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Abstract

A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons
generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of
spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte
Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of
simple biophysical models that were consistent with observed spiking data (and included the model that generated the
data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data.
Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the
dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even
though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking
statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed
biophysical models to specific mechanisms consistent with observed spike train data.
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Introduction

Accurate representation of real world phenomena typically

requires detailed computational models, which must be con-

strained by extensive, carefully measured data sets. This issue is

particularly relevant in contemporary neuroscience research, in

which both detailed computational models and large data sets are

now common for the activity of an individual neuron. Diverse

spiking patterns result from many interacting biophysical mech-

anisms, including ion channels intrinsic to the neuron and

electrical and chemical signaling between neurons [1]. Under-

standing the relationships between observed spiking patterns and

their generative mechanisms remains an active research area with

many sophisticated approaches, both computational [2] and

experimental [3]. The diversity of mechanisms responsible for

spike generation, and the nonlinear interactions between these

mechanisms, makes linking observed spike activity to specific

mechanisms a challenging task. Specifically, given an observed

spike pattern what, if anything, can we conclude about the

underlying mechanisms?

Various approaches exist to address this question. In experi-

ments, the proposed mechanisms of spike pattern generation can

be tested directly through pharmacological manipulations, al-

though this procedure can be time consuming, expensive, and

inexact (e.g., due to the nonspecific impacts of some drugs). In

computational modeling of an observed spike pattern, a common

approach is hand-tuning, which requires first proposing a

computational model (e.g., the Hodgkin-Huxley model neuron

[4]) and then adjusting the model parameters until a qualitative

match with the observed spike pattern is found [5]. This approach

is time consuming, requires extensive training and expertise, and is

restrictive; often only a single parameter configuration is

determined, and the full parameter space capable of generating

the observed spike activity is left unknown [6–8]. An alternative

approach is to develop simplified statistical models that describe

empirical features of the spiking [9,10]. These models are readily

constrained by the data, but cannot be directly connected to

physiological mechanisms.

Recent approaches to overcome the limitations of hand-tuning

include brute-force simulations over broad intervals of parameter

space [5,11], and estimation of model parameters directly from the

observed neuronal voltage activity [12–17], or the observed spike

pattern [18–20]. We recently proposed a new approach to

quantitative parameter estimation from neuronal spike patterns

[21]. This parameter estimation framework combined a conduc-

tance based biophysical model of neuron voltage activity (i.e., a

Hodgkin-Huxley type model neuron) with point process statistical

theory to estimate model components directly from an observed

spike train. The estimation algorithm utilizes an established

statistical procedure, known as particle filtering or sequential

Monte Carlo (SMC), which has been increasingly applied to

characterize the dynamical features of detailed stochastic compu-

tational models with many unknown parameters and variables.

Compared to hand-tuning, the particle filter procedure allows a

principled exploration of a parameter space and identification of

multiple parameter sets consistent with the observed activity [21].
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Here we apply this estimation procedure to spike time data

collected from living neurons recorded in vitro. Specifically we

analyze the spike time data recorded from rat layer V intrinsically

bursting (IB) neurons. We choose the IB neuron because it

possesses an intrinsic current – the muscarinic receptor suppressed

current or M-current (e.g., [22–25]). A detailed experimental and

computational modeling study has shown that the M-current is the

primary driver of the rhythmic activity in the spike time data

analyzed here; for the experimental characterization of this

current, including pharmacological manipulations, please see

[26]. Then, given only the spike time data recorded from an IB

neuron, we estimate parameters in a generic Hodgkin-Huxley type

computational model. We construct this model to possess the

standard intrinsic currents necessary for spike generation, plus an

additional ‘‘mystery’’ current with unconstrained characteristics.

In what follows, we show that the particle filter framework

successfully constrains the parameters of the mystery current in

ways consistent with the expected characteristics of an M-current.

In doing so, we will show how the same intrinsic current can

support different types of spiking behavior (namely, rapid spiking

and bursting) dependent upon the interplay of two model

parameters related to the overall excitability and strength of the

mystery current.

We begin by applying a standard point process analysis

paradigm, and construct both descriptive statistics and a simple

statistical model to provide an initial characterization of the spike

train data. We then propose a computational model of these data:

a Hodgkin-Huxley type neuron with an additional, generic

intrinsic current. To estimate parameters of this unknown current,

we implement a particle filter framework, and show that this

approach successfully identifies the features of a current consistent

with the known M-current in the IB cells. In this way, by linking

techniques from statistical and computational neuroscience, we

analyze experimental spike train data to gain insight into the

biophysical mechanisms driving the observed activity.

