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Abstract

Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear
parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended
Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an
improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data
before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is
not usual to measure a large number of strides (e.g., v100 strides). Amongst others, clinical gait analysis is limited due to
short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical
conditions. Stride time data of five self-paced walking trials (25 strides each) of subjects with PD and a healthy control group
(CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of
variation (CV), fractal scaling exponents a (DFA) and H (AFA) were calculated. Two surrogate tests were performed: A) the
whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched
together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found
concerning a and H . Surrogate version B yielded a higher mean squared error and empirical quantiles than version A.
Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true a. The
method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It
provides an approach to integrate FS as standard in clinical gait analysis and to overcome limitations such as short
walkways.
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Introduction

The ability to walk is a key component of mobility and is highly

related to quality of life. Its assessment enables to get insight into

system behaviour and gait disorders. In Parkinson’s disease (PD),

impaired gait is well documented with patients showing various

gait abnormalities [1–4]. From a biomechanical point of view, gait

disorders in PD can be characterised by spatiotemporal regulation

difficulty e.g., shortened stride length and reduced stride velocity

[5,6]. Quantification of within-subject stride-to-stride changes

have proven to be promising in terms of characterising gait

disturbances in PD [1]. Previous studies have found an increased

stride-to-stride variability in patients with PD compared to

controls with the tendency of increasing variability with disease

severity [7,8]. In general, stride time variability has been shown to

be affected by disease and ageing [8–10]. Quantification of stride-

to-stride variability requires to measure a huge number of strides -

the exact number is not known - than needed when analysing

average stride characteristics [11,12].

Concerning the analysis of variability, a new perspective has

been established in the last years. Besides the quantification of the

amount of variability (e.g., coefficient of variation), the structure

has been quantified in order to capture the dynamical properties of

the system (for review, see [13,14]). It provides additional

information and has been proven sensitive in detecting subtle

changes of the system. For instance, [15] could distinguish elderly

with more severe gait disorders from healthy age-matched controls

by examining gait variability. However, among the subjects with

more severe gait disorders, only the structural parameter was able

to divide this group into fallers and non-fallers. The combined

application of linear and nonlinear tools yields a complementary

characterisation of gait variability and how it changes with age and

disease [16]. In order to quantify the structure of stride-to-stride

variability, Detrended Fluctuation Analysis (DFA) was previously

applied [11,15,17,18] and especially with respect to stride time

variability in PD [1,2,19]. DFA was introduced by [20] as a

method to quantify the fractal dynamics or self-similarity of a time

series. The method outputs the scaling exponent a which can be

interpreted in terms of correlations [21,22]. That is, a~0:5 is
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characteristic of an uncorrelated signal and 0:5vav1:0 of a

persistent signal (positive correlation). In healthy subjects walking

under self-paced condition, a fractal scaling index of around

0:8{1:0 was observed [1,10,23] and higher indices resulted when

walking slower or faster than self paced [23]. Values closer to 0:5
reflect a deviation from a healthy state and more random

dynamics [9,10,24,25]. It could be shown that PD patients have

a DFA scaling exponent close to 0:5 which indicates that stride-to-

stride fluctuations are more random and that the long-range

scaling behaviour is reduced [1,19]. A simple explanation is that

gait of PD patients looses its automatism and fluidity with a break

down of memory of the locomotor control system [1]. [19] showed

that the a-value decreases from control group to early PD to later

PD patients which underlines the decrease of long-range scaling

with disease severity. DFA is just one example to obtain structural

information from time series data. Recently, a new method has

been proposed, adaptive fractal analysis (AFA) [26–28], which is

similar but has a number of advantages over DFA. We would like

to point out two of them. First, the most important difference is,

that AFA identifies a global smooth trend of the data by

combining segments of overlapping windows, whereas in DFA

the result of the linear fitting resembles a discontinuous signal with

abrupt jumps. Therefore, AFA is not restricted on the signal being

stationary. Second, AFA presents a more robust method

concerning short time series compared to DFA [26,27]. While

DFA is one of the most applied method with respect to stride

interval time series, AFA has not been applied for this purpose

before. It may be a valuable procedure to compare the results of

DFA with AFA fractal scaling outcomes in this context.

