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Abstract

Considering personal privacy and difficulty of obtaining training material for many seldom used English words and (often
non-English) names, language-independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition
(ASR) is a promising option to solve the problem. The dynamic time warping (DTW) algorithm is the state-of-the-art
algorithm for small foot-print SD ASR applications with limited storage space and small vocabulary, such as voice dialing on
mobile devices, menu-driven recognition, and voice control on vehicles and robotics. Even though we have successfully
developed two fast and accurate DTW variations for clean speech data, speech recognition for adverse conditions is still a
big challenge. In order to improve recognition accuracy in noisy environment and bad recording conditions such as too
high or low volume, we introduce a novel one-against-all weighted DTW (OAWDTW). This method defines a one-against-all
index (OAI) for each time frame of training data and applies the OAIs to the core DTW process. Given two speech signals,
OAWDTW tunes their final alignment score by using OAI in the DTW process. Our method achieves better accuracies than
DTW and merge-weighted DTW (MWDTW), as 6.97% relative reduction of error rate (RRER) compared with DTW and 15.91%
RRER compared with MWDTW are observed in our extensive experiments on one representative SD dataset of four speakers’
recordings. To the best of our knowledge, OAWDTW approach is the first weighted DTW specially designed for speech data
in adverse conditions.
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Introduction

This paper studies language-independent (LI) with light weight

speaker-dependent (SD) automatic speech recognition (ASR) in

adverse conditions, such as noisy environment and bad recording

condition of too high or low volume. As speech is the primary

method for human communication [1], the fast development of

communication devices has attracted much enthusiasm for

research in ASR over the past decades [2]. ASR recognizes

human speech using computer algorithms without the involvement

of humans [3]. It is essentially a pattern recognition process.

Taking one pattern, i.e. the speech signal, ASR classifies it as a

sequence of previously learned patterns [4].

LI means that a speech recognition algorithm can recognize

speeches in kinds of different languages. LI SD ASR has wide

applications. Voice dialing on mobile communication devices,

menu-driven recognition, and voice control on vehicles and

robotics should be treated as LI SD ASR applications. This is

because: 1. these applications have widely usage so that they

should be language independent (LI) rather than be limited to

specific language(s); 2. because these applications should be used

not only online but also off-line, they can be developed as speaker-

dependent (SD) applications. Many corporations, such as Google

and Microsoft, have developed mature speaker-independent (SI)

ASR applications. However, most of the current applications are

all language-dependent (LD). Such LD SI ASRs are based on

Hidden Markov Model (HMM) [5], the accuracy of which relies

on the amount of training data. That is, the more the training data

are available to train a phone or word model, the more accurate

the recognition will be. However, due to excessive time, storage,

and cost factors associated with the collection of multi-language

training data, lack of sufficient training data in non-English

language means that those mature SI ASR applications cannot

achieve good accuracy when used for non-English ASR.

Furthermore, all of the contact information in personal mobile

devices has to be uploaded to remote ASR servers when

performing SI ASR, which may cause an inherent risk of loss of

personal information. For safety reasons, it is better to store such

information on one’s own device rather than to upload it to remote

servers. Considering difficulty of obtaining training data for

seldom used English words and (often non-English) names and
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personal privacy, LI with light-weighted SD ASR is a promising

option to solve the problem.

Statistical model based and template based technologies are two

main ASR categories. Hidden Markov model (HMM) is the most

popular statistical model based approach. Baum and his colleagues

developed the mathematics behind the HMM in the late 1960s

and early 1970s [6]. Then, HMM was firstly applied to speech

recognition by Baker at CMU, and by Jelinek and his colleagues at

IBM in 1970s [6]. Since the mid-1980s, HMM has become widely

implemented in speech processing applications [1]. Generally

speaking, after HMM training and recognition process, one speech

signal tested can be correlated to a certain text. HMM is more

flexible in large vocabulary systems, and achieves better perfor-

mance in SI cases [7]. On the other hand, Dynamic Time

Warping (DTW) is the most well-known speech recognition

technique among the template based technologies. In 1968,

Vintsyuk proposed the use of dynamic programming (DP)

methods for the element-by-element recognition of words, and

such DP methods performs perfectly in an experimental test of SD

case [8]. Thereafter, this method has been incorporated in many

speech processing applications [9–16]. DTW uses a DP alignment

process to find the similarity between two speech signals, which

excellently measures the similarity between speech signals in SD

cases [17].

