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Abstract

Approximately 15–30% of all breast cancer tumors are estrogen receptor negative (ER2). Compared with ER-positive (ER+)
disease they have an earlier age at onset and worse prognosis. Despite the vast number of risk variants identified for
numerous cancer types, only seven loci have been unambiguously identified for ER-negative breast cancer. With the aim of
identifying new susceptibility SNPs for this disease we performed a pleiotropic genome-wide association study (GWAS). We
selected 3079 SNPs associated with a human complex trait or disease at genome-wide significance level (P,561028) to
perform a secondary analysis of an ER-negative GWAS from the National Cancer Institute’s Breast and Prostate Cancer
Cohort Consortium (BPC3), including 1998 cases and 2305 controls from prospective studies. We then tested the top ten
associations (i.e. with the lowest P-values) using three additional populations with a total sample size of 3509 ER+ cases,
2543 ER2 cases and 7031 healthy controls. None of the 3079 selected variants in the BPC3 ER-GWAS were significant at the
adjusted threshold. 186 variants were associated with ER2 breast cancer risk at a conventional threshold of P,0.05, with P-
values ranging from 0.049 to 2.361024. None of the variants reached statistical significance in the replication phase. In
conclusion, this study did not identify any novel susceptibility loci for ER-breast cancer using a ‘‘pleiotropic approach’’.
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Introduction

Estrogen receptor-negative (ER2) breast cancer (BC) comprises

15 to 30% of all breast tumours (depending on the population) and

has an earlier age at onset and a worse prognosis compared with

estrogen receptor-positive (ER+) disease. It is more common

among women of African-American origin and it is also the breast

cancer type associated with BRCA1 mutations [1,2]. Genome-wide

association studies (GWAS) have identified thousands of common

human genetic variants associated with risk of hundreds of

quantitative traits and human diseases [3,4]. Only seven suscep-

tibility loci have been specifically identified for ER2 BC [5–7]. In

a GWAS, hundreds of thousands or even millions of polymor-

phisms are interrogated at the same time in a strictly agnostic way,

i.e. ignoring any possible a priori knowledge of the SNPs tested.

This model requires use of a stringent significance threshold

(P,561028) to correct for the numerous statistical tests performed

and to avoid false positive findings. As a consequence, it is possible

that variants with a truly positive but weak association are not

detected and, therefore, not reported. A possible drawback of

GWAS is that strict avoidance of false positives may lead to false

negatives [8]. By running secondary analyses using a reduced

number of SNPs defined by biological knowledge or hypothesis,

the required threshold of significance may be lowered and the

power to detect real associations of modest statistical effect may be

increased.

A genetic mechanism termed pleiotropy, which is defined as one

gene, or in this case allele, having an effect on multiple phenotypes

[9] is an example for the selection of candidate SNPs for such

secondary analysis. There are regions in the human genome,

called Nexus, which have been associated with more than one

distinct cancer type [10]. The most striking examples for cancer

are: the 8q24 region, that harbors multiple loci associated with

breast, colon, prostate, bladder and/or ovarian cancers, the TERT

region, which has been associated with pancreatic, bladder, lung

and prostate cancers, the p16 region on chromosome 9p21, and

6q25, and 11q13 associated, respectively, with non-Hodgkins

lymphoma (NHL) and nasopharyngeal carcinoma and with

bladder, breast and prostate cancer [10]. To the best of our

knowledge a pleiotropic approach to identify novel cancer risk

SNPs has been reported only once [11]. A pleiotropic GWAS

performed to examine gene regions associated with pancreatic

cancer, identified a region (HNF1A) previously associated with

several diseases including Type-2 diabetes [12,13].

We used a similar approach to search for new genetic variants

associated with estrogen receptor negative breast cancer suscep-

tibility. We selected all the SNPs that had been associated with a

human disease trait or phenotype, at genome-wide level

(P,561028) and performed a secondary analysis on data from a

GWAS study of ER2 breast cancer by the National Cancer

Institute’s Breast and Prostate Cancer Cohort Consortium (BPC3)

[7]. We then tested the top associations using three additional

populations with a total sample size of 3509 ER+ cases, 2543 ER2

cases and 7031 healthy controls.

Materials and Methods

Ethic statement
The Mammary Carcinoma Risk Factor Investigation (MARIE)

study was approved by the ethics committees of the University of

Heidelberg and the University of Hamburg. Written informed

consent was obtained from all subjects.

