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Abstract

Introduction: Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis.
The myosin IXB (MYO9B) gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to
gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory
bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in
MYQO9B, PARD3 and MAGI2 for association with acute pancreatitis.

Methods: Five single nucleotide polymorphisms (SNPs) in MYO9B, two SNPs in PARD3, and three SNPs in MAG/2
were studied in a Dutch cohort of 387 patients with acute pancreatitis and over 800 controls, and in a German cohort
of 235 patients and 250 controls.

Results: Association to MYO9B and PARD3 was observed in the Dutch cohort, but only one SNP in MYO9B and
one in MAGI2 showed association in the German cohort (p < 0.05). Joint analysis of the combined cohorts showed
that, after correcting for multiple testing, only two SNPs in MYO9B remained associated (rs7259292, p = 0.0031,
odds ratio (OR) 1.94, 95% confidence interval (95% CIl) 1.35-2.78; rs1545620, p = 0.0006, OR 1.33, 95% CI
1.16-1.53). SNP rs1545620 is a non-synonymous SNP previously suspected to impact on ulcerative colitis. None of
the SNPs showed association to disease severity or etiology.

Conclusion: Variants in MYO9B may be involved in acute pancreatitis, but we found no evidence for involvement of
PARD3 or MAGI2.
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Introduction

Acute pancreatitis is an acute inflammatory condition of the
pancreas, resulting in over 200,000 hospital admissions in the
United States each year [1]. In most patients, it is caused by
gallstone disease or alcohol abuse [2], while genetic factors are
thought to contribute to disease susceptibility and may
influence the clinical course of the disease [3,4]. In 20% of
patients, acute pancreatitis runs a severe clinical course
associated with high morbidity rates and mortality of up to 30%
[5]. Nearly all the deaths are associated with infectious
complications, such as bacteremia and infection of pancreatic
necrosis [6,7]. To date, few studies have revealed any
significant association between genetic factors and acute
pancreatitis, but these studies involved relatively small cohorts.
They investigated over 30 candidate genes, of which only one
(SPINK1) showed consistent association with acute and
recurrent acute pancreatitis [8-12].

Failure of the gastrointestinal mucosal barrier plays an
essential role in the course of acute pancreatitis, as it allows for
bacterial translocation, which in turn may lead to infectious
complications [13-16]. Although little is known about the exact
pathophysiology of mucosal barrier failure in acute pancreatitis,
it may also contribute to the development of the initial disease.
Tight junction failure within the pancreas has been shown to be
an extremely early event in the development of experimental
acute pancreatitis in mice [17] and rats [18,19]. In a caerulein
model of acute pancreatitis in rats, disruption of the actin
cytoskeleton and tight junctions resulted in increased
paracellular permeability [18,20].

Genetic associations have recently been reported for two
other inflammatory conditions in which intestinal permeability
plays a pathophysiological role; these are celiac disease (CD)
and inflammatory bowel disease (IBD). CD and its
complications have been associated to both myosin IXB
(MYQO9B) and to two tight-junction adaptor genes PARD3 and
MAGI2 [21-24], whereas IBD has repeatedly been associated
to MYO9B [25-29] and once to MAGI2 [23]. All three proteins
are hypothesized to play a role in tight junction assembly and
positioning of the tight junctions in the membrane regions of the
cell, and could thus possibly play a role in intestinal barrier
function [25,30-33]. In addition to CD and IBD, MYO9B has
also been associated with susceptibility to type 1 diabetes
mellitus in a Spanish cohort [34]. We know the intestinal barrier
is impaired in type 1 diabetes [35-37]. Moreover, the
BioBreeding diabetes prone (BBDP) rat model of diabetes, in
which spontaneous development of autoimmune type 1
diabetes occurs and which is used to study the mechanisms of
diabetes pathogenesis, showed an increase in intestinal
permeability, even before the onset of clinical diabetes [38,39].

Based on these genetic association studies in diseases with
a compromised intestinal barrier, we hypothesized that
polymorphisms in these three genes involved in mucosal
barrier function might also be associated with acute
pancreatitis. We therefore adopted a candidate gene approach
to test genetic variants in MYO9B, PAR3D and MAG12 for their
potential association with acute pancreatitis in two independent
cohorts: a Dutch cohort of 387 patients and more than 800

PLOS ONE | www.plosone.org

Myosin IXB Variants in Pancreatitis

controls, and a German cohort of 235 patients and 250
controls.