Because storage space of mobile devices and personal informa-

tion are limited, our goal is to develop LI with light-weighted SD

ASR algorithm. In such algorithm, we use only one sample for

each word as training data. Considering that HMM needs

sophisticated implementation of large-scale software and lots of

training data [18], and dynamic time warping (DTW) aims at

small-scale embedded systems with its simplicity in hardware

implementation [3], we choose DTW in this work.

There are many DTW variations. Some are designed for fast

computing, and the others are designed for improving their

performances. Many variations have been proposed for acceler-

ating DTW computing process [19]. Be it lower bounding

measure [20], global constraint region usage [21], multi-scale

DTW [22], or any other combination of the first two methods

[23], they are all based on constraint algorithms in an iterative

fashion [24]. That is, speeding up DTW process at the expense of

accuracy. On the other hand, considering that DTW gives each

time frame an equal weight to align two time series, the authors of

[25] and [26] introduced two weighted DTW methods to avoid

potential misclassification caused by equal weight. These two

methods weight nearer neighbors differently depending on the

phase similarity between a training time frame and a testing time

frame. It is noted that these weighted DTW do not decrease time

complexities. We have developed confidence index dynamic time

warping (CIDTW) [27] and merge-weighted dynamic time

warping (MWDTW) [28] methods of fast and accurate speech

recognition for clean speech data. Both methods involve a merging

step that merges adjacent similar time frames in one speech signal

and then performs DTW on merged speech data. The merging

step can significantly improve the running time of the speech

recognition process. Using our CIDTW and MWDTW, we speed

up DTW recognition process with improved accuracy. However,

CIDTW and MWDTW do not work well on noisy and badly

recorded speech data. Here, badly recorded data means that the

speaker’s volume is too high or low.

Through experiment, we have found that the merging step in

our CIDTW and MWDTW is the main reason why these two

methods are not able to work on noisy and badly recorded data.

Specifically, merging adjacent similar time frames requires

determining a time frame merging threshold. If some speeches

contain noise or miss the information of top waves when recording

in a very high volume, this merging threshold will probably not

show the real merging baseline. As a result, the merging step may

lead to wrong classifications. Therefore, novel methods are needed

to address the challenge of accurate and fast speech recognition in

noisy and bad recording conditions.

In order not to lose recognition accuracy for noisy and badly

recorded speech data, we develop a novel one-against-all weighted

dynamic time warping (OAWDTW) algorithm. Unlike our former

CIDTW and MWDTW weighting scheme, OAWDTW defines

one-against-all index (OAI) for each time frame of training data,

then applied OAIs into general DTW process to tune the final

alignment score and to find the similarity between merged training

and testing data. We build a representative dataset recorded by 4
speakers under different recording conditions. Compared with

original DTW, our OAWDTW achieves better accuracy both on

clean data with 0.5% relative reduction of error rate (RRER) and

on noisy data with 7.5% RRER.

To the best of our knowledge, our method is the first weighted

DTW specially designed for noisy and not well recorded speech

data.

Materials and Methods

1 Dynamic Time Warping Algorithm
There are variations of voice and speed for a single word even if

such word is spoken by the same person many times. Dynamic

time warping (DTW) can detect such variations.

Suppose that two input speech signals, L with length m and S
with length n, vary in time. Since our method is built upon it, we

illustrate here the complete DTW algorithm which contains two

processes, DTW matrix calculation and optional DTW alignment

path search. The value of elements in DTW matrix is acquired by

using the formula at the tenth step of Algorithm 1 in Table 1, the

last element of the whole matrix represents the similarity between

L and S. The smaller the value of this last element is, the closer L
and S would be. After filling the whole matrix, the alignment path

will be acquired through backtracking of the DTW matrix from

the last element. Usually, we only need to know the final alignment

score of DTW. In our paper, we need to use steps 11{16 of

Algorithm 1 in Table 1 to acquire the alignment details between

two speech signals.

