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Abstract

Objective: Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in
which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival
pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional
myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial
resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the
contribution of regional blood flow effects of NO to infarct size and protection.

Methods and Results: We used myocardial contrast echocardiography to measure regional myocardial blood flow in mice
over time. Reperfusion after myocardial ischemia-reperfusion injury is improved by postconditioning, as well as by
phosphomimetic eNOS modulation. Knock-in mice expressing a phosphomimetic S1176D form of eNOS showed improved
myocardial reperfusion and significantly reduced infarct size. eNOS knock-out mice failed to show cardioprotection from
postconditioning. The size of the no-reflow zone following ischemia-reperfusion is substantially reduced by
postconditioning and by the phosphomimetic eNOS mutation.

Conclusions and Significance: Using myocardial contrast echocardiography, we show that temporal dynamics of regional
myocardial perfusion restoration contribute to reduced infarct size after postconditioning. eNOS has direct effects on
myocardial blood flow following ischemia-reperfusion, with reduction in the size of the no-reflow zone. These results have
important implications for ongoing clinical trials on cardioprotection, because the degree of protective benefit may be
significantly influenced by the regional hemodynamic effects of eNOS-derived NO.
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Introduction

Ischemic postconditioning is a modified form of reperfusion that

results in reduced myocardial tissue damage [1,2]. Postcondition-

ing represents a particularly attractive therapy against myocardial

ischemia/reperfusion (I/R) injury because it does not require

foreknowledge of the ischemic event. The mechanisms underlying

cardioprotection from postconditioning and preconditioning have

been reviewed recently [3,4,5,6,7], and involve adenosine receptor

signaling, and activation of pro-survival kinase pathways including

ERK1/2, Akt/PI3 kinase, and STAT3. These pathways result in

cellular changes, including activation of mitochondrial ATP-

dependent K channels and inhibition of mitochondrial perme-

ability transition pore opening, resulting in reduction in tissue

damage. Beneficial effects from cardiac postconditioning have

been shown in acute MI patients undergoing PCI [8,9,10,11,12].

Larger clinical trials are now underway for both postconditioning

itself and for pharmacologic agents based on its underlying

cardioprotective pathways [5,7,13,14,15]. eNOS and NO are

involved in cardiac postconditioning signaling [16,17,18,19,20].

However, a direct role for eNOS in modulating regional

myocardial blood flow during reperfusion has not been demon-

strated.

Previous methods for measuring myocardial blood flow in mice

do not have sufficient temporal or spatial resolution to follow

regional myocardial perfusion following I/R injury. We used

myocardial contrast echocardiography (MCE) of intravenously

infused echogenic microbubbles to monitor blood flow in vivo in

mice [21,22]. Here, we use MCE to dynamically track regional
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myocardial blood flow during I/R to understand the mechanisms

of postconditioning protection.

We use wild-type C57BL/6 mice, eNOS knockout mice, and

eNOS mutant mice carrying a single amino acid mutation at the

serine 1176 phosphorylation site (S1176D) [23]. Phosphorylation

of eNOS at this serine (corresponding to serine 1177 in man)

increases eNOS enzymatic activity and NO production [24,25]. In

S1176D mice, the codon for serine is replaced by one encoding

aspartate to achieve a phosphomimetic gain-of-function mutation.

Our current results demonstrate that postconditioning is

characterized by improved regional myocardial blood flow after

I/R, and by an increase in eNOS S1176 phosphorylation.

Further, the phosphomimetic eNOS mutation by itself improves

blood flow and reduces infarct size. In contrast, eNOS knockout

mice do not show reduction in infarct size or improvements in

blood flow following postconditioning. These results reveal the

importance of improved myocardial perfusion as a mechanism for

protection from postconditioning. Further, they demonstrate that

modulation of eNOS phosphorylation influences myocardial

reperfusion, affecting tissue outcome from cardioprotection.