Methods

Cohorts

The Dutch cohort consisted of 387 patients with acute
pancreatitis and over 800 random blood bank controls. This
genetic association study was part of a multicenter,
randomized  controlled trial  (trial  registry = number
ISRCTN38327949) [40], during which patients with a first
episode of acute pancreatitis were included in a prospective
database. The cohort comprised 188 randomized patients and
199 patients with acute pancreatitis who had been screened for
eligibility for the PROPATRIA trial, but who were not
randomized [40]. Acute pancreatitis was defined as abdominal
pain in combination with a greater than three-fold elevation of
serum amylase or lipase concentrations [40]. Severe acute
pancreatitis was defined as acute pancreatitis with organ failure
and/or local complications [40]. Infectious complications were
defined as infected pancreatic necrosis, bacteremia,
pneumonia, urosepsis, or infected ascites [40]. All patients or
their legal representatives gave written informed consent and
the ethics review boards of all 15 participating hospitals
approved the protocol for this part of the study (Ethics S1).
Clinical data on the severity of disease and outcome for all
patients were available from the PROPATRIA database (Table
1) [40].

Genotype data from two control cohorts were used
[21,23,25]. For the single nucleotide polymorphism (SNP)
typing of MYO9B, the controls were random hospital controls (n
= 220) [21] and Dutch blood bank donors from Utrecht, Leiden
and Amsterdam (n = 1323) [21,25]. For the two tight junction
adaptor genes (PARD3 and MAGI2), only a subset of the
controls was used (n = 848) [23]. Characteristics of the control
groups have been described previously [21,23,25]. All control
genotypes were in Hardy-Weinberg equilibrium (data not
shown, p > 0.05).

The second cohort comprised 235 German patients with
acute pancreatitis and 250 German controls. The patients were
prospectively enrolled in the ProZyt study [41,42]. The
definitions used for acute pancreatitis and for severe acute
pancreatitis were the same as for the Dutch cohort. Clinical
data on the severity of disease and outcome for all patients
were available from the ProZyt Study database [41,42]. All
patients gave their written informed consent and the ethics
review board of Greifswald University, Greifswald, Germany,
approved the protocol for the study. The German controls were
healthy blood bank donors (n = 250). All control genotypes
were in Hardy-Weinberg equilibrium (data not shown, p > 0.05).

For the current genetic association study, we took peripheral
blood samples from each patient. These were centrifuged at
3,000 rpm for 10 minutes and the plasma and cell pellets were
separated and stored at -80°C. Genomic DNA was extracted
from the cell pellets using DNA isolation kit | from the Magna
Pure LC (initial cohort, Roche Diagnostics, Indianapolis, USA)
or the Quick-gDNA MiniPrep Kit (follow-up study, Zymo
Research, Irvine, California, USA).
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Table 1. Clinical characteristics of the two cohorts of
patients with acute pancreatitis.

Dutch acute German acute

pancreatitis patients pancreatitis patients

Characteristic (n=387) (n =235)
Male 207 (53.3%) 122 (51.9%)
Age (years, mean + 1 SD) 56.7 (+ 17.6) 52.5 (+ 19.5)
Etiology of pancreatitis
Biliary 209 (54%) 94 (40%)
Alcohol 72 (19%) 65 (28%)
Medication 14 (4%) 3 (1%)
Hypertriglyceridemia 3 (1%) 1(0.5%)
Other 17 (4%) 52 (22%)
Unknown 72 (18%) 20 (8.5%)
Severity of pancreatitis (median, IQR)
APACHE-Il score’ 7.0 (4.0-10.0) 5.0 (2.0-7.0)
Imrie score 2.0 (1.0-4.0) 1.0 (0-1.0)
CRP, highest value in first 48
192 (81-295) 88 (24-164)

hrs (mg/L)
Severe acute pancreatitisi 104 (27%) 15 (6%)
Necrotizing pancreatitis# 84 (22%) 9 (4%)
Complications
Infections 93 (24%) 13 (6%)
Positive blood culture 56 (15%) 10 (4%)
Organ failure during admission 58 (15%) 8 (3%)
Multi-organ failure during

. 30 (8%) 0
admission
Mortality 20 (5%) 0

* Highest score on day of admission

* Organ failure and/or necrosis

# Defined as: pancreatic parenchymal necrosis demonstrated on contrast-
enhanced computed tomography scan

CRP, C-reactive protein; IQR, interquartile range; SD, standard deviation

doi: 10.1371/journal.pone.0085870.t001

SNP selection and genotyping

We selected five tag SNPs in MYO9B that had shown
association with CD or IBD [21,25] (rs2305767, rs1457092,
rs2305764, rs7259292 and rs1545620; Applied Biosystems,
Foster City, California, USA). We also selected five SNPs from
the two tight junction adaptor genes (three in MAGI2 and two in
PARD3) that were associated with CD and ulcerative colitis
(rs10763976, rs4379776, rs6962966, rs9640699, and
rs1496770) [23].