2 One-Against-All Weighted Dynamic Time Warping
The novel one-against-all weighted dynamic time warping

(OAWDTW) can process spectrograms or mel frequency cepstral

coefficient (MFCC) acoustic features of audio files. Spectrogram

and MFCC are both visually representation of acoustic speech

signal. In this paper, we use MFCC as input. To make the

description of the OAWDTW more clearly, we will specify the

input speech file format as MFCC in the rest of the paper.

Essentially, MFCC can be treated as a matrix. The MFCC of one

speech signal is actually multi-dimensional feature vectors, which

show the change of periodic signal’s frequency, amplitude, etc.

Using OAWDTW to perform speech recognition, we only need

to record each word for one time as training data. For clarity,

let us first define several terminologies to describe a MFCC and its

time frames:

1. training MFCC: MFCC of training speech signal.

2. testing MFCC: MFCC of testing speech signal.

3. time frame: a multi-dimensional feature vector in training or

testing MFCC, which represents the feature distribution over a

certain time period.

OAWDTW for Speech Recognition in Adverse Condition

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e85458



As illustrated in Figure 1, our OAWDTW contains four steps:

1. Normalize training and testing MFCC.

2. Acquire the one-against-all index (OAI) of each training

MFCC by using DTW.

3. Find aligned path of testing MFCC and training MFCC by

using DTW.

4. Score the similarity between testing and training MFCC by

applying the OAIs into the alignment path acquired in step 2.

The dynamic time warping (DTW) algorithm is the core of the

OAWDTW. Generally speaking, OAWDTW finds the aligned

path of training and testing MFCC by using DTW (step 3), and

then applies OAI as weights of aligned time frames to adjust the

final aligned score (step 4). Step 1 and 2 preprocess original

MFCCs for next steps. Each step of OAWDTW is described in

greater detail in the following subsections.

2.1 MFCC Normalization. MFCC is a high-dimensional

vector. The values in each dimension have different ranges and

scales. In order to make comparison meaningful, these values in

same dimension need to be normalized between {1 and 1. Here,

we adopt the normalization process proposed by authors of [30].

Here we suppose that VNormi j is the jth normalized value in the

ith dimension, Vi j is the jth value in the ith dimension, maxi is the

maximum value of the ith dimension, mini is the minimum value

of the ith dimension. As shown in Figure 2, a MFCC is represented

by a n �m matrix, which contains n frames where each frame is

represented by a m dimensional vector. A normalized MFCC is

acquired after using equation 1:

VNormi j~{1z2 � (Vi j{mini)=(maxi{mini) ð1Þ

2.2 One-Against-All Index of training MFCC. An illustra-

tion of one-against-all index (OAI) acquisition process is shown in

Figure 3.

Specifically, in a training MFCC data set, we first do general

DTW between every pair of training MFCCs so that we acquire

all aligned pairs of time frames. Then we calculate the average

distance among time frames in one training MFCC and their

aligned time frames. Let us denote this distance by DIall , where I

represents the ith training MFCC. DIall is the ‘All’ in our method’s

name ‘One-Against-All’. For each time frame j of this training

MFCC, we also calculate the average distance between it and its

aligned time frames, which is denoted by DIj , which is the ‘One’ in

method’s name ‘One-Against-All’.

Now the OAI of time frame j in the Ith training MFCC is

defined as function OAIIndex:

OAIIj~OAIIndex(DIj ,DIall)~1z
DIj{DIall

DIall

ð2Þ

In this way, for a time frame j in the ith training MFCC, if its

DIj equals the average distance among time frames in the ith

training MFCC, its OAI will be 1. If its DIj is larger than average,

its OAI is slightly larger than 1. If its DIj is less than average, its

OAI is slightly less than 1.