Results

The goal of this paper is to associate with an observed spike

train a specific biophysical mechanism through a combination of

statistical techniques and computational modeling. To start, we

first consider visualization and descriptive statistics applied to four

IB cells. These traditional analyses illustrate the spiking patterns of

each cell, and separate the observed activity into two classes of

behavior: rapid spiking and bursting. We then develop statistical

models of each cell to further illustrate the characteristics of the

observed behavior. Finally, we employ a sequential Monte Carlo

(SMC) or particle filter method to estimate parameters in a

computational model and thereby identify biophysical mecha-

nisms consistent with the observed spike trains. Through this

technique, we show that the same intrinsic current – a slow,

depolarization activated, hyperpolarizing current, consistent with

a known intrinsic current of the IB cells – supports the two distinct

dynamic regimes of activity.

Figure 1. Visualizations and descriptive statistics of the observed spike times suggest two modes of behavior in the same cell class.
1A–4A: 1 second interval of spike train data for each of the four cells considered. 1B–4B: The histogram of inter-spike intervals for cells 1–4. 1C–4C:
The spectrum of cells 1–4 (solid blue line) and its 95% confidence intervals (dashed red lines). The dashed black line indicates the estimate of overall

spiking rate
N(T)

T
where N(T) represents the total number of spikes up to time T .

doi:10.1371/journal.pone.0085269.g001
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Visualization and descriptive statistics
We begin with visualization of the spike train data using

descriptive statistical methods [27]. Figure 1.1 shows an example

spike train from cell 1 (Figure 1.1A), the histogram of its inter-spike

intervals (ISI) for the entire 60 seconds of observation

(Figure 1.1B), and the spectrum of the discretized spike train data

with sampling interval 1 ms (Figure 1.1C). Figure 1.2–1.4 present

the same analyses for the other 3 IB cells. From visual inspection of

Figure 1.1A, we conclude that the most common inter-spike

interval for cell 1 is approximately 90 ms. This is verified in

Figure 1.1B: there appears a single mode of inter-spike intervals

near 90 ms. A strong refractoriness is also obvious as we observe

no inter-spike intervals below 40 ms. The broad peak centered

near 10 Hz and slow recovery of the spectrum to the average firing

rate in Figure 1.1C corroborate these results. We conclude that the

spiking activity from cell 1 exhibits rhythmic behavior near 10 Hz,

and a long refractory period. Cell 2 exhibits a similar pattern of

spiking activity to cell 1 (Figure 1.2 A–C). However, unlike cells 1

and 2, the spiking activity of cell 3 occurs at a higher rate with two

modes of frequent inter-spike intervals: one is small, around 10 ms

and another is about 4 times bigger, around 45 ms; both are

apparent in the ISI histogram (Figure 1.3 A, B). The refractory

period is made clear by the dramatic drop of spiking when the

inter-spike interval is below 10 ms. The sharp peak around 25 Hz

(the beta2 band) and broad peak around 100 Hz of the spectrum

in Figure 1.3C support the conclusion of two rhythmic spiking

modes existing in cell 3. Cell 4 (Figure 1.4 A–C) has a similar

spiking pattern to cell 3, namely fast rhythmic activity and

bimodality of the ISI distribution. Thus we find two distinct

activity regimes in the same subclass of neuron: (1) spike behavior

with slight rhythmicity in the beta2 range without clear bursting

behavior (cells 1 and 2), and (2) spike behavior in which spike times

are organized into beta2 frequency burst discharges (cells 3 and 4).

Statistical modeling
In this section we develop statistical models – relating the spike

rate to past spiking activity – for the four IB cells. The estimation

result for the two components of the statistical model (Eq. 1) are

shown for all four cells in Figure 2. The exp f0ð Þ term represents

the constant background firing rate, and the exp ftð Þ term

represents the modulation of background firing rate due to the

past spiking of the cell at lag t. We note that exp ftð Þv1 implies a

reduction from the background firing rate at lag t, exp ftð Þw1
implies an increase above the background firing rate at lag t, and

exp ftð Þ~1 means no influence on the background firing rate at

lag t. For cells 1 and 2, the modulation of background firing rate is

highly reduced until about 50 ms after a spike and then gradually

recovers to the background firing rate (i.e., approaches 1). For cell

3 and 4, refractoriness also exists but is shorter than that observed

for cells 1 and 2. As the spiking activity approaches 1 (i.e., no

modulation), peaks and troughs appear. The first peak occurs

around 10 ms after a spike, and implies increased probability of a

spike after a 10 ms delay compared to adjacent time lags such as

6 ms and 20 ms. After 40 ms, another peak occurs that exceeds

the background spiking rate; during this period the cell again tends

to generate more spikes than usual. Following this peak is a trough

below the background firing rate near 65 ms, which implies

another period of reduced spike probability. After this trough, the

spiking rate gradually approaches the background firing rate,

which implies minimal effect of history beyond 100 ms on the

current firing rate. These statistical modeling results support the

observation of at least two different regimes of dynamic activity

produced by this cell type.

