

content. Blood triglycerides, cholesterol, leptin and insulin-like

growth factor-1 were determined using available kits [46].

Nucleic Acids Isolation
Genomic DNA was isolated from freeze-dried muscle samples

using standard protocols [47]. Total RNA was isolated from fat,

liver and semimembranosus muscle. Samples (50 mg) were homog-

enized in 1 mL of TRI Reagent (Sigma-Aldrich, Madrid, Spain)

using a mechanical rotor (IKA Werke, Staufen, Germany)

following the manufacturer’s instructions.

Sequencing of Promoter and Exonic Regions of the Pig
SCD Gene

Based on genomic and cDNA sequences (GenBank accession

numbers AY487830 and NM_213781, respectively) primers were

designed in order to amplify and sequence 780 bp of the SCD

proximal promoter and the entire exonic regions of the gene.

Seven primer sets were designed with the Primer3Plus online

oligonucleotide design tool (http://primer3plus.com) [48] (Table
S6). The promoter and 39 non-coding region were amplified from

approximately 60 ng of genomic DNA from twelve Duroc pigs

selected to represent extreme levels of oleic acid in gluteus medius.

PCR reaction of a final volume of 25 mL contained 200 nM of

each primer, 160 mM dNTPs, 3 mM MgCl2, and 0.4 U of Taq

DNA polymerase (Biotools, Madrid, Spain). PCR conditions were

as follows: 95uC for 5 minutes, 35 cycles of 95uC for 20 sec,

annealing temperature as in Table S6 for 40 sec, and 72uC for

90 sec, and completed by an extension step at 72uC for 5 min.

The 59 non-coding and coding regions were amplified using the

same reaction and cycling conditions from total RNA of

semimembranosus muscle retrotranscribed to cDNA as indicated in

the Gene Expression Analysis section. PCR amplicons were sequenced

on an ABI-3100 capillary sequencer (Applied Biosystems, Foster

City, CA) with the BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems). Sequences were aligned with the ClustalW

alignment tool (http://www.ebi.ac.uk/Tools/msa/clustalw2/)

and compared to identify polymorphic sites. All sequences have

been submitted to the GenBank data base (accession numbers

KC736975 and KC736976).

Genotyping the Pig SCD Promoter
Three SCD promoter polymorphisms (AY487830:g.2108C.T,

g.2228T.C and g.2281A.G) were genotyped with allele discrim-

ination assays (Custom TaqMan SNP Genotyping Assays, Applied

Biosystems) using the primers and probes described in Table S7.

For all of them, 15 ng of genomic DNA were used in 8 mL

reactions containing 1x TaqMan Universal PCR Master Mix

(Applied Biosystems) and 900 nM primers and 200 nM probes.

Cycling conditions were as follows: Initial denaturation at 95uC for

10 min and 40 cycles at 93uC for 5 sec and 60uC for 1 min.

Gene Expression Analysis
SCD expression levels were measured by quantitative real-time

PCR (qPCR) in semimembranosus muscle, subcutaneous fat, and liver

and from a subset of 45 animals representing diplotypes H1H1,

H1H2, and H2H2. Total RNA (1 mg) was treated with Turbo

DNA-free DNase (Ambion, Austin, TX) according to the

manufacturer’s protocol and retrotranscribed with 0.5 pmol of

random hexamers using 100 U of MuMLV reverse transcriptase

(Fermentas, St. Leon-Rot, Germany) at 25uC for 10 min, 42uC for

1 h and 70uC for 10 min. cDNA was diluted 1:10 in DEPC-

treated H2O prior to qPCR analysis. Primers, PCR conditions and

data normalization was conducted as in [49].

Estimating Haplotype Effects
The haplotype effect was estimated within tissue using a linear

model including the diplotype and the batch (JMP 8, SAS Institute

Inc., Cary, NC). The age at slaughter and fat content were tested

as covariates in the model. The haplotype additive (a) and

dominant (d) effects were tested replacing the diplotype effect by

the covariates a (1; 0; 21) and d (0; 1; 0) for diplotypes H1H1,

H1H2, and H2H2, respectively. The effects of the diplotype and

covariates were tested using the F-statistic and the differences

among diplotypes were contrasted with the Tukey-HSD test. The

batch was removed from the model when results were expressed

on a batch basis (Exp 1). The haplotype effect in the validation

experiment (Exp 2) was estimated within genetic type using the

same procedure. In IB-26DU-1 and LW-16L-2 crossbreds, the

sire effect was included in the model because only two IB-2 and

LW-1 sires were used. A paired t-test was used for comparing

homozygote siblings. The additive fraction of the genetic variance

accounted for by the diplotype was calculated as 2pqa2 [50]

divided by the additive genetic variance. The genetic variance for

fatty acids and their ratios were estimated using the approach in

[25] and univariate animal models including the full pedigree since

1991.