For the BPC3 study written informed consent was obtained

from all subjects and ethical approval was collected from the

relevant institutional review boards from each cohort. The cohorts

are: the European Prospective Investigation into Cancer and

Nutrition (EPIC), the Melbourne Collaborative Cohort Study

(MCCS), the Nurses’ Health Study (NHS), the American Cancer

Society Cancer Prevention Study II (CPS-II), the Prostate, Lung,

Colorectal, Ovarian Cancer Screening Trial (PLCO), and the

Multiethnic Cohort (MEC)

Study populations
We performed the study in two phases: first we analysed data

from the BPC3 ER2 GWAS and second, for replication purposes,

we used genotyping or existing data from selected breast cancer

cases and controls collected by three different studies CPS-II,

MCCS and the MARIE study. Individuals from CPS-II contrib-

uted cases and controls to both the initial GWAS and the

replication phase, but there were no overlaps between sample sets

used in the two phases of this study.

The BPC3 has been described extensively elsewhere [14]. It

consists of cases and controls selected from large cohorts assembled

in Europe, Australia and the United States that have both

biological samples and extensive questionnaire information

collected prospectively. Cases were women who were diagnosed

with invasive BC after enrolment, the diagnosis was confirmed by

tumor registries or by medical records. Controls were considered

eligible if they were free of BC until the follow-up time for the

matched case subject. Case and control subjects were matched for

ethnicity and age and for some cohorts also for additional criteria,

such as country of residence. Laboratory techniques and relevant

QCs for the BPC3 ER2 GWAS are extensively reported

elsewhere [7]. Briefly, genotyping was performed at three centers

(Imperial College London, UK, University of Southern California,

USA, and the NCI Core Genotyping Facility, USA). Subjects from

CPSII, EPIC, MEC, PLCO and PBCS were genotyped using the

Illumina Human 660k-Quad SNP array (Illumina, San Diego,

CA, USA), NHSI/NHSII and part of the PLCO study were

genotyped previously using the Illumina Human 550 SNP array

(Illumina, San Diego, CA, USA) [15]. For this study 1998 ER2

invasive cancer cases and 2305 controls belonging to the BPC3

cohort were used.

The MARIE study population comprises BC patients who

participated in a population-based case-control study conducted in

two study regions in Germany (Hamburg and Rhine-Neckar-

Karlsruhe). Cases were women diagnosed with histologically

confirmed primary invasive or in situ breast tumor, aged 50 to

74 years, and residents of the study regions. Detailed information

on tumor hormone receptor status was collected using clinical and
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pathology records. Controls were randomly selected from popu-

lation registries and frequency-matched by year of birth and study

region. The study has been described in more detail elsewhere

[16]. For the present analyses, 2027 cases (370 ER2/1657 ER+)

and 1778 controls were included.

SNPs selection (phase one) and genotyping
The selection of the SNPs to be measured in phase one was

done using the National Human Genome Research Institute’s

(NHGRI’s) catalog of published GWA studies (http://www.

genome.gov/gwastudies/) [4]. It contains summary information

on polymorphic variants reported to be associated with a human

disease, trait or phenotype in a GWA setting at the significance

level of P,1.061025. The data from the catalogue were

downloaded in May 2012 and comprised 7986 SNPs. Approxi-

mately 60% (n = 5794) of the polymorphic variants reported in the

catalogue had a P value higher than 561028 and were, therefore,

excluded from further analysis. Of the remaining 3192 SNPs, 1688

(58%) were genotyped in the BPC3 scan. PLINK [17] was used to

identify highly correlated (r2.0.9 in Hapmap3 CEU) SNPs

genotyped in the BPC3 GWAS for 452 variants (14.2% of the total

selected SNPs). Data for 939 SNPs were imputed: 901 (28.3% of

the total selected SNPs) from Hapmap 2 and 38 (1.1% of the total

selected SNPs) from Hapmap3. The remaining 113 (3.6% of the

total selected SNPs) variants were dropped from the analysis since

no surrogate was found and it was not possible to impute data.

Thus, data for 3079 out of 3192 catalogued SNPs (96.4%) were

used for this study.

The 3079 remaining SNPs were looked up in the BPC3 GWAS

ranking the P-value in decreasing order to check for their

association. All already known breast cancer risk SNPs were

excluded from the analysis.