Materials and Methods

Animals
eNOS knockout mice and eNOS S1176D mutant mice were

generated and genotyped as previously described [23,26]. C57BL/

6 mice (Jackson Laboratories) were used as wild-type controls. All

animals were on C57BL/6 genetic background and 8–12 weeks at

the time of the experiments.

Ethics Statement
Experiments were approved by the Massachusetts General

Hospital Institutional Animal Care and Use Committee (Permit

2003-N000297). All surgery was performed under sodium

pentobarbital and ketamine anesthesia, and all efforts were made

to minimize suffering.

Nitrite/nitrate assay
eNOS enzymatic activity was assessed by measurement of

nitrite and nitrate in myocardial tissue using a fluorometric assay

(BioVision). Tissue samples were lysed for 10 minutes on ice with

300ml of tissue-lysis buffer. Tissue homogenates were centrifuged

at 10,000 g for 5 minutes at 4uC and further filtered through a

10 kDa MW cut-off filter (BioVision). Filtrate was collected for the

NO assay.

In vivo myocardial ischemia reperfusion model
Animals were anesthetized with sodium pentobarbital (50 mg/

kg ip) and ketamine hydrochloride (50 mg/kg ip). Depth of the

anesthesia was moni-tored by tail pinch, respiratory rate and heart

rate. Mice were intubated and ventilated. Left anterior descending

coronary artery (LAD) ligation was performed through a

thoracotomy. A 7-0 silk ligature was passed under-neath the

vessel and through a custom snare to induce ischemia without

damaging the artery. Ischemia was achieved by tightening the

snare for 45 minutes and occlusion was confirmed by observed

blanching of the anterior left ventricular wall. After 45 minutes,

the myocardium was reperfused with one of two algorithms 1)

traditional myocardial ischemia-reperfusion (MIR) injury where

the ligation was simply released or, 2) myocardial ischemia

reperfusion with postconditioning (MIPc) where six cycles of 10 sec

reperfusion was followed by 10 sec of ischemia. Buprenorphine

HCl (0.05–0.1 mg/kg) was administered post-operatively.

Infarct size determination
After 24 hour reperfusion, the LAD was religated with 7-0 silk

suture, and 1 ml of 1% Evans blue was perfused retrograde

through the left carotid artery to delineate the area at risk (AAR).

The heart was excised and fixed in a 2% solution of agarose gel

and allowed to solidify. Myocardial tissue was sectioned into 1-

mm-thick axial sections. Infarct size was determined by staining

with 2,3,5-triphenyltetrazolium chloride (TTC) for 20 minutes in

the dark at 37uC. Each sliced was weighed and photographed

through a dissecting microscope. The left ventricular area, AAR,

and area of infarction for each slice were determined by

planimetry. The final size of infarction was determined by

integrating the infarct areas in each myocardial slice over the

entire myocardium as previously described [27].

Western blot analysis
Myocardial tissues were harvested after 45 min ischemia and 10

min reperfusion. The left ventricular AAR was identified by

blanched myocardium during ischemia. Myocardial tissues were

homogenized to obtain protein extracts and 100mg of protein was

subjected to electrophoresis in 7% Tris-HCl polyacrylamide gels.

Proteins were transferred to PDVF membranes for Western blot

analysis and visualized by chemiluminescence. Antibodies to

eNOS (Sigma-Aldrich), phospho-eNOS (p-Ser1177 human se-

quence numbering, BD Bioscience), Akt (Cell Signaling) and

phospho-Akt (p-Ser473, Cell Signaling) were obtained commer-

cially.