Genotyping of the two cohorts was performed independently.
The Dutch cohort was genotyped in the Complex Genetics
Group Laboratory, University Medical Center Utrecht, the
Netherlands. The German cohort was genotyped in the
Laboratory for Molecular Gastroenterology, Department of
Medicine A, Greifswald Hospital, Germany. Genotyping was
done using TagMan assays (Applied Biosystems) and the
genotypes were analyzed using a TagMan 7900 HT (Applied
Biosystems). Haplotypes were constructed using Haploview
v4.2 [43].
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Statistical analysis

For continuous values of patient characteristics (Table 1),
normally distributed data were presented as mean and
standard deviations (SD); all non-normally distributed data
were presented as medians with an interquartile range (IQR).
The association study (Table 2) was analyzed using the two-
tailed chi squared test for independence of case vs. control
alleles in PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/
plink/) [44]. For the joint analysis, allele counts for the Dutch
and German cohorts were combined and a Cochran-Mantel-
Haenszel analysis was done in PLINK [44]. To correct for
multiple testing, 50,000 random permutations were done within
each cohort, generating two empirical P-values. The first P-
value was an estimate of an individual SNP’s significance, the
second P-value corrected for multiple testing while preserving
the correlational structure between SNPs [44]. To test for
heterogeneity between the Dutch and German cohorts, a
Breslow-Day test was performed in PLINK (44). Haplotype
analysis was performed in Haploview v4.2 [43]. Uncorrected P-
values, odds ratios (OR) and 95% confidence intervals (95%
Cl) are shown in Table 3.

Results

Polymorphisms in MYO9B may increase susceptibility
to acute pancreatitis

Table 2 summarizes the results for all ten SNPs across the
three genes tested. A significant association was observed for
the five tagging SNPs in MYO9B and the two variants in
PARDG3 in the Dutch cohort (most significant SNP in MYO9B:
rs1545620, p = 2.3x10% most significant SNP in PARD3:
rs4379776, p = 0.0046; Table 2). There were nine patients with
CD, IBD or type 1 diabetes mellitus in this cohort. To exclude
any effect from these co-morbidities, we removed these
patients from the analysis. Association analysis showed that
the associations with MYO9B and PARD3 remained significant
in the Dutch cohort (data not shown). None of the genetic
variants of MAGI2 were associated with acute pancreatitis
(Table 2). In the German cohort, an association was found for
one variant in MYO9B and one variant in MAGI2 (Table 2,
rs7259292 and rs6962966, respectively).

We performed a joint analysis combining the Dutch and
German cohorts using the Cochran-Mantel-Haenszel method
with 50,000 random permutations within both cohorts. In this
analysis, four of the MYO9B SNPs were found to be associated
with acute pancreatitis. Two of these were still associated with
the disease after correcting for multiple testing (rs1545620, p =
0.0006, OR 1.33, 95%CI 1.16-1.53; rs7259292, p = 0.0031, OR
1.94, 95%Cl 1.35-2.78) and one showed borderline
significance (rs1457092, p = 0.0557, OR 1.22, 95%CI
1.06-1.40). Both PARD3 SNPs were associated with acute
pancreatitis, but these associations did not withstand correction
for multiple testing. A Breslow-Day test showed modest
evidence for heterogeneity between the two cohorts for SNPs
rs2305767 in MYO9B and rs6962966 in MAGI2, but these
SNPs were not significant in the final analysis (Table 2).

All SNPs in MYO9B were located in one haploblock and
were in strong linkage disequilibrium. We therefore constructed
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Table 2. Analysis of MYO9B, PARD3 and MAGI2 SNPs in the Dutch and German cohorts and joint analysis.