In silico Analysis of the SCD Promoter
To characterize the SCD promoter, a computer-assisted

identification of putative promoter/enhancer elements was per-

formed using the GENOMATIX software suite (Genomatix

Software GmbH) [51]. Genomatix Matrix Library 8.3 was used

with a core similarity threshold of 0.85 and an optimized matrix

similarity threshold (program default). The Gene2Promoter

application was used to retrieve the SCD promoter from pig,

human, cow, and sheep. Common transcription factor binding

motifs were explored using the CommonTF, DiAlignTF and

MatInspector applications for pattern search and analysis.

Supporting Information

Figure S1 Comparative promoter sequence between
cow, pig, sheep and human SCD gene. Panel (A) depicts

a sequence alignment of a 700 bp homologous 59 flanking

sequence of the gene using ClustalW (http://www.ebi.ac.uk/

Tools/msa/clustalw2/). The conserved PUFA response element

including a sterol response element (SRE), two CCAAT-box (NF-

Y), two nuclear factor (NF)-1 and one stimulator protein 1 (SP1)

binding site is boxed. Other common motifs (TATA-box, NF-1
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and PPARG) are also indicated along with the position of the three

pig promoter SNPs genotyped. Several putative transcription

factor binding sites close to the g.2228T.C polymorphism are

depicted in the four species; these include a putative CCAAT

enhancer binding protein (C/EBP) element, NF-1, two PPARG

binding sites, and two RAR:RXR motifs (DR1 and DR3). The

diagram in Panel (B) represents the potential binding of these

transcription factors in the sequence around the g.2228T.C

polymorphism.

(TIF)

Table S1 Description of the polymorphisms identified
at SCD gene. Eighteen polymorphisms in the SCD gene were

found to be segregating in the investigated Duroc population by

comparing the DNA sequence of six pigs with extreme high and

low values for oleic acid content in gluteus medius muscle. Position

numbering is relative to the translation start codon and the

genomic sequence AY487830. Three of the polymorphisms are

single-nucleotide substitutions in the promoter region.

(DOCX)

Table S2 Carcass weight, fat content, and fatty acid
composition by SCD diplotype and fat tissue in purebred
Duroc. The haplotype H1 showed a favorable effect on fatty acid

compositional traits resulting from increased SCD activity (16:1/

16:0, 18:1/18:0, MUFA/SFA, 18:1, 16:1, and MUFA) and no

effect on fat content-related traits (carcass weight, lean content,

intramuscular fat content, 16:0+16:1, 18:0+18:1, and SFA+-
MUFA). This pattern was more evident in muscle than in

subcutaneous fat. Values are expressed as the least square mean

(6 standard error) for each trait by diplotype. Means lacking a

common superscript within trait differ (p,0.05).

(DOCX)

Table S3 Blood lipid indicators by SCD diplotype in
purebred Duroc. The diplotype did not affect (p,0.05) blood

plasma lipid indicators at 180 d. Values are expressed as the least

square mean (6 standard error) for each trait by diplotype.

(DOCX)

Table S4 Carcass weight, fat content, and fatty acid
composition by SCD diplotype in experimental cross-

bred pigs. The haplotype H1 showed a favorable effect on 16:1/

16:0 and 18:1/18:0 ratios and no effect on fat content-related traits

(carcass weight, lean content, intramuscular fat content,

16:0+16:1, and 18:0+18:1). Values are expressed as the least

square mean (6 standard error) for each trait by diplotype. Means

lacking a common superscript within trait differ (p,0.05).

(DOCX)

Table S5 Positioning of the putative transcription factor
binding sites in the proximal promoter of the pig SCD
gene. Results from the in silica analysis performed with the

MatInspector Genomatix program. The putative PPARG,

RAR:RXR and NF-1 motifs around the AY487830:g.2228T.C

SNP are highlighted.

(XLSX)

Table S6 Sequence of DNA primers used in the
characterisation of the porcine SCD gene. A list of the

primers used to amplify and sequence seven fragments of the

porcine SCD gene encompassing 780 bp of the promoter promoter

and the entire coding and 59 and 39 non-coding regions (3UTR).

The annealing temperature used in the PCR cycling program is

also indicated.

(DOCX)

Table S7 Primers used for genotyping the three single
nucleotide polymorphisms (SNPs) in the porcine SCD
gene promoter with an allelic discrimination assay.

(DOCX)
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