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Abstract

Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and
others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the
dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed
influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns,
termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent’s process changes state (e.g., from
silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization.
SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with
Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the
parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished
from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant
synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of
theory of mind abilities onto basic speech initiative behavior.
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Introduction

Human beings are more aptly defined as conversational

mammals, rather than simply as articulate mammals [1]. We

effortlessly engage in verbal exchanges, seeking for informative as

well as emotionally rewarding experiences. It has been recently

acknowledged that the biological universality of such talent stands

in sheer contrast with the complex set of abilities it requires, such

as the tightly timed coordination of speech, facial gestures,

respiratory kinematics, bodily posture, visual and auditory

attention [2–4]. How are these different levels of behavior and

sensory experience successfully integrated? Some philosophers

suggest that individuals might use normative frames of reference to

reach a sufficient degree of mutual knowledge, and therefore infer

(predict) each other’s next conversational move [5]. However,

while verbal interaction certainly involves normative elements,

they hardly help capturing its causal dynamics. A cognitive

account has been proposed that sets dialog exchanges as the

primary site of language experience [6–8]. A central tenet of this

account is that successful dialogs depend on the fast interactive

alignment of procedural and representational contents between

interlocutors (see [6], p. 170). Notably, this would be achieved via

‘‘resource-free’’ processes such as priming. For example, as the

conversation progresses each interactant will tend to use a

common set of words, sentences, communicative styles, thereby

establishing mutual resonance relationships at different levels of

complexity [9].

Indeed, such perspective matches the intuition that when a

conversation is successful we end up speaking ‘‘the same language’’

as our interlocutor. However, everyday conversations also

implicate spontaneous adaptation to new, unpredicted discourse

paths. For example, changes in one’s own or other’s beliefs or

desires determine the introduction of a new topic or, at times,

highlight the chance for a metaphoric or ironic statement

[2,10,11]. We continuously make room for other minds [12]

using our ability to ‘‘mentalize’’, that is, to promptly and

spontaneously attribute mental states such as beliefs and desires

to the self and others [13].

Mentalizing is a core social skill operative since infancy in

neurotypical development [14,15]. Explicit reflection upon one’s

own and others’ true or false beliefs emerges between the ages of

4 and 6 years, when children begin to distinguish between belief-

based and reality-based thoughts [16]. Importantly enough, 5-

and 6-year-old children become also faster in responding

correctly than incorrectly to false-belief tasks, suggesting that
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decision-making skills develop along with mentalizing abilities

[17]. From age 8–10 years onwards, children can master higher-

order mentalizing activities, and conversation becomes a central

focus of emotional and cognitive development [18].

However, in some cases the ability to mentalize is severely

impaired. Individuals with Asperger Syndrome or High Function-

ing Autism (hereafter, HFA) are phenotypically characterized by a

marked impairment in spontaneous mentalizing, while intelligence

and formal language skills are preserved [19,20]. Individuals with

Asperger Syndrome/HFA can learn to handle conversational

interaction as a task [21,22]. However, explicit strategies are

unlikely to compensate for the absence of spontaneous adaptation

to dynamic changes. Consequently, social relation problems

commonly surface in adolescents and young adult individuals

with Asperger syndrome/HFA [23]. So far, the impact of

mindblindness on the dynamics that characterize conversational

behavior has not been investigated.

In this work, we captured conversational blueprints by resorting

to human computational modeling. We designed a meaning-free,

low-level acoustic serial generative framework, composed by a

Gaussian mixture model (GMM) [24], followed by an observed

influence model (OIM) at the top level [25]. OIMs are built upon

Markov models, which offer a stochastic interpretation of time

series, and thus are apt for the analysis and recognition of event

sequences in speech recognition and natural language processing

[26]. Interaction effects within each conversation were modeled

assuming that the two speech streams were cooperative, binary

(silence vs. speech) stochastic processes. Further, we posited that

whenever a process changes its state, it injects a corresponding

auto-transition state in the other process, forcing synchronization

and creating novel low-level auditory segments termed Steady

Conversational Periods (SCPs) [27]. SCPs permit the calculation

of transition probabilities both intra- and inter-processes, thereby

picturing the fast mutual effects of dialogic exchanges. The

resulting influence matrix shows how much the state one

participant is in at time t1 influences the state the other participant

will be in at time t2 (inter-chain influence), as well as the how each

participant proactively influences his/her own transition from state

to state (intra-chain influence) [27,28]. Using this approach, we

aimed at verifying if the dynamics of flat (non arguing) dialogs

depend on theory of mind abilities.