The accuracy of the estimation of fractal exponents is reduced

related to the length of the time series [29–31]. [30] propose that

one needs series of at least 212 data points to get reliable results.

However, [32] showed that the loss of accuracy of the estimation

in short time series (v210) is not as dramatic as expected. In

clinical gait analysis a few number of strides are typically recorded

(e.g., v20 strides [33,34]), which can be due to a short walkway

(e.g., GAITRite system [35,36]). [36] review that studies differ

with respect to the measured number of strides with a reduced

reliability when only a few number of strides are analysed. Thus,

typical clinical studies of gait are not suitable to the premise of

needing long time series for DFA. However, [37] analysed the

effects of nonstationarity on DFA, i.e., stitching together segments

of data obtained from discontinuous experimental recordings.

They found that positively correlated signals with 0:5vav1:0,

which can be expected for stride time variability [11], are not

affected by the cutting procedure. [1] applied this procedure on

experimental data - he analysed gait of subjects walking on a

circuit and cut out the turn - resulting in longer time series which

only include the straight walking distances. Following these works,

the aim of this study is to evaluate the quantification of stride time

variability by use of DFA, AFA and the coefficient of variation in

patients with Parkinson’s disease compared to a healthy control

group based on stitching together consecutive walking trials in

order to generate longer time series.

Materials and Methods

In this study, 19 patients with Parkinson’s disease (PD) (age:

59:5+10:2; UPDRS: 36:1+13:5; Hoehn and Yahr stages I and

II) and a control group (CG) of 20 healthy younger subjects (age:

22:0+2:7 years) participated voluntarily and gave written

informed consent to the experimental procedure. Gait analysis

of PD was part of a larger study protocol which was approved by

the ethics committee of the Hochschule Fresenius, University of

Applied Sciences, Idstein, Germany and complies with the scope

of the declaration of Helsinki. PD patients with deep brain

stimulation, further neurological diseases, orthopaedic impair-

ments, with advanced dementia, and/or inability to walk

autonomously were excluded. PD subjects were measured under

regular medication (on-state). The subjects were instructed to walk

at their individual self-paced velocity along a 49:2 m corridor.

Wireless Medilogic� foot pressure insoles were used to evaluate

the heel strike time of each foot. The sample rate was set to 50 Hz.

With regard to gait initiation [38], recommend to start data

collection after two complete gait cycles in order to achieve steady-

state walking. [39] found that a 2:5 m distance is sufficient even

with frail people. In the present study, the measurement was

started after a 5:7 m gait initiation phase when the subjects crossed

a predefined line to achieve steady-state walking. Measurement

was completed 3:2 m before the end of the corridor, when the

subjects crossed a second line, to exclude the gait deceleration

phase. One practice walk and five trials were conducted. The heel

strike times lead to a right food and a left food time series of single

stride durations for each trial. There was no evidence for freezing,

festination, or common concomitants associated with PD [40].

Data analysis was conducted via Matlab� R2008b.

One gait trial consists of about 25 strides (data points). By

stitching the five trials together, longer data series were construct-

ed with a total number (Nmax) of 126+19 (PD) and 125+8 (CG)

data points. The stitching procedure comprised the simple

addition of consecutive trials. Suppose (x1, . . . ,xr) is the time

series of the first trial and (y1, . . . ,ys) is the time series of the

subsequent trial, then the stitched time series is

(x1, . . . ,xr,y1, . . . ,ys) (Figure 1). To quantify the stride-to-stride

variability, the coefficient of variation (CV [%]) as well as the

fractal scaling exponents a by means of DFA with linear

detrending and H by means of AFA with quadratic polynomial

fits (M~2) were computed (Figure 2). The linear regression is the

typical procedure for DFA. In case of AFA [27], propose to use a

linear or a quadratic trend, as not every variation of the signal

should be captured, leaving enough residuals to analyse further.