Biophysical modeling
The descriptive analysis and statistical modeling suggest specific

features of the observed spike train data, namely long refractory

periods for cells 1 and 2, and multiple time courses of spiking for

cells 3 and 4. To address the underlying mechanisms supporting

these activities, we develop a biophysical model of Hodgkin-

Huxley type and search for a common intrinsic current that can

support both types of observed activity. The SMC method is

applied to estimate the five unknown parameters of the ‘‘mystery

current’’ in the constructed model gB,EB,VBth,SB,tBð Þ, and the

overall excitability of the cell (I). The locations of converged

parameter estimates for each cell are shown in Figure 3. We note

that for all the cells, the parameter estimates converge to a small

region of parameter space. Differences in the sizes of these regions

might be attributed to differences in the observation times of the

cells (60 seconds for cells 1–3, 30 s for cell 4) or to differences in

the information content in the spiking activity about specific

parameters or dynamic variables.

From the converged parameter estimates, the biophysical

properties of the mystery current can be ascertained by comparing

the estimates of EB,tB,VBth,SB. The estimates of these parameters

are listed in Table 1. For each cell and parameter to be estimated,

the first number indicates the mean of the converged particle

values and the second number, in parentheses, indicates the

standard deviation of the particle values. In all four cases, we find

that the expected EB is negative and less than resting potential

265 mV; this suggests that the mystery current acts to hyperpo-

larize the voltage. tB is large compared to the time scale of the

standard Hodgkin-Huxley currents which possess timescale on the

order of a few milliseconds. These results suggest that the mystery

current exhibits slow dynamics. VBth is well above the resting

potential of the neuron, and SB is positive which suggests that the

mystery current is depolarization activated. If the constructed

biophysical model were completely accurate in representing the IB

cells, we would expect overlapping estimates of the characteristic

parameters of the ‘‘mystery current’’, such as EB and tB. However,

we do not find overlap for these parameter estimates. This may

suggest that the biophysical model is insufficient to capture all

features of the observed spike times. This is of course reasonable:

the biophysical model consists only of a single compartment with

three intrinsic currents. We might improve upon these models by

adding multiple compartments, or additional known currents or

dynamics. However, since we know that these simplified or more

advanced models are incomplete, we do not interpret the

parameter estimates as the actual biophysical values corresponding

to these currents. Instead, they provide insight into the types and

features of current necessary to produce the observed spiking

within the selected class of biophysical models.

Our results suggest that the mystery current for the proposed

model would need to be a slow, depolarization activated,

hyperpolarizing current in all four cells. This is consistent with

the known slow current in these IB cells, a muscarine receptor

suppressed potassium current or M-current [26]. We note that the

initial assumptions regarding the mystery current are weak, and

that other potential currents with different dynamics are attain-

able. In fact, many other types of currents – fast and slow,

depolarization activated and inactivated, hyperpolarizing and

depolarizing – are represented in the initial particle values.

However, the estimation procedure eliminates these nonconform-

ing particles and reveals in all four cells the characteristics of an M-

current. This result suggests that the same type of current species

could be responsible for the observed activity in all four cells, even

though these cells exhibit very different spiking characteristics (e.g.,

compare their inter-spike interval distributions in Figure 1). The

A Unified Analysis of Spike Train Data
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distinct spiking characteristics may result from the different drive

currents I and strengths of the ‘‘mystery current’’ gB. For the cells

with similar spiking activity (cells 1 and 2, or cells 3 and 4), the

particle clouds of these two parameters are similar and even

overlap. However, for the differently spiking cells, such as cells 1

and 3 or cells 2 and 4, the particle clouds of these two parameter

estimates remain separate. The stronger expected drive and

smaller expected maximum conductance of the ‘‘mystery current’’

for cells 3 and 4 also explains the faster rhythm of spiking in these

two cells compared to cells 1 and 2. Our proposed method is not

only able to estimate the model parameters but also identifies the

characteristics of a mystery current whose specific biophysical

mechanisms support the observed activity.

To evaluate the estimation results, we simulate spike times using

the converged parameter estimates in the biophysical model (Eq.

2), and compare the descriptive statistics (as in Figure 1) of the

simulated spike times to those of the observed spike times as shown

in Figure 4. Using the parameter estimates for cells 1 and 2, the

simulated spike trains produce tonic spiking activity consistent with

the observed spike trains (shown in Figure 4.1A and 4.2A). The

average ISI histogram over all the particles (in Figure 4.1B and

4.2B) is unimodal and the peak is near 90 ms, which is again

consistent with the real ISI distribution. In addition, the histogram

of the observed ISIs falls within the 95% confidence intervals of the

simulated ISIs for most times. Finally, the average spectrum of the

simulated spike trains over all particles (in Figure 4.1C and 4.2C)

has a peak around 10 Hz, consistent with the spectrum of the

observed spike trains. At most frequencies the spectrum of the

observed spike trains lie within the 95% confidence intervals of the

simulated spectrum.