Materials and Methods

Participants
Data collection was run at the Scientific Institute ‘‘E.Medea’’ in

S. Vito al Tagliamento (Pordenone, Italy). A young female

psychologist acted as moderator in binary conversations with

selected participants. The moderator was not aware of the study

aims, clinical characteristics of the participant population, or

individual clinical status (patient vs. control). She was introduced

to all participants as a researcher who was interested in hearing

their opinion on a set of topics.

Nine children and adolescents with a diagnosis of Asperger

syndrome/HFA (8 males, 1 female, age range 7–14 years, mean

= 11) following the DSM IV (1994) criteria and the support of

either the Childhood Autism Rating Scale (CARS, [29]) or the

Autism Diagnostic Observation Schedule (ADOS, [30]) partici-

pated in the study. Nine gender- and age-matched typically

developing peers were selected. All participants (N = 18) were

made familiar with the moderator (acquaintance phase, about

10 minutes, not recorded). All individuals with Asperger syn-

drome/HFA had a clinical history of extensive rehabilitative

training programs focused on limiting repetitive behaviors and

enhancing social relationships in one-to-one and group interac-

tions (range of program duration: 2–5 years). At the time of the

experiment they were all still receiving rehabilitative training.

Ethics statement. Our research adheres to the basic ethical

considerations for the protection of human participants in research

according to the Declaration of Helsinki, and has been approved

by the Ethics Committee of the Scientific Institute ‘‘E.Medea’’

(Bosisio Parini, Lecco, IT). The parents of potential participants

first received a letter describing the study. Then a short phone

colloquium cleared any remaining doubts. Both parents signed a

written informed consent and at least one of them (or a caring

relative, e.g. grandfather) accompanied the participant to take part

in the experimental session. Children and adolescents were

explicitly asked whether they would agree to talk with the

moderator and exchange views on a set of familiar topics, which

would later be analyzed by researchers. All participants gave their

verbal consent.

Data collection. Participants entered an anecohic sound-

proof room which contained two boots separated by a transparent

glass pane. They sat on one side of the glass pane and were always

in full visual contact with the moderator, who sat on the other side.

Participants were offered puppets and toys to play out during the

acquaintance phase. All participants as well as the moderator wore

headphones and spoke to a calibrated recording microphone in

order to output two synchronized but separate (unmixed) audio

sources [27]. The headphones and microphone were explored as a

playful practice. We adhered to a type of participatory research in

which participants with and without disabilities are encouraged to

actively contribute their views and find their own solution to

establishing a pleasant interactive setting [31]. Children and

adolescents were gradually involved in a dyadic conversation

lasting about 10 minutes (experimental recording). It has been

shown that topic change constitutes the second major type of

variation in children’s language samples [32]. To control for this

issue, the moderator introduced five topics in a flexible sequence

(school activities, hobbies, friends, food, family), prompting an

active conversational exchange. The moderator was instructed to

follow the participants’ reasoning path and react appropriately,

avoiding a rigid question-answer scheme. A total of 18 semi-

structured conversational samples were collected. A speech/silence

thresholding was performed on the raw signals, obtaining a signal

D, formed by two binary arrays D(1) and D(2), each one of length

T , and each related to a particular interactant (participant/

moderator). The percentage of speech and silence samples for the

two classes are reported in Table 1, highlighting a similar profile.