The idea behind the above definition is that we take the global

average of time frame to time frame alignment distances as the

basis of measurement. If one time frame’s average distance from its

aligned time frames is shorter than the global average of the time

frames in one specific training MFCC, that means this time frame

is quite similar to time frames in the same training MFCC. That

gives lower confidence to it as model element. Therefore, its

confidence value is smaller than 1. On the other hand, if a time

frame’s average distance from its aligned time frames is longer

than the global average, that means this time frame is quite

different from time frames in a same training MFCC. That gives

higher confidence to it as model element. Hence its confidence

value is larger than 1.
2.3 Dynamic Time Warping Aligned Path of Normalized

Training and Testing MFCC. By backtracking the array

DTWPath in Algorithm 1 in Table 1 of one normalized training

MFCC and one normalized testing MFCC, we receive their time

frames’ alignment path. Suppose that the time frame lengths of the

normalized training and testing MFCC is m and n, respectively,

where m§n. Then we use NormTr½1::m� to store the normalized

training MFCC time frames, and NormTe½1::n� to store the

normalized testing MFCC time frames. Since m§n, the length of

the two MFCC’s aligned path is m, where a time frame in the

training MFCC may be aligned with two to more time frames of

the testing MFCC. The aligned time frame orders of

Table 1. Algorithm 1: Dynamic Time Warping.

Require: speech sequences L½1::m�, S½1::n�.
1: DTW ½0,0� : ~0

2: for i : = 1 to m do 12: if min(DTW ½i{1,j�,DTW ½i,j{1�,DTW ½i{1,j{1�)~DTW ½i{1,j�
then

3: DTW ½0,i� : ~infinity 13: DTWPath½i,j� : ~Up

4: end for 14: else if min(DTW ½i{1,j�,DTW ½i,j{1�,DTW ½i{1,j{1�)~DTW ½i,j{
1� then

5: for i : = 1 to n do 15: DTWPath½i,j� : ~Left

6: DTW ½i,0� : ~infinity 16: else

7: end for 17: DTWPath½i,j� : ~Diagonal

8: for j : = 1 to m do 18: end if

9: for j : = 1 to n do 19: end for

10: Cost½i,j� : ~Dist(L½i�,S½j�)//Dist represents the Euclidean distance 20: end for

11: DTW ½i,j� : ~Cost½i,j�zmin(DTW ½i{1,j�,DTW ½i,j{1�,DTW ½i{1,j{1�) 21: return DTW ½m,n�

doi:10.1371/journal.pone.0085458.t001
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NormTr½1::m� and NormTe½1::n� are stored in TrPath½1::m� and

TePath½1::m�, respectively. These arrays will be used in the next

MFCC similarity scoring process.

2.4 Score the Similarity between Normalized Training

and Testing MFCC. The similarity scoring process of the

proposed OAWDTW is shown in Algorithm 2 in Table 2. Here, as

the same as Algorithm 1 in Table 1, the Dist function is the

Euclidean distance between a time frame in training MFCC and a

time frame in testing MFCC. We use the FinDist to represent the

similarity between one normalized training and testing MFCC.

The smaller the FinDist is, the more similar the training MFCC

and testing MFCC are. After using the OAI of each time frame in

one specific training MFCC to readjust the DTW score, we

improve the alignment accuracy.

Results

Data Preparation
Generally speaking, our data preparation includes 4 steps:

1. Audio files record;

2. MFCC generation;

3. MFCC end point detection;

4. MFCC dimension extraction.

More details are described as follows.

To test whether OAWDTW is suitable for language indepen-

dent (LI) speaker dependent (SD) automatic speech recognition

(ASR), we need to have a multi-language speech corpus in which

each word is recorded for at least two times – one as training data,

the other as test data. However, most of the current public speech

corpora are built for SI ASR. That is, these corpora only contain

sentences (a few words) in one or two languages while each

sentence/word is recorded once. Fortunately, as we know that

name is made up of words, we choose the most representative

names in their respective countries. Thus, these different names

can be treated as the representation of commonly used words in

multiple languages. Three females and one male use the Audacity

software to manually record a total number of 65 different names

Figure 1. Summary of the proposed one-against-all weighted dynamic time warping (OAWDTW) approach. First, OAWDTW normalizes
training MFCCs and testing MFCCs. Then, OAWDTW acquires the one-against-all index (OAI) of each time frame in training MFCCs. Third, OAWDTW
performs dynamic time warping alignment between a normalized training MFCC and a normalized testing MFCC. Forth, OAWDTW applies OAIs of
aligned time frames in normalized training MFCC to tune the final score.
doi:10.1371/journal.pone.0085458.g001
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and terms of address in English, Chinese, German, French,