Initial study Follow-up study Joint analysis

RAF patients (n RAF controls (n RAF patients (n RAF controls (n

= 387) > 800) P-initial = 235) =250) Pfollow-up* P-joint OR 95%CI P-adjusted
rs7259292 MYO9B T/IC' 0.046 0.026 0.0053  0.047 0.020 0.0200 0.0003 1.94 1.35-2.78 0.0031
rs2305767 MYO9B A/G 0.620 0.557 0.0021  0.590 0.607 0.5880 0.0211 0.85 0.74-0.98 0.1709%
rs1545620 MYO9B C/A 0.448 0.364 2.3x105 0.385 0.359 0.4083 5.9x10°5 1.33 1.16-1.53 0.0006
rs1457092 MYO9B A/C 0.401 0.337 0.0011  0.344 0.345 0.9807 0.0062 1.22 1.06-1.40 0.0557
rs2305764 MYO9B A/G 0.433 0.381 0.0093 0.383 0.401 0.5516 0.0614 1.14 0.99-1.31 0.4193
rs10763976 PARD3 A/G 0.483 0.431 0.0195 0.564 0.536 0.3857 0.0157 1.19 1.03-1.38 0.1320
rs4379776 PARD3 A/G 0.371 0.312 0.0046  0.353 0.341 0.6995 0.0109 1.22 1.05-1.41 0.0929
rs6962966 MAG/2 G/A 0.493 0.458 0.1114  0.481 0.567 0.0077 0.8450 0.99 0.85-1.14 1.0%
rs9640699 MAGI/2 A/C 0.390 0.384 0.7708  0.391 0.413 0.4956 0.8844 0.99 0.85-1.15 1.0
rs1496770 MAGI2 A/G 0.407 0.400 0.7317  0.391 0.409 0.5538 0.9575 1.00 0.86-1.15 1.0

OR, odds ratio; 95% CI, 95% confidence interval; RAF, risk allele frequency.

# Risk variant/second allele

* Two-tailed P-values were calculated by chi-squared test for independence of allele counts

$Heterogeneity between the cohorts (Breslow-Day test).

The risk variant was the associated allele in the Dutch cohort; the same variant frequencies were reported for the German cohort. A combined analysis of the Dutch and

German results was performed using Cochran-Mantel-Haenszel analysis with 50,000 random permutations. This generated two P-values (P-joint and P-adjusted), an OR

and 95% CI. P-joint shows an individual SNP’s significance in the combined cohort. P-adjusted was obtained after correcting for multiple testing. SNPs rs2305767 and

rs6962966 showed modest evidence for heterogeneity between the Dutch and German cohort when a Breslow-Day test was performed on this data.

doi: 10.1371/journal.pone.0085870.t002

Table 3. The prevalence of MYO9B haplotypes in the combined Dutch and German cohorts of patients with acute
pancreatitis and controls reconstructed from genotyped SNPs and their association with acute pancreatitis.

MYO9B haplotypes

rs7259292 rs2305767 rs1545620 rs1457092 rs2305764 Cases (%) Controls (%) OR 95% Cl P-value’
C G A [ G 460 (38) 900 (42) 1.00*" - ref

c A c A A 443 (37) 700 (33) 1.24 1.05-1.46 0.0099
c A A c G 190 (16) 365 (17) 1.02 0.83-1.25 0.8860
c A A © A 40 (3.3) 98 (4.6) 0.81 0.55-1.19 0.2512
T A c c G 52 (4.3) 50 (2.3) 2.03 1.36-3.04 0.0005

OR, odds ratio; 95% ClI, 95% confidence interval.

* Two-tailed P-values were calculated by chi-squared test for independence of haplotype counts.

¥ This haplotype was taken as the reference.
Risk alleles are in bold and underlined.
doi: 10.1371/journal.pone.0085870.t003

5-SNP haplotypes using the combined genotypes of the initial
and follow-up studies (Table 3). Three of the haplotypes
occurred with a frequency of more than 5% in acute
pancreatitis patients or controls. The haplotype CACAA
occurred more often in patients than controls (37% vs. 33%, p
= 0.0099, OR 1.24, 95%CI 1.05-1.46). Of the rare haplotypes
with a frequency below 5%, the haplotype TACCG occurred
more often in patients than controls (4.3% vs. 2.3%, p =
0.0005, OR 2.03, 95%CI 1.36-3.04). Both of these haplotypes
carry the rs1545620*C allele, which is the allele stemming from
the most strongly associated SNP.