Neuropsychological profile. After the recording session, all

participants received a neuropsychological screening targeting: a)

linguistically mediated short-term/working memory and narrative

memory; b) executive skills; 3) verbal prosodic abilities. The tests

were: forward and backward digit span [33]; narrative memory,

Tower of London and visual face recognition [34]; rhythm

perception task (targeting the ability to reproduce rhythmical beat

sequences [35]); verbal fluency [36]; comprehension and repetition

Table 1. Average percentage of silence and speech samples
in the conversations of the two classes of participants.

Class speech silence

Asperger/HFA 0:4292 0:5708

Controls 0:4447 0:5553

doi:10.1371/journal.pone.0085819.t001

Automatic Conversational Scene Analysis

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e85819



of emotional (happy, sad, angry) and linguistic (affirmative,

interrogative, imperative) prosodic contours [37]. Accuracy/

performance data were normalized to max = 1 before entering

statistical analyses (for the verbal fluency test, a global mean value

was obtained by collapsing the number of uttered words across

target letters F, A, S). Two-tailed t-tests were used to verify the

presence of significant differences between the groups (pv0:05).

Fig. 1 displays the neuropsychological profile of Asperger

syndrome/HFA and neurotypical control participants.

A significant difference was found for the narrative memory test

(t(16) = 23,057, p = 0.008), suggesting poor verbal long-term

memory storage in the Asperger/HFA group. As expected,

participants with Asperger syndrome/HFA showed difficulties in

emotional prosody comprehension (t(16) = 22,199, p = 0.043),

and a tendency to significance was evident for emotional prosody

repetition (t = 21,852, p = 0.083), and the Tower of London score

(t = 21,909, p = 0.074), with participants with Asperger syn-

drome/HFA showing emotional repetition/planning difficulties.

No significant differences were found in short-term/working

memory, face recognition, linguistic prosody, rhythm perception

and verbal fluency skills (all ps §0.15).

The observed influence model
The observed influence model (OIM) is a simplified version of

the influence model [25]; while OIM relies on interacting Markov

chains, the influence model focuses on hidden Markov chains. We

define the state variable of a Markov chain as St[ 1, . . . ,Nf g, and

P StDSt{1ð Þ as the transition probability of a first-order Markov

chain. OIM factorizes the multi-process conditional relations

among C Markov chains by means of a weighted linear

combination of pairwise inter-chain and intra-chain transition

probabilities. Considering first-order Markov chains with N states,

the (full) factorization of the multi-chain transition probability is:

P cSt St{1,:::, CSt{1

��� �
~
XC

d~1

c,dð ÞhP cSt
dSt{1

��� �
ð1Þ

with c,d[f1,:::,Cg, c,dð Þh§0,
XC

d~1

c,dð Þh~1. The value

P cStDd St{1

� �
represents the probability of going from state St{1

of the chain d to state St of the chain c. The weight (c,d)h
represents the influence that chain d exerts on chain c. A sketch of

the model is depicted in Fig. 2 a.

Figure 1. Neuropsychological profile. Legend: C/REmo = Emotional prosody comprehension/repetition; C/RLing = Linguistic prosody
comprehension/repetition. Significance flags: ** = p,0.01; * = p,0.05.
doi:10.1371/journal.pone.0085819.g001

Figure 2. The generative framework. The Figure represents two main aspects: a) State factorization exploited in an observed influence model.
The area named H indicates the influence factors that apply to the state transitions, depicted as directed arrows. b) Synchronization through Steady
Conversational Periods. There are two audio processes, speaker1 and speaker2, sampled at a given frequency, where audio samples are shown as
speech (black dots) and silence (white dots) values. Continuous periods of speech or silence are not synchronized, so it is not possible to evaluate a
first-order statistical transition probability among the periods. Global transitions (dashed red lines) define the SCPs, thus allowing the calculation of
first-order transition probabilities (black arrows).
doi:10.1371/journal.pone.0085819.g002
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A first-order influence model is thus defined as