Myocardial contrast echocardiography
MCE studies were performed as previously described [22]. Mice

were anesthetized with intraperitoneal injections of sodium

pentobarbital (50 mg/kg) and ketamine hydrochloride (50 mg/

kg). Heart rate and blood pressure were monitored through a

carotid catheter and recorded with a blood pressure analysis

module in PowerLab (ADInstruments). A venous line was placed

in the left jugular vein for constant infusion of microbubbles. 10%

Perflutren lipid microspheres (Definity, Lantheus Imaging) were

diluted tenfold in sterile saline and infused intravenously at 20mL/

min. A thoracotomy was performed to provide unobstructed

visualization of the myocardium. A 7-0 silk suture was passed

underneath the LAD and through a custom snare. MCE was

performed with a 14 MHz linear transducer using an Acuson

Sequoia C512 system, using a mechanical index of 0.24. Perfusion

images were obtained in real time following destruction of

microbubbles using a sequence of 10 high-energy frames

(mechanical index 1.9). Signal intensity was obtained for 10

seconds after the high-energy sequence at a frame rate of 30 Hz.

Parasternal long-axis views were recorded at the level of the aortic

arch. For temporal monitoring of myocardial blood flow MCE was

used to measure blood flow at baseline before ischemia, during

ischemia, and at 5, 10, 30 minutes after initiation of reperfusion.

Myocardial perfusion analysis
MCE was performed on the anteroseptal wall in the parasternal

long-axis view using methods previously described [22]. Detection

and segmentation of the left ventricular septum was accomplished

using a shape based snake model of edge detection in Matlab

(Mathworks) [28,29]. The anterior septum was divided into three

regions of interest defined by the apical septum, mid septum and

basal septum. Average signal intensity within each region of

interest was measured in each frame and a curve of signal intensity

over time was fitted to an exponential function: y = A (1 – e2b t),

where y is the signal intensity, b is the initial slope of the curve and

eNOS and Cardiac Postconditioning
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A is the signal plateau intensity. Two to three curves were

averaged per time-point for each animal. Myocardial blood flow

was estimated by the product of Ab. Values are expressed as

percentage of baseline Ab.

No-reflow analysis
MCE measurements were taken at baseline as a measure of

myocardial blood flow before ischemia and compared against

MCE measurements taken at the end of the study, 30 minutes

after reperfusion. Three consecutive MCE images were averaged

for each animal under each condition, the average signal intensity

of the left ventricular anteroseptum at baseline was calculated.

Images were converted to relative myocardial blood flow images

by using a thresholding paradigm to identify areas of severe (0%–

20% residual blood flow, representing the core ischemic region)

and moderate (21%–30% residual blood flow, representing

penumbra) blood flow relative to baseline [30].

Statistics
All results are expressed as mean 6 SD, except western blot

densities which are expressed as mean 6 SEM. Statistical analysis

was performed in Matlab (Mathworks) using Kriskal-Wallis

analysis of variance and Wilcoxon rank-sum tests with Bonfer-

onni’s correction. Differences of P,0.05 were considered signif-

icant.

Results

Postconditioning and S1179D mice show protection
from I/R injury in vivo

We examined the response to myocardial I/R injury in wild-

type mice, S1176D mice, and eNOS knockout mice by ligation of

the left anterior descending (LAD) artery for 45 minutes, followed

by reopening of the ligated vessel. We compared the response of

animals subjected to myocardial ischemia reperfusion alone (MIR)

with those subjected to myocardial ischemia reperfusion with

postconditioning (MIPc), using a pattern of 6 cycles of 10 sec

reperfusion followed by 10 sec ischemia. The areas at risk,

determined 24 hours after I/R, were not significantly different

across groups (Figure 1A). WT mice subjected to MIPc developed

smaller infarcts (ratio of infarct size/area at risk) compared to mice

subjected to MIR (Figure 1B left). S1176D mice displayed smaller

infarcts in both MIR and MIPc groups (Figure 1B middle). The

reduced infarct sizes in S1176D ki mice were comparable to those

seen in postconditioned WT mice. eNOS ko mice showed no

reduction in infarct size from postconditioning (Figure 1B right).