Arabic, and Korean. Each speaker records in different environ-

ment and recording situation and repeats each name or term of

address 10 times. As shown in Table 3, two speakers record in a

quiet environment (speaker 1 and 3). To test the robustness of

OAWDTW against noise corrupted data, we use the Mardy

reverberant noise database [31] to add reverberant noise to the

clean speech recorded by speaker 3. The Mardy database was

developed to test denoising algorithms. Since we currently do not

apply denoising filtering, we do not need the information provided

by the Mardy database with respect to the distances between

source and microphones, the microphone array channels and loud

speaker positions. Therefore, we randomly select one impulse

response to simulate noise corruption through convolution as

described in [32]. The process is as follows: we normalize the

impulse response to have maximum value of 1, and convolve the

speech data with the normalized impulse response. Figure 4(a),

4(b) and 4(c) show the normalized impulse response, the original

clean speech and corrupted reverberant speech. Speaker 2 records

in a noisy environment with a consistent background sound, and

speaker 4 uses a very high volume which often gets over the largest

value of short integer (about 35000 in C language when

programming to deal with the audio files) so the top of the waves

are clipped. The recording settings are 8 kHz, mono channel, 16
bits PCM. The name list is shown in Table 4. We first record some

Chinese names. In order to test whether our method is compatible

Figure 2. The illustration of MFCC normalization. In table header, ‘Fr’ represents time frame, and ‘Dim’ means dimension. A MFCC is
represented by a n �m matrix. This matrix is constituted by n time frames where each time frame is represented by a m dimensional vector. Therefore,
each dimension has n values, which will be normalized into the range between 21 and 1 after the MFCC normalization step.
doi:10.1371/journal.pone.0085458.g002
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with multiple languages, we introduce some French, German,

Arabic, Korean, English, along with English-Chinese names (first

name is English, while last name is Chinese). Considering that our

goal is to enhance name recognition accuracy, especially for

Chinese words, we introduce 15 different Chinese terms to address

‘father’, ‘mother’, ‘son’, ‘daughter’, ‘grandparents’, etc. Please

email zhangxianglilan@gmail.com for these raw data. These

Chinese terms are represented by PinYin, and their meanings are

listed in paired parentheses.

Referring to Chapter 3 of HTK manual [29], The HCopy

function in HTK converts the ‘.wav’ audio files into ‘.mfc’ files.

When using HTK, the frame period is 25 msec, fast Fourier

transform (FFT) uses a Hamming window. A coefficient of 0:97
first order pre-emphasis is applied to a signal. Filterbank has 26
channels and outputs 13 MFCC coefficients. At last, we use HList

function in HTK to convert binary.mfc files into text formats, so

that we can treat converted files as inputs of our OAWDTW

method.

For the above generated MFCCs, we write an end point

detection program, which removes silence at the beginning and

end of recording, and long silence in the middle of ‘.wav’ file.

Please email zhangxianglilan@gmail.com for this program. Given

one 39 dimensional MFCC, its first 13 dimensions are the MFCC

parameters, its next 13 dimensions are deltas derived from the

MFCC, and its last 13 dimensions are the double deltas

(accelerations). Considering that the last 26 dimensions are for

training purpose in HMM rather than for time series DTW

alignment, our method uses the first 13 dimensions to represent

the MFCC feature vector of one audio file.

OAWDTW VS. DTW and MWDTW
Consider that our MWDTW is developed from CIDTW, we

use the original DTW, MWDTW and our OAWDTW to test the

2340 recordings of 4 speakers. For each speaker, the recordings

include 65 names with each name repeated 10 times. According to

our former experiments on clean recording data [28], HMM is

worse than the original DTW in terms of performance. Thus, it is

Figure 3. The illustration of one-against-all index (OAI) acquisition. Suppose that there are three training MFCCs. We take the node 1 of
training MFCC A (bold and italic letter) as example. The DAall is acquired by using all of the distances among nodes in A and their aligned nodes. The
DA1 is acquired by using all the distance between node 1 in A and its aligned nodes.
doi:10.1371/journal.pone.0085458.g003

Table 2. Algorithm 2: Similarity Score of Normalized Training and Testing MFCC.