Using the parameter estimates for cells 3 and 4, the simulated

spike trains (in Figure 4.3A and 4.4A) all show bursting activity,

which is consistent with the observed spike trains. The simulated

ISI histogram (in Figure 4.3B and 4.4B) possesses two spiking

Figure 2. Statistical models of the spiking activity suggest two regimes of behavior. The four subfigures show the fitted values of the
history dependence of the firing rate fexp (ft)gK

t~1 and the 95% confidence intervals for cells 1–4. The blue lines represent estimates of the history
components. The dot-dashed red line indicates the point-wise 95% confidence intervals of each estimate.
doi:10.1371/journal.pone.0085269.g002

Figure 3. Locations of converged particles for the mystery current model. A–C: The blue, black, red, and green dots indicate converged
particles for cells 1–4 respectively. B: The horizontal dashed line indicates tB~12 and the vertical dashed line indicates the resting potential 265 mV.
C: The horizontal dashed line indicates SB~0 and the vertical dashed line indicates resting potential 265 mV. The three coordinate spaces for each
data set span the initial parameter value space in the estimation procedure.
doi:10.1371/journal.pone.0085269.g003
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modes, consistent with real data, but at shorter delays than found

in the observed ISI histogram. Finally, the simulated spectra and

observed spectra both possess similar low frequency peaks near

10 Hz, but dissimilar broad peaks at higher frequencies. The real

spectra possess broad peaks centered near 100 Hz, but the

simulated spectra possess broad peaks centered near 250 Hz,

which is consistent with the fact that the simulated ISI histograms

show a faster spiking mode than the observed ISI histograms (in

Figure 4.3C and 4.4C). The differences in the fast spiking activity

between the model and observed spike time data likely reflect

limitations in the biophysical model used. In order to capture exact

features of the fast activity more accurately, we may require a

Table 1. Estimates of unknown model parameters.

gB I EB tB VBth SB

Cell 1 4.4 (0.2) 20.8 (0.02) 2122 (1.8) 27 (2.6) 6.7 (2.1) 3.3 (0.8)

Cell 2 5.8 (0.5) 20.8 (0.02) 297 (2.6) 24 (2.4) 233 (4.9) 1.9 (0.4)

Cell 3 1.8 (0.1) 22.3 (0.1) 296 (2.0) 37 (1.4) 223 (2.9) 7.4 (0.6)

Cell 4 3.5 (1.3) 22.5 (0.2) 274.8 (1.2) 64 (15.0) 22.2 (0.7) 9.6 (0.1)

doi:10.1371/journal.pone.0085269.t001

Figure 4. Comparisons between the observed and simulated spike features. 1A–4A: Four spike trains are shown in this panel. The bottom
row (red) represents the observed spike times of cells 1–4 for 1 s of data. The other three rows (black) represent the simulated spike trains from 3
converged particles of cells 1–4. 1B–4B: The blue line is the ISI histogram of cells 1–4. The red line is the average histogram over all the converged
particles of cells 1–4. The cyan band indicates the 95% confidence intervals of the average histogram. 1C–4C: The blue line represents the spectrum
estimate of cells 1–4. The red line is the average spectrum estimate over all converged particles of cells 1–4. The cyan band indicates the 95%
confidence intervals of the average spectrum estimate.
doi:10.1371/journal.pone.0085269.g004
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model with additional intrinsic currents or more complicated

structure (e.g., a multicompartmental model). On the whole, small

discrepancies distinguish the descriptive statistics of the real and

simulated data. Yet, the estimated biophysical model, consisting of

only a single compartment and 3 dynamic currents, still generates

spike trains similar to the observed data in terms of the distribution

of the inter-spike intervals and the point process spectrum.

Discussion

Connecting real-world data with sophisticated computational

models is a fundamental issue in modern science. Here, we have

extended a method we previously presented [21] to link observed

neural spike time data with a conductance based computational

model. An initial descriptive and statistical analysis of the spike

time data observed in four IB cells revealed two classes of

behavior: regular spiking activity and bursting. To characterize the

mechanisms of these behaviors, we constructed a biophysical

model and estimated parameters of an unknown ‘‘mystery

current’’ in this model using the SMC method. According to the

estimates of the parameters, the two classes of spiking activity

derive from the same type of intrinsic current: a slow, depolar-

ization activated, hyperpolarizing current, consistent with the

known M-current in the IB cell. Different biophysical features –

the drive current and maximum conductance of the mystery

current – explain the two different classes of behavior. By

combining the observed spike time data with the computational

model, the SMC method suggests the specific biophysical

mechanisms producing the observed activity and identifies the

regions of the 6-dimension parameter space capable of reproduc-

ing the observed data. We note that these two classes of behavior

may represent states within a continuum of dynamics. In this case,

with additional data, we expect the particle filtering approach to

reveal the biophysical model parameters supporting such a

continuum.