Representative infarct slices with the infarct zones outlined are

shown in Figure 1C.

eNOS protein levels and enzymatic activity in mutant
mice

Total eNOS protein levels were the same in the hearts of WT

and S1176D mice, and eNOS was not detectable in the hearts of

eNOS ko mice (Figure 2A). However, eNOS enzymatic activity, as

reflected by fluorometric determination of nitrate/nitrite stable

breakdown products of NO metabolism, was greater in heart tissue

of S1176D mice than of WT mice (3.2 pmol/mg tissue vs. 2.5+/–

0.6 pmol/mg tissue, p = 0.03), consistent with results from other

tissues [23]. Thus, baseline levels of eNOS enzymatic activity and

NO in the myocardium can be regulated by phosphomimetic

modulation of the S1176 phosphorylation site.

Postconditioning activates Akt and eNOS
We determined the expression levels and degree of phosphor-

ylation of Akt and eNOS following in response to myocardial I/R

injury. Figure 2B shows the effects of MIR and MIPc on eNOS

phosphorylation, all in WT mice. MIR diminishes eNOS

phosphorylation at S1176, while MIPc does not. Figure 2C shows

the effects of I/R and postconditioning on Akt phosphorylation.

Akt phosphorylation at S473 was higher in wild-type mice after

MIPc than MIR alone. In wild-type mice, these changes are

associated with parallel changes in eNOS phosphorylation at

S1176 (Figure 2B). In S1176D mice, the level of Akt phosphor-

ylation did not change with MIR or MIPc (Figure 2C, middle). In

eNOS knockout mice, Akt phosphorylation was increased

following MIPc (Figure 2C, right), though this increase, in the

absence of eNOS, did not result in cardioprotection (Figure 1B,

right). The reasons for increased Akt phosphorylation in eNOS ko

mice is not known but possibilities include positive feedback

between eNOS phosphorylation and phosphorylation of Akt

kinase itself.

Postconditioning eNOS and S1176 phosphorylation are
associated with improved regional myocardial perfusion
kinetics

We used MCE to dynamically track regional myocardial blood

flow [21,22] during MIR and MIPc. Wild-type, eNOS knockout,

and S1176D mice were subjected to 45 min LAD ligation and

reperfusion, without (MIR) and with postconditioning (MIPc) to

determine whether improvements in regional myocardial blood

flow could contribute to cardioprotection. We obtained high

quality two-dimensional parasternal long-axis images of the

myocardium to follow regional myocardial perfusion (Figure 3A).

The anterior septum was divided into three regions to capture the

distinct blood flow changes in each anatomic region. Region

1,outlined in red, is the basal anteroseptum. Region 2, outlined in

blue, is the mid anteroseptum. Region 3, outlined in black, is the

apical septum. The site of LAD ligation is located between regions

2 and 3. The majority of blood flow deficits are found in the apical

septum.

After contrast containing microbubbles are introduced into the

circulation, the bubbles are synchronously destroyed in the field of

view, and their reappearance is quantitated over time in specific

regions. Two parameters describe regional perfusion. The first

parameter is A, the steady state level (plateau) of the microbubbles

(see Figure 3D). The second parameter is b, that rate of

reappearance (slope) of microbubbles following synchronous

destruction [31]. Regional myocardial blood flow was estimated

by the product of these two parameters (Ab) [22,32].

In wild-type mice (Figure 3D, top row), baseline blood flow (left

panel) in all three regions is comparable. With MIR (middle

panel), perfusion was markedly impaired in the apical septum

(black, arrow) in the region corresponding to the eventual infarct.

With MIPc, (right panel), perfusion in the apical septum (black) is

improved over with MIR. These results show that MIPc is

associated with improvements in the restoration of regional blood

flow in the ischemic zone.

In eNOS knockout mice (Figure 3D, middle row), baseline

blood flow (left panel) in all three regions is comparable, and

similar to those seen in wild-type mice. With MIR, regional blood

flow is reduced in both the mid-septum (blue) and apical septum

(black). With MIPc, the blood flow in these regions continues to be

poor, and is even worse than with MIR. These results show that

eNOS knockout mice have more pronounced regional perfusion

eNOS and Cardiac Postconditioning
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defects than wild-type mice, and unlike wild-type mice, they show

no improvements in regional blood flow with postconditioning.