Require: the ith training MFCC I, aligned path 3: Score[k]: = OAIIk*Dist(TrPath[k],Tepath[k]

TrPath[1..m] and TePath[1.m] 4: FinDist: = FinDist+Score[k]

1: FinDist: = 0 5: end for

2: for k : = 1 to m do 6: return FinDist

doi:10.1371/journal.pone.0085458.t002

OAWDTW for Speech Recognition in Adverse Condition
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unnecessary to compare our OAWDTW with HMM here. To

make our experiments more convincing, cross validation approach

is applied in this paper. Given ten times of recordings for each

name, one audio file of a certain name is randomly picked out as

training data, the other nine files are testing data. Therefore, ten

times of cross validation experiments have been done for each

dataset, and each cross validation experiment has its unique

training data.

To demonstrate the importance of MFCC normalization for

time series DTW, we tested the original DTW by using 13
dimensional MFCC with normalization, 13 dimensional MFCC

without normalization. The results are shown in Table 5. The

overall average accuracy of four speakers in the last column are

highlighted in a italic font. The original DTW achieves a better

result by using normalized 13 dimensional MFCC as input. Since

speaker 2 records her audio files in a noisy environment, the

quality of her speech is worse than the quality of the speeches

given by the other three speakers. Under reverberant environ-

ment, the quality of the speech of speaker 3 is worse than the

quality of the speeches of speaker 1. Because speaker 4 records his

audio files using a too high volume, the quality of his speech is

worse than the quality of the speeches given by speaker 1.

Generally speaking, compared with volume and reverberant

environment, noise has much more impact on speech recognition

accuracy.

Considering that original DTW achieves a better accuracy by

using normalized 13 dimensional MFCC, we use such MFCC as

the input of our MWDTW and OAWDTW. We define a

performance measure to evaluate the effectiveness of our

OWADTW before comparing it with original DTW. This

performance measure is called relative reduction of error rate

(RRER), of which the definition is described in Eq.3 :

RRER~
CompACC{BaselineACC

1{BaselineACC
� 100 ð3Þ

Here, ‘CompACC’ means the accuracy of a compared method

that is OAWDTW in our paper. ‘BaselineACC’ means accuracy

of an established method that is the original DTW in our paper.

As shown in Table 6, the accuracies of MWDTW are worse

than OAWDTW. Specifically, the average accuracy of MWDTW

is 6.2% worse than DTW. As already mentioned in the section of

introduction, the merging step in MWDTW is thought to be the

reason that MWDTW cannot achieve a good accuracy when

doing speech recognition under noisy and bad recording

conditions. Most importantly, OAWDATW achieves better

accuracy than DTW. Especially, under quiet environment and

good recording condition (Speaker 1), OAWDTW improves the

accuracy by about 0.18% compared with the original DTW and

Figure 4. The samples of clean and reverberant signals of audio ‘‘MinZhang’’.
doi:10.1371/journal.pone.0085458.g004

Table 3. Recording Condition Description.

No. Speaker1 Speaker2 Speaker3 Speaker4

Recording Environment Quiet Noisy Reverberant Quiet

Recording Volume Normal Low Normal Too Loud

doi:10.1371/journal.pone.0085458.t003

OAWDTW for Speech Recognition in Adverse Condition
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acquires 10% RRER on average. Under noisy environment and

low volume of speech recording condition (Speaker 2),

OAWDTW improves recognition accuracy by about 1% com-

pared with the original DTW and acquires a 5.45% RRER.