l~ (c,d)A
� �

c,d[ 1,:::,Cf g,H, cpf gc[ 1,:::,Cf g

n o
, where (c,d)A is the intra

-chain transition matrix when c~d, and represents the dynamics

of a single process per se. When c=d, we consider the inter -chain

matrices, modeling how much a state of a chain conditions the

next state of the other chain. The C|C matrix H contains the

influence weights, and fcpg contains the (independent) initial

probability distributions for all processes, i.e., cp~fcpigi[f1,...,Ng,

where cpi~P cS1~ið Þ.
The OIM transition factorization has space complexity

O C2N2zC2
� �

, where C2N2 is due to the transition tables

parameters, and C2 to the influence coefficients. OIM learning of

the fhg coefficients is performed by standard constrained gradient

descent [24,38], while the (c,d)A
� �

, cpf g parameters are estimated

by simple state counting.

The SCP model. Let us suppose to have a dialog with T

instants. Within the recording setting described above, a dialogue

can be represented as an OIM, but the lack of effective

synchronization between the start/end instants of the speech/

silence periods leads to problems in evaluating inter-chain

conditional dependencies.

Thus, we proposed to use a novel feature based on the core

assumption that turn-taking dynamics are interactionally con-

trolled [39], called Steady Conversational Period (SCP). SCPs are

built on the duration of continuous slots of silence or speech [27].

The SCP extraction procedure assumes that whenever a process

(i.e, silence or speech) changes its state, it causes a global transition

that affects also the opposite process, inserting a novel auto-

transition state (see the red dashed lines in Fig. 2 b). The

fragmentation caused by global transitions synchronizes the

processes, creating ~TTvT different SCPs cO~tt, where the apex

c[1,2 indexes the speaker and ~tt~1, . . . ,~TT enumerates the

different SCPs. The introduction of SCPs in the model makes it

feasible to evaluate first-order intra- and inter-chain conditional

probabilities (black solid line in Fig. 2 b).

In order to take into account the different durations of each

silence and speech segment, all SCPs related to speech and silence

were labelled as Sshort, medium, longT , after a Gaussian cluster-

ing over a training dataset, performed with the Expectation

Maximization algorithm [40].

More formally, given the clustering, each SCP cO~tt takes one

label among 1,:::,6, where 1,2,3 address short, medium and long

continuous periods of speech, respectively, and the same applies

with 4,5,6 for the silence periods. The number of states was

decided as to maximize classification accuracies (see Table 2). It is

worth noticing that the obtained performances were similar if 4

states were chosen (short and long periods), while suboptimal

results were obtained with only 2 states, and more than 6. This

quantization gives rise to quantized SCPs sequences 1Q,:::,CQ;

pooled together, these sequences form a dialog D.

After that, an observed influence model l~ (c,d)A
� �

c,d[ 1,:::,Cf g,
n

H, cpf gc[ 1,:::,Cf gg; was fitted to a dialog D.

The intra-chain parameters of the model intuitively indicate the

conversational trend of each participant considered separately.

The inter-chain transition parameters encode first-order state

dependencies among processes, and influence factors mirror the

influence that a process exerts on the other, independently on the

state assumed by the single processes.

A classification involving the OIM has to be carried out

considering carefully the order with which the observation

sequences are organized. For example, within a dyad, in which

the second process/speaker exerts a strong influence on the first

one, a model is learnt where the weight (1,2)h is high. In order to

recognize such situation in a classification scenario, the relative

ordering of the sequences has to be preserved, i.e., the second

sequence has to be the one related to the process that influences

the opposite one. If this cannot be ensured, a reasonable strategy

for extracting the ‘‘correct’’ classification score would be the

following: the dialogs D~1Q,:::,CQ
� �

are presented to the model

in all their possible orderings (having diads, only two), indexed by

o, collecting all corresponding likelihood scores P DoDlð Þf g. The

correct likelihood score would thus be the highest one.