In contrast, S1176D mice (Figure 3D, bottom row) showed

robust tolerance against myocardial blood flow deficit caused by

MIR. Replenishment curves from both MIR (middle panel) and

MIPc (right panel) groups showed minimal deficits in myocardial

blood flow. These results indicate that the phosphomimetic eNOS

mutation by itself is associated with improved restoration of

regional perfusion.

To extend our understanding of the temporal dynamics of the

apical blood flow deficits associated with MIR and MIPc, we

performed MCE serially over the time-course of reperfusion.

Figure 4 shows temporal MCE profiles in the apical septum for

wild-type, eNOS knockout, and S1176D mice. Blood flow

measurements were normalized to myocardial blood flow values

at baseline. Wild-type mice subjected to MIR exhibited worsening

myocardial blood flow over time, whereas WT mice subjected to

MIPc showed improvement in myocardial blood flow, with

significantly improved perfusion after 30 minutes (Figure 4A).

eNOS knockout mice showed worsening myocardial blood flow

over time with both MIR and MIPc, with no detectable difference

at 30 minutes (Figure 4B). Although the 1 minute timepoint shows

a higher blood flow in the S1176D mice (Figure 4B) than in the

WT mice (Figure 4A0, this early difference did not translate to

improvement in blood flow at 30 minutes, nor was there a

difference between MIR and MIPc groups. S1176D mice show

rapid return to pre-ischemic levels of perfusion and higher with

both MIR and MIPc (Figure 4C). Quantitation of the myocardial

blood flow in the apical septum at 30 minutes of reperfusion

(Figure 4D) shows that MIPc is associated with improvement in

reperfusion in wild-type mice. eNOS knockout mice fail to show

reperfusion with either MIR or MIPc. S1176D mice show robust

reperfusion with both MIR and MIPc. The temporal results from

MCE analysis support the notion that increased phosphomimetic

eNOS activity enhances myocardial blood flow after I/R injury.

Mean arterial pressure and heart rate were monitored throughout

the course of I/R and no significant difference was found between

groups (data not shown).

Assessment of myocardial no-reflow zones
Despite opening of an infarct-related artery, no-reflow zones

may result from persistent perfusion defects. These are thought to

be caused by obstructed or dysfunctional capillaries in the

microvasculature caused by endothelial dysfunction. We assessed

the spatial extent of no-reflow zones using MCE, defined as

regions with severe blood flow reductions to less than 20% of

baseline blood flow [33]. As shown in Figure 5, wild-type mice

developed larger no-reflow zones at the 30 minute timepoint after

MIR than after MIPc. eNOS knockout mice showed large no-

reflow zones comparable to wild-type mice treated with MIR.

S1176D mice showed significantly smaller no-reflow zones with

both MIR and MIPc.

Discussion

Much of the clinical treatment of acute myocardial infarction

focuses on restoring coronary artery blood flow through the infarct

vessel, either through pharmacologic agents (thrombolysis, anti-

Figure 1. eNOS S1176 phosphorylation protects against I/R injury in vivo. Wild-type, S1176D and eNOS knockout mice were subjected to
45 minutes of myocardial ischemia (LAD ligation) followed by traditional reperfusion (MIR) or postconditioned reperfusion (MIPc: 6 cycles of 10sec
reperfusion, 10 sec ischemia). A. Percentage of left ventricle area at risk (AAR), (P = NS). B. Quantitative analysis of infarct size over AAR, *P,0.05
compared to wild-type control. C. Representative heart sections perfused with 1% Evans blue and stained with 2% TTC; infarct areas are outlined in
black. MIR: Myocardial ischemia with reperfusion, MIPc: Myocardial ischemia with postconditioning, AAR: Area at Risk, LV: Left Ventricle. n = 6–9 mice
per group. Data are expressed as the mean6SD.
doi:10.1371/journal.pone.0085946.g001
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Figure 2. Postconditioning activates Akt and eNOS. A. Western blot of total eNOS and GADPH in WT (C57BL6/J), S1176D mice (S1176ki), and
eNOS ko mice. B. Western blot demonstrating phosphorylation (Ser1176) and total protein levels of eNOS in wild-type mice under conditions of
control (CTL), MIR, and MIPc. C. Representative Western blot demonstrating phosphorylated (Ser473) and total protein levels of Akt. Densities
(arbitrary units, AU) show that MIPc phosphorylates Akt in WT and eNOS ko mice. n = 5 per group. Data are expressed as the mean6SD. *P,0.05.
doi:10.1371/journal.pone.0085946.g002