Replication (phase two) genotyping
In order to confirm the ten most significant findings we used

additional BC cases and controls from three studies of women of

Caucasian descent as a replication set: the CPS-II [18] consisting

of 1530 estrogen receptor positive (ER+) cases, 53 ER2 cases and

2395 healthy controls, the MCCS [19] with 322 ER+ cases, 122

ER2 cases and 823 healthy controls, and the MAmmary

carcinoma Risk factor InvEstigation (MARIE) [16] with 1657

ER+ cases, 370 ER2 cases and 1778 healthy controls, for a total

of 3684 cases and 4996 controls. Specifically rs498872, rs2000999,

rs12150660, rs780094, rs11229030 and rs13397985 were repli-

cated in silico for the MARIE, CPSII and MCCS studies. These six

SNPs were genotyped as part of the iCOGS study using a custom

Illumina array. In the original iCOGS publications SNPs with

MAF ,1%; call rate ,95%; or call rate ,99% and MAF ,5%

and all SNPs with genotype frequencies that departed from

Hardy-Weinberg equilibrium at P,161026 for controls or

P,1610212 for cases were excluded [5,20]. The remaining four

SNPs rs8396, rs4788815, rs2571391, rs780092 were not present in

the iCOGS array and were, therefore, genotyped de novo for the

MARIE study by TaqMan. The mean genotyping success rate was

94.4% (88.2%–96.7%). The percentage of samples that was

genotyped twice for quality assurance was 9.5%, the genotyping

concordance was 99.99%. Departure from Hardy Weinberg

equilibrium was tested for the ten SNPs for the respective control

subjects from each study.

Statistical analysis
Logistic regression adjusted for five principal components, age

(at diagnosis for cases and at selection for controls) and cohort was

used to generate ORs, 95% CIs, and P values for each of the 3079

SNPs selected from the BPC3 ER negative GWA data set and for

the 10 SNPs in the replication phase. The replication was

performed using ER2 and ER+ breast cancer cases and the

analysis was conducted using ER2 alone and in combination with

ER+. Considering the fact that several ER2 SNPs are also

associated with ER+ BC we included in the analysis ER+ and

ER2 cases and then analyzed overall BC risk (ER+ and ER2)

and ER2 specific (ER2 alone) to increase our power to find a true

association. We had more than 90% power to replicate any of the

associations observed in the discovery phase if considering all BC

cases, and over 50% (53%–72%) power if considering only ER2

cases considering alpha of 0.05. Using a conservative Bonferroni

correction, we considered a threshold of P-values,1.661025

(0.05/3079) as statistically significant.

Figure 1. Manhattan Plot of all SNPs analyzed in phase one of the study.
doi:10.1371/journal.pone.0085955.g001
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Results

None of the 3079 selected variants in the BPC3 ER-GWAS was

significant at the adjusted threshold. 186 variants were associated

with ER2 breast cancer risk at a conventional threshold of

P,0.05, with P values ranging from 0.049 to 2.361024 (Figure 1).

The strongest observed association was a decreased risk of ER2

BC with rs8396 (ORhetero :0.84; 95% CI 0.76–0.92 and

ORhomo0.71 (CI 95% 0.58–0.85)). We selected the most significant

10 SNPs (shown in table 1) and analyzed them using independent

samples to determine whether they were genuinely associated with

BC overall and for ER2 breast cancer in particular. All the

polymorphic variants were in Hardy-Weinberg equilibrium with

the exception of rs12150660 in the CPSII and MARIE cohorts

and rs13397985 in the CPSII cohort. Therefore, CPSII was not

used as a replication set for rs12150660 and rs13397985 and

MARIE was not used for rs12150660. In addition, one

polymorphic variant rs8396 was not used in the analysis because

it had a call rate lower than 95% (88.2%).

Only rs11229030, a variant originally found associated with risk

of Crohn’s disease, was nominally associated with a decreased risk

of ER2 BC (OR 0.85, CI 95% 0.75–1.00, P value = 0.049). The

association was observed only for the MARIE study. The results of

all the analyses are shown in table 1. Additional information on

the original reports can be found at http://www.genome.gov/

gwastudies/. We also performed meta-analysis between the

various studies but the results were very heterogeneous, clearly

suggesting a negative finding (Forest plots, heterogeneity P-values

and I2 statistics are shown in figure S1).