We note that the simulated ISI distributions estimated from the

biophysical model possess some inconsistencies with the real ISI

distribution (Fig. 4). For the two bursting cells, the simulated

spiking is faster than the observed spiking. In general, such

inconsistencies may result from model misspecification, which may

occur in multiple ways. For example, the model may lack an

intrinsic current or additional compartments whose inclusion

would better fit the data. Biologically, the reduced high frequency

firing observed in vitro may result from failures in back-propagation

of axonal spikes into the large-capacitance somatic compartment;

a more accurate model could include a multi-compartment

geometry. Alternatively, direct recordings near the axon may

alleviate this issue, although such recordings are experimentally

difficult. In general, all computational models are misspecified,

and can always be modified to incorporate further biological

realism. However, even the single compartment model imple-

mented here provides biological insight. This model successfully

captures the essential features of the observed neuronal data,

without representing a true generative model of the data. Given

only the spike time data, the proposed model suggests the type of

slow current known to play an important role in these cells.

Therefore, the value of this model is the successful identification of

an unknown ionic current species vital to the cell dynamics

although the model does not capture all biophysics of the cell or

changes to the biological system inherent in the experimental

recording process.

The proposed approach to parameter estimation, although

successful in this case, is limited in two important ways. First, the

approach requires some knowledge of the underlying equations

that govern the neuronal dynamics. In this case, we knew that an

intrinsic current paced the observed activity, and therefore

developed a model to exploit this knowledge. In general, model

development will be more successful when supported by knowl-

edge of the features to be studied. A model inconsistent with the

neuronal system under investigation will lead to inaccurate

biophysical conclusions, even if the parameter estimation con-

verges. However, because the model is biophysical, the resulting

estimates are testable in experiments. Through interactions

between this parameter estimation procedure and experiments,

an inaccurate model can be refuted experimentally and a more

accurate model proposed. In this work, the parameter estimation

results were compared to the known biophysical mechanism

pacing the observed activity (an M-current) and found to be

consistent. Second, the model was limited to a single compartment

cell, and a limited number of the parameters were estimated. As

computational resources continue to improve, estimation will

become more feasible for larger, more biophysically realistic

models of single cells, and networks of interacting cells.

As computational resources improve, we propose that a closed-

loop analysis will become possible, in which the SMC method

combined with computational models can be used to propose the

existence of possible candidate currents in real time from observed

spike train data. The proposed candidate currents can then be

tested in pharmacological experiments. In this way, the SMC

method identifies candidate biophysical mechanisms that are

experimentally testable, potentially reducing dramatically the

numbers of experiments required to identify unknown mecha-

nisms. Such an approach will become increasingly vital as high

density recordings and observations from many simultaneous

neurons become more common. We note that the SMC method

easily extends to include network models of interacting neurons.

The approach in this paper outlines a general strategy for a

practical data analysis paradigm of spike train data. Both statistical

modeling and biophysical modeling characterize neuronal spike

train data, but from different points of view, and these two

approaches are typically applied independently. The proposed

SMC method goes beyond standard analysis and modeling

approaches by combing statistical and biophysical methods: the

statistical analysis guides the biophysical modeling and the

biophysical modeling lends mechanistic features to the statistical

analysis. The resulting technique connects spike train data directly

to a biophysical model and provides a principled link between the

fields of experimental, statistical, and computational neuroscience.

Methods

Our goal is, given a list of the spike times produced by a neuron,

to identify biophysical mechanisms that could support the

observed spiking activity. To do so, we use the observed spike

times to constrain the parameters in a biophysical model of neural

activity [21]. Briefly, this technique utilizes a sequential Monte

Carlo (SMC) method, which incorporates biophysical modeling

and point process theory into a state space framework. As we will

show, this analysis links the observed spiking activity directly to

specific biophysical mechanisms that are not immediately observ-

able. To apply this SMC method to the observed neural spike

times of interest here, we must construct a biophysical model

capable of reproducing the observed spike train dynamics. To that

end, we first perform visual data analysis and statistical modeling

of the spike train data to characterize the spiking activity. The

inferences arising from these analyses inform the biophysical

model to which we apply the SMC method to estimate model

A Unified Analysis of Spike Train Data
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parameters and dynamic variables, and draw inferences about the

biophysical mechanisms generating the observed spike times.