We created smooth signals for both, M~1 and M~2 to visually

define the best polynomial order. The linear trends produced

inappropriate fits at the edges (region of no overlap), whereas the

quadratic polynomials produced more accurate regressions.Time

series were integrated prior to the application of DFA or AFA.

Technical details of DFA and AFA are extensively described

elsewhere (e.g., [20,27,28,32]). After visual inspection of the log-

log-plot, scaling exponents were determined as the slope of the

linear regression line over the window sizes w~4 to Nmax=4 in

steps of 2 for DFA and w~5 to Nmax=2 (or Nmax=2z1 if the time

series has an even number of samples) in steps of 5 in the case of

AFA. Concerning the parameter CV, the intra class correlation

coefficient ICC(3,1) for each foot was calculated in order to

quantify the trial-to-trial reliability.

The parameters (CV, a, and H ), were tested for statistically

significant differences between the two groups. In case of normally

distributed data - proved by the Shapiro-Wilk-Test - the t-Test was

applied, and otherwise, the Mann-Whitney-U-Test. The signifi-

cance level was set to 5%. In addition, linear correlation between

CV, a, and UPDRS was determined by means of Pearson (r) or

Spearman (r) correlation coefficient. With respect to DFA and

AFA, surrogate data tests were applied to test the null hypothesis

(H0) of a~0:5 (uncorrelated series) [22,41], independently for

every subject. Thus, 1000 realizations were generated for each

subject and the lower (q2:5%) and upper (q97:5%) sample quantiles

were computed (Figure 3). Two different versions were applied: A)

the whole time series was randomly shuffled; B) the single trials

DFA and AFA Application for Short Gait Trials
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were randomly shuffled separately and afterwards stitched

together. Version B was applied to look for artefacts of the

method of stitching together the five trials. The bias

(Bias(a)~�xxa{0:5) together with the mean squared error

(MSE(a)~s2
az(�xxa{0:5)2) were determined to evaluate the

goodness of the estimation. Correlations between Nmax and

MSE(a) were conducted to test for significant relations between

the length of the time series and the error of the estimation. This is

an exploratory study where descriptive p-values are reported with

pv0:05 considered significant.

Results

Results of the right (R) and left (L) stride time variability are

presented in the following. Normal distribution was accepted for

the data. Results are presented as mean + standard deviation. In

order to account for several studies that have shown a close

relationship between fractal scaling exponents calculated on stride

times and walking speed (e.g., [11,42]), mean velocity of the gait

trials (self-paced) were calculated and found to be 1:44+0:04 m/s

for PD and 1:45+0:04 m/s for CG. H0 of being equal sets of

walking trials could not be rejected (T37~0:243,p~0:503).
However, the five gait trials exhibited different gait velocities for

both groups which was tested by use of oneway repeated-measures

ANOVA (PD: F4,72~6:27,p~0:001; CG: F4,76~17:29,pv0:001)

showing the tendency that gait velocity increases with trial

number.

Stride-to-stride variability
A reduced CVL sample mean was observed in PD (1:8%+0:3)

compared to CG (2:1%+0:4) which was not significantly different

(T37~1:9, p~:067). Concerning CVR, a sample mean of 1:9%
(+0:4) for PD and 2:1% (+0:5) for CG was observed with no

significant differences (T37~1:1, p~:29). ICC(3,1) shows rather

poor values in PD (L: {0:06, R: 0:34) as well as in CG (L: 0:23, R:

0:25). CV values of the five gait trials are shown in Table 1.

Concerning the scaling exponent a, PD showed significantly

lower values (R: 0:8+0:15, L: 0:79+0:15) compared to CG (R:

0:90+0:15, L: 0:92+0:16) as presented in Figure 4. In

accordance to the results of DFA, AFA exhibited significantly

lower values for PD (R: 0:77+0:15, L: 0:75+0:16,T37~2:5,
p~0:016) in contrast to CG (R: 0:89+0:14, L: 0:88+0:15,
T37~2:5,p~0:016). An exemplary time series with its global

smooth trend and the log-log-plot are shown in Figure 1.