Discussion

Pleiotropy is a fairly common phenomenon that is defined as

one gene or allelic variant having an effect on multiple phenotypes.

In a recent paper based on data from the catalogue of published

GWAS, Sivakumaran and colleagues have reported that 4.6% of

the SNPs and 16.9% of the genes present in the catalogue are

shown to have pleiotropic effects [9]. These percentages probably

Table 1. The strongest associations between the pleiotropic SNPs and breast cancer risk.

SNP Name study ER status ORa 95% CIb P_trendc study ER status OR 95%CI P_trend

rs2000999 [22] BPC3 ER+/ER2 0.83 (0.75–0.93) 6.72E-04 BPC3 ER2 0.83 (0.75–0.93) 6.72E-04

MCCS ER+/ER2 1.05 (0.85–1.30) 6.30E-01 MCCS ER2 1.14 (0.80–1.62) 4.80E-01

CPS2 ER+/ER2 0.94 (0.85–1.04) 2.41E-01 CPS2 ER2 0.88 (0.53–1.46) 6.19E-01

MARIE ER+/ER2 1.02 (0.91–1.15) 7.26E-01 MARIE ER2 0.99 (0.81–1.20) 8.85E-01

rs12150660 [23] BPC3 ER+/ER2 0.84 (0.76–0.93) 8.58E-04 BPC3 ER2 0.84 (0.76–0.93) 8.58E-04

MCCS ER+/ER2 1.00 (0.82–1.21) 9.70E-01 MCCS ER2 0.79 (0.56–1.11) 1.70E-01

CPS2 ER+/ER2 0.94 (0.84–1.05) 2.74E-01 CPS2 ER2 1.21 (0.74–1.98) 4.53E-01

MARIE ER+/ER2 1.16 (1.04–1.31) 1.07E-02 MARIE ER2 1.18 (0.97–1.42) 9.87E-02

rs13397985 [24] BPC3 ER+/ER2 0.84 (0.76–0.94) 2.18E-03 BPC3 ER2 0.84 (0.76–0.94) 2.18E-03

MCCS ER+/ER2 1.09 (0.88–1.35) 4.20E-01 MCCS ER2 0.95 (0.66–1.38) 8.00E-01

CPS2 ER+/ER2 0.94 (0.82–1.08) 3.58E-01 CPS2 ER2 1.16 (0.65–2.07) 6.17E-01

MARIE ER+/ER2 1.11 (0.98–1.26) 8.65E-02 MARIE ER2 1.16 (0.95–1.42) 1.46E-01

rs780094 [25] BPC3 ER+/ER2 0.87 (0.80–0.94) 9.97E-04 BPC3 ER2 0.87 (0.80–0.94) 9.97E-04

MCCS ER+/ER2 1.01 (0.86–1.19) 8.70E-01 MCCS ER2 0.94 (0.72–1.24) 6.80E-01

CPS2 ER+/ER2 0.96 (0.88–1.04) 3.00E-01 CPS2 ER2 0.98 (0.67–1.45) 9.29E-01

MARIE ER+/ER2 1.02 (0.92–1.12) 7.38E-01 MARIE ER2 0.97 (0.83–1.14) 7.34E-01

rs11229030 [26] BPC3 ER+/ER2 0.87 (0.80–0.95) 1.95E-03 BPC3 ER2 0.87 (0.80–0.95) 1.95E-03

MCCS ER+/ER2 0.98 (0.83–1.15) 8.00E-01 MCCS ER2 1.01 (0.77–1.33) 9.20E-01

CPS2 ER+/ER2 1.02 (0.94–1.11) 6.60E-01 CPS2 ER2 1.31 (0.89–1.94) 1.72E-01

MARIE ER+/ER2 0.98 (0.89–1.08) 6.22E-01 MARIE ER2 0.85 (0.72–1.00) 4.94E-02

rs780092 [27] BPC3 ER+/ER2 1.20 (1.07–1.34) 2.06E-03 BPC3 ER2 1.20 (1.07–1.34) 2.06E-03

MARIE ER+/ER2 1.03 (0.94–1.14) 4.96E-01 MARIE ER2 0.90 (0.74–1.10) 3.17E-01

rs4788815 [28] BPC3 ER+/ER2 0.85 (0.78–0.93) 5.29E-04 BPC3 ER2 0.85 (0.78–0.93) 5.29E-04

MARIE ER+/ER2 0.99 (0.92–1.06) 6.94E-01 MARIE ER2 1.14 (0.99–1.31) 7.50E-02

rs2571391 [29] BPC3 ER+/ER2 1.16 (1.06–1.27) 1.42E-03 BPC3 ER2 1.16 (1.06–1.27) 1.42E-03

MARIE ER+/ER2 1.03 (0.95–1.10) 4.82E-01 MARIE ER2 0.91 (0.79–1.06) 2.25E-01

rs498872 [30] BPC3 ER+/ER2 1.15 (1.05–1.26) 2.21E-03 BPC3 ER2 1.15 (1.05–1.26) 2.21E-03

MCCS ER+/ER2 0.96 (0.80–1.15) 6.60E-01 MCCS ER2 1.05 (0.78–1.43) 7.30E-01

CPS2 ER+/ER2 0.92 (0.85–1.01) 7.10E-02 CPS2 ER2 0.96 (0.63–1.47) 8.50E-01

MARIE ER+/ER2 1.01 (0.91–1.12) 9.07E-01 MARIE ER2 0.96 (0.80–1.14) 6.11E-01

aOR = Odds Ratio.
b95% CI = 95% Confidence Intervals.
cAll analysis were adjusted for age at diagnosis and in the BPC3 for cohort of provenience.
doi:10.1371/journal.pone.0085955.t001
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underestimate the real biological significance, since they have been

obtained using a very conservative threshold, such as considering