Figure 3. MCE of regional blood flow following I/R. A. The left ventricular septum in the parasternal long axis view was divided into three
regions of interest: apical septum (black), mid septum (blue) and basal septum (red). RV: Right ventricle, RA: Right atrium, LV: Left ventricle.
Representative MCE image taken at baseline, B. Representative MCE image during ischemia. C. Representative MCE image 30 minutes after
reperfusion. D. Analysis of regional change in myocardial perfusion. Representative region-specific replenishment curves 30 minutes post-reperfusion
are shown: apical septum (black), mid septum (blue), and basal septal regions (red). Replenishment curves are characterized by the myocardial blood
flow parameters A (plateau intensity) and b (flow velocity).
doi:10.1371/journal.pone.0085946.g003

eNOS and Cardiac Postconditioning
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Figure 4. Temporal myocardial contrast echocardiography. Myocardial blood flow (Ab) profiles in the apical region for A. C57BL/6J mice. B.
eNOS knockout mice, and C. S1176D knockin mice. Levels of myocardial myocardial blood flow were normalized to baseline values and measured at
2, 10 and 30 minutes after reperfusion. D. Apical myocardial blood flow 30 minutes after reperfusion. MIR: Traditional myocardial ischemia with
reperfusion, MIPc: Myocardial ischemia with postconditioning. n = 5–6 per group. Data are expressed as the mean6SD. *P,0.05.
doi:10.1371/journal.pone.0085946.g004

Figure 5. Effect of postconditioning and S1176D mutation on no-reflow zones. A. Representative images 30 minutes after reperfusion.
Superimposed areas (blue) indicate regions with #20% residual blood flow. B. Composite graph showing areas of the myocardium with #20%
(black) and #30% (white) residual blood flow compared to preischemic baseline. MBF: myocardial blood flow. n = 5–6 per group. Data are expressed
as the mean6SD. *P,0.05.
doi:10.1371/journal.pone.0085946.g005

eNOS and Cardiac Postconditioning
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platelet agents) or mechanical means (percutaneous coronary

intervention or coronary artery bypass graft surgery). However,

reperfusion following ischemia can be associated with significant

tissue damage, due to rapid normalization of pH, Ca2+ overload,

generation of reactive oxygen species, and opening of mitochon-

drial permeability transition pores [6]. Reperfusion injury can be

reduced by cardiac preconditioning and postconditioning para-

digms. Postconditioning is particularly attractive because it does

not require foreknowledge of the ischemic event. The mechanisms

of preconditioning and postconditioning involve the activation of

cardioprotective survival pathways, including ERK1/2 and Akt

kinase (together termed the reperfusion injury salvage kinases or

RISK pathways) and TNFa and STAT3 pathways (together

termed the survival activating factor enhancement or SAFE

pathways). These pathways lead to activation of the mitochondrial

ATP-dependent potassium channel and inhibition of mitochon-

drial permeability transition pore opening, resulting in decreased

cell death [5,6,7,13,34]. eNOS is known to be activated by these

cardioprotective pathways, and is thought to play signaling roles in

mediating postconditioning protection [17,18,19]. Despite its well

known role as an endogenous vasodilator, a direct role for eNOS-

derived NO in improving microvascular regional blood flow after

postconditioning has not been demonstrated.