Data collection
Horizontal slices (450-mm thick) were prepared from adult male

Wistar rats (150–250 g). Neocortical slices containing auditory

areas and secondary somatosensory cortical areas were maintained

at 34 C at the interface between warm wetted 95% O2 5% CO2

and artificial cerebrospinal fluid (aCSF) containing 3 mM KCl,

1.25 mM NaH2PO4, 1 mM MgSO4, 1.2 mM CaCl2, 24 mM

NaHCO3, 10 mM glucose, and 126 mM NaCl. Extracellular

recordings from secondary somatosensory cortex were obtained by

using glass micropipettes containing the above aCSF (resistance

v0:5MV). Intracellular recordings were taken with sharp

microelectrodes filled with potassium acetate (resistance 30–90

MV). Signals were analog filtered at 2 kHz and digitized at

10 kHz. All neuronal recordings illustrated were taken from layer

V. Neurons are shown to be intrinsically bursting by prior step-

wise injection of depolarizing current through the recording

electrode. Experimental conditions included the addition of

400 nM kainate to the bathing medium to generate a stable,

persistent beta2 (20–30 Hz) rhythm visible in the local extracel-

lular recordings. For additional details about the data collection,

please see [26]. All procedures were conducted in accordance with

the Animals (Scientific Procedures) Act 1986 (60/4313) and the

University of York Policy on the Use of Animals in Scientific

Research and approved by the Home Office (UK) Animals

Scientific Procedures Department (ASPD).

Descriptive statistics
Descriptive statistics provide a powerful and simple technique to

characterize spike time data. Here we apply two visualizations of

the spike time data: the inter-spike interval (ISI) histogram and the

power spectrum. The ISI histogram presents the empirical

distribution of ISIs. To compute the ISI histogram, we choose a

bin size of 6 ms.

Next, we compute the power spectrum of the point process data

to characterize the rhythmic features of the spiking. We use the

multitaper framework [28–30] and choose the time-frequency

product, WT , to preserve a frequency resolution near 1 Hz for

T~60s. More specifically, we choose the time-frequency product

to be WT~50 and make the standard choice for the number of

tapers to be 2WT{1~99. We compute confidence bounds using

a jackknife method [31]. To implement these procedures, we

utilized the ‘‘Chronux’’ package in MATLAB [32].

Statistical modeling
As a second method to characterize the spike times, we consider

a history-dependent statistical model of the data. To do so, we

utilize a point process model by specifying a conditional intensity

of spiking as a function past spiking activity. We first introduce

notation for a discretized point process and second present a

specific conditional intensity model that incorporates only the

spiking history.

We choose a large integer K and partition the observation

interval (0,T � into K subintervals (tk{1,tk�Kk~1 each of length

D~TK{1. The integer K is chosen to be sufficiently large to

guarantee that there is at most one spike per subinterval. Let DNk

be the number of spikes counted in the time interval (tk{1,tk�.
A discretized point process can be completely characterized by

its conditional intensity function lk [10,33] which defines the

instantaneous probability of spiking at time tk given the past

spike history and other relevant covariates. Here, we construct a

history-dependent conditional intensity model using cardinal

spline functions of the past spike data [4]. We define C spline

control points, extending Q time steps into the past,

ftcgC
c~1[ftk{tgQ

t~1, tk{Qvt1
v � � �vtc

v � � �vtC
vtk{1. The

history-dependent model is then constructed as follows,

lk~ exp f0z
XQ

t~1

ft
:DNk{t

 !
ð1Þ

f0~b0

ft~

a3

a2

a

1

2
6664

3
7775

T
{0:5 1:5 {1:5 0:5

1 {2:5 2 {0:5

{0:5 0 0:5 0

0 1 0 0

2
6664

3
7775

bcz2

bcz1

bc

bc{1

2
6664

3
7775

tc
ƒtk{tvtcz1

where a~
tk{t{tc

tcz1{tc
is the fractional distance of t between

neighboring spline control points, and fbcgC
c~0 are the unknown

parameters to estimate. The choice of the number and location of

the spline control points depends on the shape of the function to

approximate. It is not necessary to allocate many control points

where the shape of the function does not change much. In our

case, the function of interest describes the influence of the past

spiking activity on the current spiking probability. During the

refractory period the probability of spiking is close to zero, thus

there is no need to assign many control points over this period. We

choose the immediate past time step as the first control point.

Then, depending on the refractory period computed through

analysis of the ISI of the given data, we select the second control

point immediately following the refractory period. Then, the

remaining control points are picked evenly every 10 ms up to

200 ms (Q~200).

We estimate the parameters, fbcgC
c~0, of the history-dependent

model using maximum likelihood methods. Confidence intervals

and p-values of the estimates are obtained by standard compu-

tations based on the observed Fisher information matrix [35]. To

fit the spike times, we first discretize the continuous point process

data with a discretization interval D~1 ms and then implement an

iteratively reweighted least squares (IRLS) estimation algorithm in

MATLAB using the package glmfit.