only the SNPs available in the catalogue and associated with a

particular disease or trait at a genome wide level. Using data from

GWAS meta-analyses, pleiotropy seems to play a much stronger

role for specific diseases, for example Cotsapas and collaborators

reported that 44% of the susceptibility loci for autoimmune

diseases overlap [21]. In a two-staged analysis of 3509 ER+ cases,

2543 ER2 and 7031 healthy controls, none of the SNPs showed a

statistically significant association with breast cancer in the

replication analysis. The strongest signal, in the replication

analysis, was given by rs11229030 (a Crohn’s disease susceptibility

allele) that was associated with a decreased risk of ER2 BC (P

value = 0.049) only in the MARIE study, but not in CPS-II or

MCCS suggesting that the association found is probably due to

chance.

There are several possible reasons why our pleiotropic approach

failed to identify new SNP associatated with ER2 BC. First, ER2

BC may be associated with uncommon biologic pathways that are

not shared with many other diseases and, therefore, may not be

influenced by pleiotropy. This is consistent with the fact that there

are several SNPs which are specifically associated with ER2 but

not ER+. Alternatively, ER2 BC may share genetic risk factors

with other common disease traits and phenotypes, but not with

those we included in our analysis. The pleiotropic approach we

used is necessarily limited by the number of disease traits and

phenotypes that have been examined with enough statistical power

to identify GWAS hits. It is possible that disease traits and

phenotypes with biologic pathways similar to ER2 BC have not

been examined adequately and are yet to be included in the

NHGRI database.

We are aware of several limitations that this work might present:

first, we were not able to include all the SNPs from the catalogue

because 113 (3.6% of the total selected SNPs) variants were

dropped from the analysis since no surrogate was obtained and it

was not possible to impute data. Second, we replicated, as an

exploratory analysis, only the 10 most significant SNP associations,

thus we cannot exclude that a true positive association lies those

SNPs that we did not attempt to replicate in the second phase,

although due the complete lack of replication of the first ten SNPs

this possibility seems unlikely. Third, we have included only the

SNPs present in the GWAS catalogue, but we did not include

other SNPs present in the regions. Since in pleiotropic regions the

SNPs associated with different traits or diseases are not always the

same, we can not exclude the possibility that we might have left

out SNPs that are truly associated with ER2 but that are not yet

present in the GWAS catalogue. The other limitation is the sample

size of the replication set which is quite large, considering the

rarity of the disease, but might have been inadequate to detect

weaker associations.

In conclusion, and given the limitations summarized, we did not

identify any pleiotropic SNP associated with ER-breast cancer.

Supporting Information

Figure S1 Forest plots, I2 and heterogeneity P-values for
the selected polymorphisms in the meta-analysis of the
three studies.

(DOC)
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