A unique aspect of the current report is the application of MCE

to delineate regional myocardial blood flow over time during I/R

and postconditioning. Our results show that despite opening of the

infarct artery during reperfusion, MIR results in detectable defects

in microvascular tissue perfusion in the distal septum following

LAD ligation. These defects are less marked following MIPc, with

improved tissue perfusion in the affected area. This establishes that

in addition to cardioprotective signaling mechanisms, differences

in restoration of regional blood flow contribute to the reduction in

infarct size following postconditioning. Furthermore, Western blot

results confirm that MIPc is associated with activation of Akt

kinase and eNOS phosphorylation in wild-type mice. Interestingly,

Akt phosphorylation is still observed in eNOS knockout mice,

although the protective effects of postconditioning are lost in the

absence of eNOS.

eNOS activity is regulated in vivo by a variety of mechanisms

[35,36], including phosphorylation at S1176, resulting in increased

enzymatic activity [24,25]. eNOS phosphorylation is deficient in

diabetes and hyperlipidemia, and may mechanistically contribute

to endothelial dysfunction seen in these conditions. Here, we use

eNOS mutant mice that carry the S1176D gain of function

mutation [23]. We previously showed that this phosphomimetic

mutation rescues impaired blood flow in Akt1 deficient mice

subjected to wound healing assays [37], and improves vessel

reactivity and decreases stroke size when challenged with cerebral

ischemia [38].

eNOS S1176D mice, even without postconditioning, show

tolerance against I/R injury in vivo, comparable to postconditioned

wild-type mice. MCE replenishment curves confirm that restora-

tion of myocardial reperfusion in the area at risk is significantly

improved in S1176D mice as compared with wild-type mice, both

with MIR and MIPc. In contrast, eNOS knockout mice do not

show any improvement from postconditioning, and MCE

replenishment curves show more pronounced defects in reperfu-

sion, not only in the apical septum, but also in the mid-septum

when compared with wild-type mice.

The no-reflow zone is reduced by postconditioning in wild-type

mice, but not in eNOS knockout mice. The no-reflow zone is

markedly reduced in the S1176D mice, both with and without

postconditioning. The finding that Akt phosphorylation is still

increased in eNOS knockout mice by MIPc, while postcondition-

ing protection is not observed, suggests that eNOS activity is

required for the protective effects of Akt pathway activation.

Further, these results suggest that effects on regional microvascular

blood flow and reperfusion, mediated by eNOS, may interact with

known cardioprotective mechanisms to modulate tissue outcome,

and that cardioprotection may require a minimum degree of

reperfusion to salvage tissue.

Our results here in eNOS ko mice contrast with a previous

study that showed that eNOS ko mice develop larger infarcts than

do WT mice after cardiac ischemia [27]. These differences are

likely due to the specific experimental protocols used. The MIR

model used here is a severe model of ischemia caused by LAD

ligation for 45 minutes followed by reperfusion for 24 hours.

Infarct size is over 50% of the ischemic zone for both WT and

eNOS ko mice. In contrast, the previous study used a less severe

model, with ischemia for 20 minutes followed by reperfusion for

120 minutes. Infarct size was 20.9% of the ischemic zone for WT

mice, while it was 46% for eNOS ko mice [27].

In summary, our results establish that postconditioning

improves restoration of myocardial blood flow in the area at risk,

and increases eNOS S1176 phosphorylation in wild-type mice.

These results are important because they demonstrate the in vivo

effects of eNOS activity on microvascular blood flow during

reperfusion. In addition to roles for NO in signaling and activation

of pro-survival pathways, our findings reveal that eNOS influences

the degree of myocardial reperfusion following I/R injury. These

new insights suggest that eNOS S1176 activation and regional

reperfusion dynamics could affect the degree of myocardial

survival, relevant not only to postconditioning, but also to

pharmacologic modulation of cardioprotective mechanisms now

in clinical trials.
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