Biophysical modeling
To relate the observed spike train data to (hidden) biophysical

mechanisms, we estimate parameters in a computational model of

neural spike train activity. We start with the Hodgkin-Huxley

model [9], which describes three essential ionic currents (the

sodium current, potassium current, and leak current) for spike

generation in a mathematical manner. The dynamic interplay

between these currents produces realistic behaviors, such as action

potentials with refractory periods. As we show in the Results

section, the observed spike train data exhibit intervals of bursting

(i.e., repeated periods of rapid spiking and quiescence) not

observed in the standard Hodgkin-Huxley model formulation.

Therefore we begin with this standard biophysical model and then
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amend it to capture more types of spiking patterns (such as

extended refractory periods and bursting activity). To do so, we

augment the standard Hodgkin-Huxley model by including an

additional ‘‘mystery current’’ with flexible dynamic features. In

addition, we make the standard simplification that the activation

variable of the sodium current is infinitely fast [34]. The dynamic

equations for the biophysical model are as follows

C _VV~I{ gK n4(V{EK )
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{IK

{ gNam3
?h(V{ENa)

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{INa

ð2Þ

{ gBB(V{EB)
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Imystery

{ gL(V{EL)
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{IL

~F1(V ,n,h,B)

_nn~
n?(V ){n

tn(V )
~F2(n)

_hh~
h?(V ){h

th(V )
~F3(h)

_BB~
B?(V ){B

tB(V )
~F4(B)

where

m?(V )~
1

1z exp (({V{34:5)=10)
ð3Þ

n?(V )~
1

(1z exp (({V{29:5)=10))

h?(V )~
1

(1z exp ((Vz59:4)=10:7))

tn(V )~0:25z4:35 exp ({DVz10D=10)

th(V )~0:15z
1:15

(1z exp ((Vz33:5)=15)

B?(V )~
1

1z exp ({(V{VBth)=SB)

tB(V )~tB/ constant

Notice that Eq. 2 is very similar to the original Hodgkin-Huxley

model, but includes the new mystery current term Imystery. The

mystery current has maximum conductance gB, gating variable B,

and reversal potential EB. We assume here that the mystery

current depends linearly on the gate B, as is often the case for

many intrinsic currents (see for example [36]). Nonlinear

dependence is easily incorporated into the model, either as a

fixed exponent of B or as an unknown parameter to estimate. The

mystery current dynamics evolve according to the steady state

function B?(V ), which depends on the voltage, and the fixed time

constant tB assumed to be independent of voltage.

For simplicity of the estimation problem, we consider only a

single cell representation of the observed data. We note that the

beta2 activity of interest here is known to depend on gap junction

inputs from other cells, such that blocking gap junctions eliminates

the beta2 activity [26]. However, the primary mechanism that sets

the timescale of the beta2 activity in this system has been shown to

be an intrinsic current (namely, an M-current) [26]. We therefore

focus on this primary mechanism that paces the activity, and

utilize a single cell representation of the intrinsically bursting cell

motivated by a similar model in [37]. Parameter estimation for a

complete network model, with many additional parameters, is of

interest but beyond the scope of the current work. In addition, we

assume that all currents except for the mystery current follow

known kinetics as defined in [36]. Therefore the unknown

parameters H are all associated with the mystery current

gB,EB,VBth,SB,tBð Þ and the drive current I which controls the

overall excitability of the cell; the goal of this work is to estimate

these unknown parameters given only the observed spike times. All

other parameters are fixed at the values in [36], C~0:9 F=cm2,

EK~{95 mV, ENa~50 mV, EL~{70 mV,

gNa~100 mS=cm2, gK~7 mS=cm2, gL~0:25 mS=cm2.

Combining point process theory and biophysical models
The statistical modeling (Section 2.3) and biophysical modeling

(Section 2.4) methods provide two distinct approaches for

characterizing the observed spike activity. Statistical spiking

models are often used to describe simple relations between the

spiking and other covariates (e.g., past spiking history), without

describing the biophysical mechanisms that give rise to these

relations. Biophysical models typically concentrate on the deter-

ministic kinetics supporting qualitative features of the observed

activity. In this section, we discuss a method linking these

approaches by estimating biophysical model parameters from

the observed spike train data through a point process framework.

Our goal is to estimate the model parameters

H~ gB,EB,VBth,SB,tB,Ið Þ based on the given spike times. We

have recently proposed a recursive estimation method (a

sequential Monte Carlo method) to solve this kind of problem

[18]. We start by describing the biophysical dynamics using a state

space framework. To do so, we discretize the continuous dynamic

system (Eq. 2) with a discretization interval D~0:01 ms using

Euler’s method. The voltage (V ) and gating variables (n,h,B) in

discrete time are denoted as Vk~V (tk), nk~n(tk), hk~h(tk), and

Bk~B(tk) where tk~kD. Then we define a state vector

Sk~(Vk,nk,hk,Bk)T . The continuous neural dynamics can be

expressed in discrete time using a state-space model including a

random noise term

Sk{Sk{1~F(Sk{1,H):Dz�k ð4Þ

where F represents the function vector F~(F1,F2,F3,F4)T as

defined in Eq. 2 and �k~("V
k ,0,0,0)T , �V

k *N(0,1mV ) .