Under reverberant environment and normal recording condition

(Speaker 3), OAWDTW improves the accuracy by about 0.52%

and acquires a 8.82% RRER. Under quiet environment and bad

recording condition (Speaker 4), OAWDTW improves the

accuracy by about 0.5% and acquires a 9.09% RRER. As

DTW already does almost perfect speech recognition under quiet

environment [27] [33–34], it is likely that we will not get any

improvement by using OAWDTW. Thus it is encouraging that

our OAWDTW achieves a little better recognition accuracy for

bad recording condition. For average accuracy, OAWDTW

achieves 0.56% better accuracy than original DTW and acquires

a 6.97% RRER. Compared with DTW, OAWDTW accomplishes

better speech recognition, especially under noisy environment. It

means that OAWDTW is more robust and more accurate than

DTW.

Discussion

In this paper, we introduce a novel one-against-all weighted

dynamic time warping (OAWDTW) to provide efficient automatic

speech recognition service in noisy environment and bad

recording conditions where the volume is too high or too low.

By testing one representative dataset of four speakers’ all 2340
recordings in different environments and recording conditions,

OAWDTW gives improved results compared with DTW and

MWDTW, especially under noisy environment. Our OAWDTW

is the first weighted DTW variation specially designed for speech

data in different recording environment and conditions.

Our goal is to develop simpler and more efficient methods. We

are in the process of improving the speed of our algorithm and

making it applicable as an efficient robust light weight SD ASR

Table 4. List of Recorded Names.

No. 1 2 3 4 5

Name Celine Dion Elizabeth Taylor Jim Carrey Julia Roberts Austin Zhao

No. 6 7 8 9 10

Name Tom Hu Nancy Zhang Angela Chan Annie Tao Ying Lee

No. 11 12 13 14 15

Name Chunlei Zhao Cong Jiang Di Tang Ruijie Shen Wendan Tao

No. 16 17 18 19 20

Name Wenqiang Tian Xiaojin Gu Xuefeng Hu Yang Wang Yin She

No. 21 22 23 24 25

Name Yu Jiang Xing Wang Xianglilan Zhang Yanmei Li Changqin Chu

No. 26 27 28 29 30

Name Min Zhang Chaobi Li Chen Zhang Lin Zhang Luyang Zhang

No. 31 32 33 34 35

Name Muhammad Yunus Omar Al-Khayyam Fatema Mernissi Zakaria Botros Girias Bangalore

No. 36 37 38 39 40

Name André Rieu Edouard Manet Cécile Chaminade Aimée Allen Grégoire Boissenot

No. 41 42 43 44 45

Name Achim Steiner Albrecht Dürer Kai Tak Nicholas D. Kristof Marcel Wanders

No. 46 47 48 49 50

Name An Cho-yeong Ch’a Min-su Heo Chang-heui Im Seon-keun Kim-Chu-ho

No. 51 52 53 54 55

Address Ba Ba Die Er Zi Fu Ren Lao Gong

(Meaning) (Papa) (Father) (Son) (Wife) (Husband)

No. 56 57 58 59 60

Address Lao Po Ma Ma Nai Nai Niang Nv Er

(Meaning) (Wife) (Mama) (Grandma) (Mother) (Daughter)

No. 61 62 63 64 65

Address Tai Tai Xiao Wang Xiao Zhang Ye Ye Zhang Fu

(Meaning) (Wife) (Mr./Ms. Wang) (Mr./Ms. Zhang) (Grandpa) (Husband)

doi:10.1371/journal.pone.0085458.t004

Table 5. Accuracy (%) by using original DTW on different
(non)normalized dimensional MFCC.

Speaker1 Speaker2 Speaker3 Speaker4 Overall

13 Norm 98.1006 81.1965 94.1880 94.3589 91.9610

13 NonNorm 98.1006 72.6496 93.8461 91.2820 88.9696

In the first column, numbers represent dimensions, ‘Norm’ means normalized
MFCC, and ‘NonNorm’ means unnormalized MFCC.
doi:10.1371/journal.pone.0085458.t005
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service for real-time language independent applications with small

vocabulary and limited storage space, such as voice dialing on

mobile devices, menu-driven recognition, and voice control on

vehicles and robotics, especially under noisy environment and bad

recording conditions. In addition, we focus on using this method to

analyze spectrogram rather than MFCC, and hopefully achieve a

comparable result by using pure spectrogram.
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