The generative score space. In order to increase the

classification accuracy of the generative framework, and, at the

same time, get an insight on how the model works in encoding the

dialogs, we built a generative score space I . Following [41], a

generative score space can be built by considering each dialog D as

completely represented by a generative model l with its

parameters, which was trained on the dialog. Formally, the

observed dialog D is mapped through Q into a fixed-length score

vector Q
f
F (D)[I ,

Q
f
F (D)~QF f P̂P DDlð Þ

� �
, ð2Þ

where P̂P DDlð Þ is the set of distributions that define a generative

model, f is a function of these distributions and F is some operator

applied afterwards. For instance, in case of the Fisher score [42], f
is the log likelihood, and the operator F produces the first-order

Table 2. Cluster boundaries (in seconds) for the SCP
durations, for the speech and silence SCP typology.

SCP type short medium long

silence ½0,53� ½53,165� ½165,440�
speech ½0,12� ½12,86� ½86,480�

doi:10.1371/journal.pone.0085819.t002

Table 3. Ordered features: each feature is ordered based on
its frequency in the pool of features selected by the 3 feature
selection strategies.

Feature Frequency Parameter

17 0.83 P(1St~5D1St{1~3)

80 0.46 P(1St~2D2St{1~2)

82 0.36 P(1St~4D2St{1~2)

89 0.32 P(1St~5D2St{1~3)

15 0.3 P(1St~3D1St{1~3)

107 0.3 P(1St~5D2St{1~6)

53 0.24 P(2St~5D1St{1~3)

38 0.21 P(2St~2D1St{1~1)

14 0.15 P(1St~2D1St{1~3)

55 0.14 P(2St~1D1St{1~4)

On the right, the corresponding parameter for each feature. For the sake of
clarity, only 10 features are reported.
doi:10.1371/journal.pone.0085819.t003
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derivatives with respect to the parameters. Another example is the

TOP kernel [43] for which the function f is the posterior log-odds

and F is still the gradient operator.

In these cases, the generative score-space approaches help to

distill the relationship between a model parameter contained in l
and a particular data sample modeled by that parameter. After the

mapping, a score-space metric must be defined in order to

calculate the distances in that space.

In our case, f was the parameter extractor function (i.e., the

function that estimates the parameters of a statistical distribution),

F the identity operator, and as a metric we selected the Euclidean

one. In synthesis, f extracted the transition parameters (by simple

counting) and the influence coefficients (by gradient descent).

Given a set of M classes of dialogs, each formed by W
sequences, the space I , could be seen as formed by a set of

multidimensional class-labeled samples; actually, on each se-

quence, a model is trained, that provides a set of features/

parameters. Therefore, standard tools of data analysis can be

applied. We wanted to highlight the discriminative power of the

features in a classification context, and therefore we applied a

feature selection (or ranking) strategy, and, subsequently, we

applied different discriminative classifiers on the feature subset.

The feature selection/ranking strategies together with the

discriminative classifiers employed will be detailed in the next

section. Discriminative classifiers were preferred, because they

directly focus on estimating class posterior probabilities instead of

modeling class distributions. Such classifiers should also be less

affected by the dimensionality problem.

Encapsulating OIMs in the SCP-based generative framework is

straightforward. The embedding in I produces an ensemble of

features Q
f
F (D)~ (c,d)A

� �
c,d[ 1,:::,Cf g,H, cpf gc[ 1,:::,Cf g

n o
, for each

dialog: considering that the space complexity of the whole model is

C2N2 (the transition matrices) zC2 (the influence coefficients)

zNC (the initial distributions), and fixing N~6 (corresponding to

3 states for the speech duration and 3 for the silence duration) and

C~2 (two speakers), we obtained 160 values. This parameter

setting was used in all the reported experiments.

The rationale underlying the choice of this score space is that by

employing parameters as features, and analysing the features with

feature selection strategies, we can understand which portions of a

model are more effective in capturing the unique characteristics of

the classes. For example, capturing the fact that a particular state

transition is strongly discriminant for a certain class implies that

such transition is peculiar for that model. This property cannot be

mimicked by Fisher score based approaches, where the basic tool

is the differentiation with respect to particular quantities (i.e., the

log-likelihood in the Fisher score), which can suffer of the so-called

‘‘wrap-around’’ problem, where very different data points may

map to the same derivative (see [44] for an example).