We define a new conditional intensity lk, that depends on the

unobserved subthreshold neural voltage trace, V1:K , propagating

through the constructed biophysical model with unknown

parameter set H and evolution noise. We assume that lk is a

step function of the unobserved voltage trace V1:K ,
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lk~
b, if all Vk{W=2:kzW=2ƒVth or Vk{W=2§Vth

h, otherwise

�
ð5Þ

where W is the width of a window centered at tk, b represents a

baseline firing rate and Vth represents a voltage threshold

determining the occurrence of a spike. This intensity function

acts like a square wave, with every square having the same height

(h), width (W ) and baseline value (b).

For the biophysical model utilized here, we set Vth~30 mV

since the maximum voltage achieved during a spike is approxi-

mately 40 mV.

We chose W~5 ms and h~
1

5ms
so that each square has

(dimensionless) area 1, corresponding to an expected value of 1

spike. The parameter b determines the baseline probability of

spiking in the model at times when spikes in the data were not

observed. Here, we choose b~
h

10
, which means that we allow the

biophysical model within the SMC procedure to produce

simulated spikes away from observed spikes with 1/10 the

probability of spiking within a window of length W approximately

centered at an observed spike.

Given the conditional intensity model (Eq. 5) for small , the

probability of observing DNk spikes at time tk is

p DNk DS1:K ,Hð Þ& exp DNk log (lkD){lkDð Þ ð6Þ

Eq. 4 and Eq. 6 together form a state-space framework with spike

observations (DNk). Given the observed spike times, we would now

like to use this framework to estimate values for the state variables

and the model parameters. The estimation algorithm is construct-

ed using a sequential Monte Carlo (particle filtering) [38,39]

method, a technique which is widely used for estimation problems

of high dimensional state space models. In the next subsection, we

briefly describe the SMC algorithm; More details can be found in

[21].
Estimation algorithm. The SMC algorithm (also known as

a particle filter) is used to estimate the posterior probability

distributions of the unknown quantities, given the observed spike

times. Particle filters are so named because they represent the

distribution of an unknown state using a collection of weighted

samples, or particles. The initial samples of the unknown

parameters are drawn from a uniform distribution over a large

parameter space, which includes a variety of possible spike

generation mechanisms. Here we initialized the particles of the

parameter sets and variables as: gB[(0,10) mS=cm2,

EB[({110,10) mV, VBth[({95,5) mV, SB[({10,10) mV,

tB[(0,80) ms, I[({10,0) mA; V0~{71 mV, n0~0:0147,

h0~0:7497, B0~0:0326. At any time step, each particle

represents a set of possible values for the unknown variables and

parameters, and the weighting function represents the probability

associated with these values. As the number of particles becomes

very large, this SMC characterization becomes more accurate. To

balance the computational complexity and accuracy of the

approximation, we use 10,000 particles. There are multiple

approaches to computing the values and weights of each particle

at any time. In this case, we construct a bootstrap particle filter

[39], where the initial values for the particles at time t are sampled

from the particles at the previous time step. The values of each

particle are then updated by simulating Eq. 2. The weights of each

particle are updated by multiplying by the likelihood of the

observed spiking data at time t given by Eq. 6. Intuitively, each

particle from the previous time step undergoes one step of the

model dynamics. If the resulting state values are consistent with

the newly observed data, the weight is enhanced. If the data are

unlikely observed given the state values for a particle, its weight is

reduced.

A common problem with particle filters is the degeneracy

phenomenon, where after a few iterations, all but one particle will

have negligible weight [38]. It has been shown that the variance of

the weights can only increase over time, and thus, it is impossible

to avoid the degeneracy phenomenon [38]. To reduce the effect of

degeneracy, we use a resampling scheme. The basic idea of

resampling is to eliminate particles that have small weights and to

concentrate on particles with large weights. Here, we use a

residual resampling scheme [40] at every spike time whereby

particles with large weights are replicated based on their weight

and particles with small weights have some probability of surviving

and some probability of being eliminated. Let n be the number of

particles used and wi
t indicates the weight of the ith particle at time

t. We retain copies of the ith indicates

n{
X

i
Mi i.i.d.

draws from the pool of particles with probabilities proportional to

nwi
t{Mi, i~1, . . . ,n. After resampling, the weights of each

particle are reset to 1=n. With more and more observations, the

distribution of particles converges to the true posterior distribution.

We construct estimates for the unknown quantities by computing

their sample means over all particles, and construct approximate

95% confidence intervals by computing the 2:5% and 97:5%
percentiles of the particle values. A pseudo-code description of the

algorithm can be found in the Appendix of [21].
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