Correlation between UPDRS, CV, and a for PD and between

CV and a for CG are presented in Table 2 with respect to right

and left stride time variability. No significant correlations were

found.

Surrogate data tests
Surrogate data tests were used to test the null hypothesis of

H0 : a~0:5 separately for every subject. With respect to surrogate

version A, H0 could not be rejected for 10% of CG and for 26% of

PD concerning DFA and could not be rejected for 15% of CG and

32% of PD in the case of AFA. Concerning surrogate version B,

H0 could not be rejected for 30% of controls and for 47% of

patients with respect to DFA, and could not be rejected for 30% of

CG and 58% of PD. The mentioned percentages were true for

both, left and right stride time data. The comparison of the two

surrogate versions, A and B, yielded a higher bias or mean squared

error when the single trials were shuffled separately and afterwards

stitched together. That was, for MSE(a) 0:009+0:001 and

MSE(H) 0:007+0:0005 (A) versus MSE(a) 0:03+0:02 and

MSE(H) 0:03+0:02 (B). For Bias(a) 0:044+0:006 and Bias(H)
0:002+0:01 (A) versus Bias(a) 0:14+0:07 and Bias(H)
0:11+0:09 (B). In addition, version B yielded increased statistical

bounds ½q2:5%; q97:5%� for the acceptance region of H0: on average

½0:39; 0:72� for DFA and ½0:34; 0:67� for AFA(A) versus

½0:49; 0:79� for DFA and ½0:47; 0:76� for AFA (B) (Figure 3).

Concerning version A, smaller MSE values for longer time series

were observed: a significant correlation between Nmax and

MSE(a) was obtained (r~{0:96, pv:001). This was not the

case with respect to surrogate version B (r~{0:1, pw0:05).

Figure 1. Exemplary stride-to-stride time series of a Parkin-
son’s disease patient (PD) and a healthy subject (CG) after the
stitching procedure. The vertical dashed lines represent the stitching
position.
doi:10.1371/journal.pone.0085787.g001

Figure 2. Polynomial fitting methods of DFA (A) and AFA (B).
Example of an integrated detrended stride time series (grey) and a
window size of w~57. In the case of DFA, linear regression lines (blue)
are computed within nonoverlapping windows resulting in a discon-
tinuous signal. In the AFA method overlapping windows of
nz1~(wz1)=2~29 data points are used. Within each window a
quadratic regression line (m~2) is fit to the time series (blue).
Afterwards a global smooth and continuous trend (dotted red line) is
calculated.
doi:10.1371/journal.pone.0085787.g002
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Discussion

Under clinical conditions, the application of fractal methods to

stride time data is often difficult due to the need of long continuous

recordings to attain the true value of the scaling expontent. In

clinical standard diagnosis, there is often a lack of space which

counteracts the evaluation of a large number of strides. Hence, in

this study, we examined whether stitching together short sequences

of stride time data illustrates a reasonable method to generate

sufficiently long time series for the application of fractal methods.

To test this procedure, a cohort of PD subjects and a healthy

control group were measured. Two fractal methods, DFA and

AFA, were applied to stride time series to account for differences

between both subject groups. In addition, the CV was calculated

as a linear and frequently used parameter of stride time variability

data.

CV of stride time data in healthy adults is about 2% [1,18,43]

which fits to our results. Interestingly, the data of our PD patients

reached lower values which is contrary to the literature [4,8,44–

46]. For instance [44], found CV values of 3:3% (non-fallers) to

5:0% (fallers) for PD patients in on-state. Our examination of

variability differs from these studies with respect to methodology.

Moreover, in the present study, only subjects with low disease

severity (low UPDRS score, Hoehn and Yahr stage I and II) were

included. [4] report higher values for PD fallers (CV~5:0) versus

nonfallers (CV~3:3) under medication. In addition, we found that

CV of stride time has a low trial-to-trial reliability. Gait data

exhibited very poor values of ICC. This is comparable to [47] who

found that the coefficient of variation of stride time in healthy

older adults (n~59) is attended by a low test-retest reliability.

