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Abstract

Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial
imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a
principal component analysis of each image. We then subtracted the first principal component of the two pasture images
followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential
cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were
not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with
ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent
commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments
generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high
probability of correctly identifying animals suggests short time interval image differencing could provide a new technique
to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our
knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large
ungulates.
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Introduction

Aerial imagery has been used to manually count and estimate

population abundances of a diverse array of wildlife species from

birds [1–4] to terrestrial species [5–6] to marine mammals [7–11].

Sources of variation in animal enumeration include observers,

habitat or vegetative cover, topography, and animal behavior. For

example, manual counting of birds in photographs has resulted in

inconsistent counts both within and among observers [1], while

counts were less variable for larger bodied terrestrial and marine

mammals in homogenous habitats [5–13]. Terrestrial systems with

little vegetative structure, such as grasslands or tundra, had fewer

features that caused confusion when enumerating individual

animals and were usually correlated with lower variation in

counts. Manual counts from aerial photographs of buffalo (Syncerus

caffer) and wildebeest (Connochaetes taurinus albojubatus) in the

Serengeti grasslands resulted in consistent counts across four years

[14]. In the Arctic tundra, which has little vegetative structure and

is relatively homogenous, two independent surveyors counted

similar numbers of caribou (Rangifer tarandus) [15].

The importance of background homogeneity was also influen-

tial in the detection of deer (Odocoileus spp.) in arid uplands [16]

and detection was affected by the amount of dried brush in the

background [17]. Sandy beaches, non-vegetated islands, ice flows

or even the ocean itself are uniform backgrounds that provide easy

differentiation between an animal and its surroundings. The rocky

shores and beaches used by sea lions (Zalophus californianus)

provided a consistent background in which the number of pups

that were manually counted from aerial photographs was similar

to the count obtained from ground surveys [12,13]. These studies

suggest that large-bodied mammals can be counted in aerial

photographs especially in habitats that have simple backgrounds

from which they can readily be differentiated [18,19].

Temporal change detection from remotely sensed imagery via

image subtraction has been used to quantify changes in land cover,

habitat types, forests species composition, landscape health (i.e.,

flooding, landslides, drought), and when mapping urban growth

[20,21]. The temporal scales used to detect change have ranged

from seasonal to decadal [22–25] and frequently focused on the

detection or differentiation of change versus no-change. Change

detection at finer temporal scales, such as within a month, a week,

or a day are generally derived by subtracting spatially registered

frames derived from airborne digital camera or video systems [26].

Theoretically, image differencing at such fine temporal scales

should differentiate moving features such as animals by quantify-

ing the change in the spectral responses of pixels with and without

animal features [27].

One advantage of airborne or satellite imagery is the

permanent, unaltered record of conditions across a landscape at

a single period in time. The imagery will record, in perpetuity,

features present on the landscape, allowing for exploratory and

innovative analyses of the imagery without change to the source

data. A second advantage of remotely sensed imagery is the

possibility of acquiring spectral information undetectable by

human vision, such as infrared or thermal data, to describe and
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identify features. A third advantage is that remotely acquired

imagery has the potential to reduce or eliminate negative

responses of animals to low flying aircraft [28–32]. Finally,

remotely sensed imagery can be readily obtained over isolated or

difficult to reach areas (e.g., the Mongolian steppe, parts of the

South African continent). The advantages of remotely sensed

imagery have been recognized in numerous fields resulting in a

significant increase in the amount of imagery collected by various

platforms in the past few years. Concomitant with the increase in

the volume of imagery is the need for automated analysis to extract

information from imagery. Manual evaluation of aerial or satellite

imagery is time consuming, subjective and thus not repeatable.

Automated or semi-automated analysis of remotely sensed

imagery has been shown to reduce workload, increase efficiency,

and improve operator performance [33,34].