Results

As mentioned, for each of the W~18 participants we learned

an individual dialog model, giving rise to 160 parameter values

(having N~6, C~2) per participant; in the following we will use

the term ‘‘feature’’ as a synonym of parameter.

The point was to understand how well the two classes of

participants could be separated, i.e., how different the parameters

of the two classes were. To this aim, we adopted a classification

framework, in which one of the participants (the test participant)

has to be classified in one of the two classes, considering the

similarity between his/her model parameters (i.e., features) and

the ones of the remaining participants (the training participants).

We applied the classification procedure considering iteratively

each of the W participants as the test element, keeping the

remaining ones as training. This strategy is termed cross-validation

since it validates the classification performance shuffling the

elements that are used to represent (or train) a class and the ones

employed as test. This particular cross-validation strategy is

dubbed leave-one-out (LOO) since, in turns, a single element is

assumed as test element. Its use is particularly suited for limited

samples.

Figure 3. Feature analysis. Classification accuracies (measured in term of mean recall of the two classes) depending on the number of features
employed, where the features are considered in order of importance (see Table 3).
doi:10.1371/journal.pone.0085819.g003

Table 4. Leave-One-Out classification performances,
considering only the best features 17 and 80.

Classifier Asperger Controls

Precision Recall Precision Recall

knnc 0.69 1 1 0.56

kernelc 0.64 0.78 0.71 0.56

doi:10.1371/journal.pone.0085819.t004
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Due to the high number of parameters, and for the purpose of

understanding intuitively in which sense the two classes differ, we

used a feature selection strategy. This allowed us to find out which

one of the 160 parameters was most important for class separation;

in other words, we highlighted the parameters that are most

discriminant.

Feature selection is an open research field of pattern recogni-

tion, and many policies have been designed so far. One of the most

widely employed is based on the concept of stability [45]. In simple

terms, at each iteration of the LOO strategy a pool of features is

selected as the most informative (i.e., giving rise to a high

classification performance) employing a particular feature selection

approach, namely, the forward feature selection strategy [24]; if

this set is consistent across different iterations of the cross-

validation strategy, then it is considered to be stable, i.e. invariant

to the nature of the training and the testing set.

We employed a slightly different approach, as more apt to deal

with different feature selection policies. By fixing H feature

selection policies, and for each policy a cross-validation LOO

strategy, we evaluated how many times a feature is selected as

discriminant for that particular policy, considering at the end all

the different policies for choosing the final subset. As a classifier for

the feature selection step we used the K-nearest neighbor classifier

(K = 3) [24].

In our case, we employed H~3 different policies of feature

selection, that is, forward feature selection [46], branch and bound

[47], and min-redundancy max-relevance [48]. Each policy may

provide a subset of v best features. In our case, we defined v~10.

At each iteration of the cross-validation of a single policy, an

instance of v features is produced. With 18 participants, this

corresponds to 18 instances. Considering the three policies of

feature selection, 64 instances were obtained. After that, each of

the 160 features was evaluated, counting how many times it

appeared in an instance, thus assigning a frequency score to each

feature. The scored features were then ordered (see Table 3, where

10 features are reported); together with the number of the features,

we report their functional significance, i.e., the parameters they

represent. These features can be thought of as independent on the

particular strategy of feature selection. Manifestly, only transition

parameters are present, while influence coefficients and initial

probabilities are not present.

At this point we evaluated which subset ensured maximal

classification accuracy. We thus considered one feature at a time,

starting from the most frequent one, feeding two different

classifiers and evaluating the LOO classification accuracy. As

classifiers, we considered the K-nearest neighbor classifier (K = 3)

and the linear Support Vector Machine, both implemented using

the MATLAB Prtools [49]. The classification performances are

reported in Fig. 3, in relation to the number of features employed.