Others report higher values of CV concerning stride time (e.g.,

[48,49]). However, these divergences may be due to rather few

stride numbers on short walkways (5{18 strides). The present

study investigates more strides and it has to be emphasized that

gait data has to be collected over a reasonable distance to calculate

reliability of stride time data [50]. One can speculate that stitched

time series are not suitable to calculate CV of stride time.

With respect to nonlinear measures, we found significantly

lower fractal scaling exponents in PD patients compared to the

control group which fits to the literature [1,19,46]. Both fractal

scaling exponents a and H demonstrated equivalent outcomes

with respect to the differentiation of PD and CG. Thus, our results

underline the sensitivity of fractal methods even if they are based

on stitched time series. It has to be emphasised that different

polynomial fits were used for both methods (DFA and AFA). The

scope of this article was to evaluate the applicability of fractal

scaling methods to discriminate PD from CG. Thus, from a

methodological point of view, a comparison between the results

has to be drawn carefully. To give consideration to this aspect,

underlying polynomial fits should be of the same order.

Gait velocity was significantly different between the trials.

However, the mean gait speed of the first trial (slowest velocity)

was less than 5% compared to the last trial (fastest velocity). For

instance, [42] report their differences between gait speed and the

fractal scaling exponent a (in the range of +0:05) on the basis of

20% difference from the comfortable self-paced walking speed. We

assume that the changes in walking speed may have a marginal

effect on the fractal scaling outcome. Furthermore, we found no

significant differences on gait velocity between the subject groups.

Nevertheless, we recommend that before analysing different gait

trials in order to apply the stitching procedure, three practice trials

have to be conducted as we have found later trials to reveal more

consistent walking speeds. [46] showed that the DFA fractal

exponent can be related to age and disease severity. However, we

found no linear correlation between UPDRS, a measure of disease

severity, and the fractal scaling exponent a. Several reasons may

account for this phenomenon. It has been proven that fractal

methods are sensitive to identify various and subtle information of

the systems behaviour [26,51]. Furthermore, UPDRS is a sum

score of equally weighted items regarding multiple PD specific

symptoms. By contrast, gait is a highly complex motor control

performance and therefore, a linear interaction between both

methods is unlikely. In addition, no significant linear correlation

between UPDRS and CV was found which is in contrast to [4].

Our results of having no correlations between the scaling exponent

a (DFA) and CV support previous findings in PD patients [1] and

Figure 3. Empirical statistical bounds (2:5% and 97:5% quantiles: q:025, q97:5) for surrogate versions A (left panel) and B (right panel).
As an example, the distribution of a computed from surrogate series of stride time data of one subject is presented with a mean value of �xxa~0:54 for
version A and �xxa~0:59 for version B. The respective mean squared errors are MSE~0:0074 (A) and MSE~0:014 (B).
doi:10.1371/journal.pone.0085787.g003

Table 1. Sample mean + standard deviation of the
coefficient of variation (CV [%]) of each gait trial.

Trial CG PD

Left Right Left Right

1 1:80+0:51 1:86+0:49 1:71+0:31 1:72+0:40

2 1:77+0:41 1:76+0:49 1:65+0:33 1:48+0:30

3 1:55+0:33 1:61+0:32 1:70+0:51 1:62+0:46

4 1:67+0:32 1:58+0:29 1:57+0:33 1:56+0:37

5 1:65+0:45 1:65+0:41 1:70+0:73 1:50+0:31

(CG = control group, PD = Parkinson’s disease group).
doi:10.1371/journal.pone.0085787.t001
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in older adults [52] which may underline that both parameters

(linear versus nonlinear) account for different information in the

stride time series. No different scaling regions (linear trend of the

log-log-plots in DFA and AFA) were found which is in contrast to

[53] who found multifractal scaling for both, PD patients and

healthy controls.