To investigate an association between the three genes
tested and the course of acute pancreatitis, we did a post-hoc
analysis of the prevalence of all the genetic variants in four
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groups of patients of the combined Dutch and German cohorts.
These were patients who developed severe acute pancreatitis
(n = 119), infectious complications (n = 106), infected
pancreatic necrosis (n = 58), or who died (n = 20). After
correcting for the number of phenotypes and SNPs, the results
appeared not to be significant. We also compared patients with
acute biliary pancreatitis (n = 307) to patients with acute
pancreatitis with non-biliary etiology, but we found no
association.

Discussion

We performed a candidate gene study for MYO9B, PARD3
and MAGI2 looking for susceptibility to acute pancreatitis. All
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three genes are thought to influence intestinal permeability
[21,23,25]. By analyzing a combined cohort of Dutch and
German patients with acute pancreatitis, we found an
association of two genetic variants in MYO9B for susceptibility
to this disease. The SNP with the strongest association was
rs1545620 (p = 0.0006, OR 1.33, 95%CI 1.16-1.53), which is a
non-synonymous variant leading to an amino acid change [25].
This SNP was very strongly associated (p = 2.3x10®, Table 2)
in the Dutch cohort, but not in the German cohort. The
differential association could not be attributed to heterogeneity
between the cohorts.

Our analyses in two separate cohorts resulted in different
findings. In the Dutch cohort, all five variants in MYO9B were
associated with acute pancreatitis, but we were surprised to
see that only one of these SNPs showed association in the
German cohort. The MAGI2 SNP rs6962966 did show
heterogeneity between cohorts and did show a different pattern
of association between the Dutch and German cohort, with the
latter providing modest evidence for association (uncorrected p
= 0.0077). While statistical power is one explanation for these
differences, our findings highlight the need to replicate such
results before accepting them.

Intestinal permeability is a critical factor for the course of
acute pancreatitis, since a breakdown of the barrier function
enables bacterial translocation, which may subsequently cause
infectious complications [13-16]. We therefore explored
whether the genetic variants had any relationship with the
severity of disease (severe vs. mild acute pancreatitis),
mortality, or the occurrence of infectious complications. These
analyses revealed no associations.

One of the strengths of our study is the size of the combined
cohort: 622 patients for whom clinical data were available. Most
previous genetic association studies in acute pancreatitis
consisted of quite small patient populations (n = 35-470). Yet,
despite our relatively large cohort, our subgroup analyses did
not reveal any convincing results. Future studies will need to
investigate the genotypes in subgroups of patients, e.g. in
those with severe acute pancreatitis. The clinical classification,
however, of patients with severe acute pancreatitis into
subgroups is subjective and heterogeneous, which could also
account for the lack of association between genetic variants
and clinical course. Finally, there could be other genetic or
environmental factors that determine the course of acute
pancreatitis.

The MYO9B gene has consistently been found to be
associated with IBD in cohorts from different countries
[21,23,25-28]. The rs1545620 SNP with the highest OR is a
non-synonymous SNP inducing an amino acid change
(Ala1011Ser) in the neck region of the MYO9B protein; it is
necessary for the motor activity of MYO9B on actin filaments
[30,31]. A conformational change of the protein could therefore
result in lower MYO9B activity. This could lead to a diminished
capacity for maintaining tight junction and cytoskeleton
structure.

The association of variants of MYO9B with acute pancreatitis
points to a possible shared genetic mechanism that impairs
mucosal barrier function not only in acute pancreatitis, but also
in CD, IBD and type 1 diabetes mellitus. We found
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polymorphisms of a gene likely to be involved in maintaining
tight junction function (and potentially gastrointestinal
permeability) to be associated with susceptibility to acute
pancreatitis rather than to the clinical course of the disease.
This runs contrary to current knowledge on the
pathophysiology of acute pancreatitis and we have no
biological explanation for our observation. Unfortunately, there
are no functional data on the role of gastrointestinal
permeability and the development of acute pancreatitis. Our
findings should therefore lead to experimental studies to
elucidate this new, potentially important, pathophysiological
concept in acute pancreatitis.

We have shown that MYO9B may be involved in acute
pancreatitis, possibly due to its potential role in regulating the
intestinal barrier function. Our results open the way to thinking
about shared mechanisms leading to mucosal barrier
impairment. The presence of genetic variants of MYO9B in an
individual may be the first step that can lead to different
diseases, depending on subsequent events. Whether these
different outcomes are influenced by environmental factors
(such as in acute pancreatitis) or by other sets of modifier
genes (such as in celiac disease and inflammatory bowel
disease) still needs to be determined.
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