The curves indicate that the first 2 features are the most

important for the classification. They represent the probability of

the moderator to speak for a long time after a medium silence

interval (feature 17), and the probability of the moderator to speak

for a medium interval after the participant (Asperger/HFA or

control) has spoken for a medium-length segment (feature 80).

Keeping these two features, the LOO classification performances

are detailed in Table 4.

In addition, we report the values of the two features for all the

participants in a 2D space (see Fig. 4), showing also the

classification boundaries identified by the two different classifiers:

boundaries are obtained by opportunely sampling the feature

space, assigning a label to each point, and defining a boundary

where the classification labels change from one class to the other.

Employing the K-nearest neighbor classifier (knnc) and the linear

support vector machine (kernelc) we obtained the separation

accuracies, in terms of precision and recall, reported in Table 5.

These values reflect the degree of certainty (max = 1) with which

the two classes can be separated based on the selected features.

To increase the reliability of our findings, we replicated the

classification procedure in a subsample of our data. Participants

with Asperger syndrome/HFA number 5 and number 7 had the

lowest scores across groups on the narrative memory test (0.03 and

0.06, respectively) and emotional prosody comprehension (0.33,

0.08). To investigate if automatic classification was influenced by

neuropsychological differences in single participants, we first we

re-run the statistical comparisons on the mentioned tests without

Asperger syndrome/HFA participants 5 and 7, and the corre-

sponding age-matched control individuals. We still found a

significant difference for the narrative memory test (t(12) =

22.541, p = 0.026), but no difference in emotional prosody

comprehension (t(12) = 21.448, p = 0.173). We then highlighted

the position occupied by each participant in the classifier space,

according to each feature. At visual inspection, Fig. 4 suggest that

participants 5 and 7 with Asperger syndrome/HFA cluster with

patients 1 and 9, and control participants 9, 8, 6, and 3 form a

separate cluster of their own. This observation deems unlikely that

specific problems with emotional prosody recognition or complex

language memory tasks in participants 5 and 7 with Asperger

syndrome/HFA would drive the classification effects. To verify

this point, we excluded participants 5 and 7 from both groups and

re-run the classification procedure using the K-nearest neighbor

classifier; surprisingly, the classification performances were almost

the same than considering the whole sample population, that is:

Asperger, Precision = 0.7, Recall = 1; Controls, Precision = 1.0,

Recall = 0.57. For a comparison, see the LOO classification

results of Table 4.

Discussion

We used pattern recognition as a lens into meaning-free

conversational blueprints [50]. We were able to model the mutual

effects of dialogic exchanges by forcing synchronization of silence/

speech sequences (Steady Conversational Periods, SCPs). By

analyzing both intra- and inter-processes (speech/silence) transi-

tion probabilities, the conversations of individuals with Asperger

syndrome/HFA were reliably and automatically distinguished

from those of gender- and age-matched peers. The synchroniza-

Figure 4. The generative score space. Separation boundaries in the generative score space with a) the K-nearest neighbor classifier and b) the
Support Vector Machine classifier (the kernelc implementation of Prtools), both performed on the best features found by feature selection.
doi:10.1371/journal.pone.0085819.g004

Table 5. Separation performances, considering only the best
features 17 and 80.

Classifier Asperger Controls

Precision Recall Precision Recall

knnc 0.81 1 1 0.78

kernelc 0.9 1 1 0.89

doi:10.1371/journal.pone.0085819.t005
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tion assumption was sufficient to tear apart the clinical from the

non-clinical group without relying on any higher-order feature

(e.g., meaning, word frequency, syntactic complexity).

Previous work showed the effectiveness of such a novel

approach on groups with either extremely different speech rates

(e.g., children vs. adults) or speech modes (e.g., flat conversations

vs. lively discussions) [27,28]. We now classified two samples with a

similar speech rate, similar age and a compatible higher-order

cognitive profile, but crucially different in the spontaneous

attribution of mental states to the self and others [18–20,23]. It

follows that theory of mind skills exert a sizable influence onto

basic speech initiative behavior.