The proposed method of stitching together five trials in order to

yield longer time series seems to be appropriate in order to

distinguish between healthy and pathological gait using nonlinear

methods. However, we found higher empirical quantiles and a

larger bias, as well as larger mean squared errors concerning

surrogate B. One can assume that stitching together the single

trials generates a pseudo structure which results in a shift to a

positive correlation (aw0:5). Hence, it can be expected that the

presented a-values overestimate the true scaling exponent. This

effect was similar in the calculation of H . However, our results

partly concur with a-values reported in literature e.g., 0:92 for the

control group and 0:84 for the PD group [19]. [1] found a fractal

scaling exponent of 0:82 for the PD group which was statistically

different from the value of the control group. In general, it was

found 0:8vav1:0 for healthy adults with respect to stride time

data [1,10,23], which means that our findings are located at the

upper end of the reported range.

In accordance with previous studies [30,31,54], we found a

negative correlation between signal length and MSE(a) which

underlines that the error decreases with increasing signal length.

This was not true, however, for surrogate version B. Although

stitching together the five trials, signal length was smaller than 27

which resulted in large acceptance regions for H0 : a~0:5. In

literature, no consistent recommendations are published concern-

ing the minimum number of strides needed to attain accurate

results of gait analysis. [55] propose 400 steps [56], suggest 600
strides, whereas others showed good results of DFA with smaller

number of data points [32]. Two methodologically conflicting

problems emerge with regard to long time series in gait. First, in

clinical standard diagnosis it is hardly possible to measure long

distances due to a lack of space and costs required for performing a

study [57]. A second problem is the effect of fatigue in patients

during prolonged walking. The present study demonstrates a

simple procedure which is applicable without these implications.

However, from a theoretical point of view, the stitching procedure

does not accord to the originally proposed assumption of finding

long-range correlations within consecutive strides. The present

approach is based on the idea to have measured steady although

pathological systems and therefore, sections of the gait process.

Therefore, the indicated fractal scaling values are strictly spoken

only true for the stitching process. In this study, the true fractal

properties of the system (underlying long-term correlations in the

signals) were not investigated directly. To account for this aspect,

scaling exponents of long continuous recordings of stride time

series have to be compared to those scaling values that are obtaind

by the stitching procedure. Further research has to be undertaken

to elucidate the relationship to long continuous data and to get

insight into how many sequences should be measured and how

many strides should these sequences consist of.

Conclusion

The present study demonstrates that applicability of fractal

methods in gait analysis is not limited to time series that are collected

from prolonged walking conditions. The proposed method enables

to create sufficiently long data by stitching together short sequences

(&25 strides) to differentiate between a healthy control group and a

group of persons with Parkinsons Disease by use of fractal methods.

Hence, this approach is useful, for instance, in the context of clinical

investigations that are restricted to short walkways. This work

provides a first insight into the agreeability between elaborate gait

analysis and clinical suitability. It has to be further elucidated which

combination between the number and the length of trials will

produce the best results. This systematic analysis would be the next

step, to establish fractal analysis as a standardised user-friendly

method for clinical standard diagnosis.
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Figure 4. Results of the fractal scaling exponent a, determined by DFA, of the Parkinson’s disease patients (PD) and the control
group (CG). Example of one subject respectively (left and middle panel). Right panel: sample mean + standard error of a. The p-value is reported
concerning the statistical comparison of the two groups (CG = black, PD = weight).
doi:10.1371/journal.pone.0085787.g004

Table 2. Results of Pearson (r) and Spearman (r) correlation
coefficient of right and left stride time data concerning
coefficient of variation (CV), scaling exponent a computed
with DFA and UPDRS score.

Correlation CG PD

Left Right Left Right

CV, DFA r~0:37 r~0:33 r~{0:04 r~0:45

CV, UPDRS r~0:25 r~0:3

DFA, UPDRS r~0:17 r~0:18

No significant (pw0:05) correlations were found. CG = control group,
PD = Parkinson’s disease patients.
doi:10.1371/journal.pone.0085787.t002
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