This result is in line with theories that try to capture the

biological bases of human conversational talent as stemming from

the coordination of speech, gestures, kinematics and sensory

attention [2]. We suggest that across-level interactant synchroni-

zation might be a key concept in investigating conversational

speech dynamics [50], thereby extending the entrainment

approach beyond purely linguistic representations [6].

The creation of the SCPs as a relevant index is motivated by

several reasons, not restricted to a mere algebraic point of view or

to the assumption of synchronicity. At a basic level, they partially

reflect the respiratory kinematics which co-determine the dynam-

ics of self-initiated speech [51,52]. Such kinematics provide the

basis for the coordination of prosodic and syntactic planning [53].

SCPs might thus reflect a significant subset of the variance

characterizing the real-time interplay of physiological, neuropsy-

chological and intentional factors which determine the dynamics

of speech alternation in a dialog, including turn-taking strategies

usually negotiated via audiovisual intentional cues [54,55].

The crucial point of our work was to obtain a successful

classification. However, the extracted features also provide some

insights into the underlying processes (see Fig. 4). For example, the

moderator displayed a tendency to self-influence the change

between silence and speech while conversing with control

participants, suggesting a more directive role. Instead, consistent

instances of speech activity on the part of individuals with

Asperger syndrome/HFA determined segments of silence on the

part of the moderator, suggesting that what the children said, or

the way they said it, interrupted the flow of the verbal exchange.

The fact that in our analysis we abstracted away from meaning

must not be taken to imply that meaning has no influence, but

simply that SCPs highlight the reverberations of meaningful or less

meaningful verbal exchanges on lower functional levels. It is likely

that with larger group samples the interactions can be more finely

pictured by more significant features.

We did not test theory of mind skills directly because all patients

had already been exposed to similar tests many times during

clinical assessment and rehabilitative training. We could document

the correlated difficulty in emotional recognition using a novel test

setting ([37], see Fig. 1). We also found a significant difference in

narrative memory between Asperger/HFA and neurotypically

developing participants. Recalling complex verbal material relies

on inferential bridges that the listener must make to obtain a

coherent picture of the different characters. As the spontaneous

attribution of mental states is a key stage in this process, individuals

with Asperger syndrome/HFA are likely to fail in tasks requiring

the retrieval of a coherent story [56]. Finally, a recent work

suggests that Asperger syndrome/HFA individuals may use inner

speech for short-term/working memory tasks, as control peers do,

but not for planning [57], a fact that could explain the planning

difficulties in our group of patients.

Human beings might use forms of entrainment via resource-free

processes such as priming to share information among each other

and within themselves across functional levels. Conversational

entrainment need not be representational in format, but can

determine the game of parts of influencing each other’s next move

[50]. This perspective is not in contradiction with the idea that we

can predict or infer the interlocutor’s possible next move based on

general cooperation assumptions [5]. Simply, rational inference

now becomes a local-value strategy, capturing the mechanics of

some single frames within the dynamic, effortless and kaleido-

scopic flow of conversational speech, which we just began to

tackle. For example, much research is needed on how the brain

effectively manages the inherent complexity that our analysis

highlighted [58]. From a neurocognitive viewpoint, the concept of

mutual knowledge implies that information from multiple sources

must be at the same time flexibly integrated within an individual’s

perceptual focus [59,60], as well as shared with the interlocutor.

Future research will tell us how much the brain synchronizes to the

pleasure of a chat.
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43. Tsuda K, Kawanabe M, Rätsch G, Sonnenburg S, Müller K (2002) A new

discriminative kernel from probabilistic models. Neural Comput 14: 2397–2414.

44. Perina A, Cristani M, Castellani U, Murino V, Jojic N (2009) Free energy score

space. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A,
editors, Advances in Neural Information Processing Systems 22. 1428–1436.

45. Kuncheva L (2007) A stability index for feature selection. In: IASTED

International Multi-Conference Artificial Intelligence and Applications. 390–

395.
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