We examined a semi-automated technique that employed single

day image differencing to enumerate cattle and horses in fenced

pastures. We theorized that pixels representing animals in the first

image would have a different spectral response than those same

pixels in the second image, due to animals moving out of the pixel

area (change). We further theorized that pixels not representing

animals (i.e., vegetation), would exhibit similar spectral values

between the first and second images (no change). Fenced pastures

provided a convenient test case as the number of animals in a

pasture did not alter between image acquisitions and a definitive

number of individuals in a pasture could be determined from

ground counts or verbal confirmation obtained from landowners.

Materials and Methods

Study Locations
On October 31, 2006, we acquired multispectral airborne

imagery from a fixed wing aircraft under mostly clear skies across

portions of Cache Valley (CV) and a portion of Box Elder County

west of Brigham City (BC) in northern Utah. Cache Valley is a

north-south trending valley with a mean annual precipitation of

45 cm [35] and an elevation of 1,355 m [36] at the center of the

valley. CV sites were located in the valley bottomlands dominated

by a mixture of dense and sparse grasslands. Brigham City (BC) is

located in the Basin and Range physiographic province and sits on

the western base of the north-trending Wellsville Mountains. The

BC sites had a mean precipitation of 47 cm [35] with a mean

elevation of 1,289 m [36] and were dominated by sparse

grasslands.

Animal Ground Counts
Rather than compare one estimate to another estimate, we were

able to compare the number of animals identified by image

differencing to the known number of animals in each pasture.

Ground enumeration of domestic cattle and horses occurred at the

same time as image acquisition. Counting was within 300 m of the

animals and without physical obstructions such as large hills or

trees. When possible, we contacted landowners to corroborate

ground counts. As group size increased beyond 50 animals,

accurate enumeration of individuals lessened due to animals

moving around which resulting in possible replicate counts or

missing an individual entirely [19,37,38]. Although the accuracy

was not determined for the ground counts, by limiting analysis to

those pastures with #50 animals, the precision of the count was

likely high. As pastures were geographically separated, we

considered them independent samples.

Aerial Imagery
Aerial imagery of the CV and BC sites was collected between

10:44 AM and 3:07 PM using an airborne remote sensing system

consisting of three Kodak Megaplus 4.2i digital cameras, each

recording a specific spectral region: green (0.54–0.56 mm), red

(0.66–0.68 mm), and near-infrared (0.7–0.9 mm) with a spatial

resolution of 25 cm [39]. Imagery was acquired twice for each

pasture. We selected images for analysis that were at or near nadir,

had less than #50 animals, and had reliable ground counts. Across

the eight pastures examined, the minimum time between the first

image (T1) and the second image (T2) was 48 minutes and the

maximum time difference was 148 minutes. Image acquisition

likely did not affect animal movements since the aircraft flew at a

mean elevation of 549 m above ground level [28,31].

Known Animal Locations in Imagery
In order to compare our image difference animal count to

actual ground counts, we identified locations for all animals on

each pasture image. To do this, we digitally overlaid the two

temporal images (T1 and T2) and visually identified changes due

to animal movements. These manual animal counts were

compared to the number of animals identified in the ground

counts, and discrepancies reconciled so that the image counts

matched the ground counts. This provided a metric by which we

could calculate the accuracy of our semi-automated technique.

Knowledge of the specific locations of each animal allowed us to

classify the results of the image differencing into three categories:

Figure 1. Section of pasture 29 depicting 22 known animals. Figure A is the 1st principal component of the first image acquired (T1), figure B
is the 1st principal component of the second image acquired (T2), and figure C is the differenced image resulting from subtracting T1 from T2.
doi:10.1371/journal.pone.0085239.g001

Image Differencing
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‘‘mapped’’ consisted of all image differences identified as animals

through the semi-automated approach, ‘‘correctly mapped’’

consisted of image differences that accurately depicted animals,

and ‘‘incorrectly mapped’’ consisted of image differences not

coincident with a known animal location. We considered any

known animal location not associated with an image difference as

a ‘‘missed animal.’’ Knowledge of the number of correctly or

incorrectly mapped and missed animals allowed us to measure

directly errors of commission, identifying a feature as an animal

when it was not, and omission, excluding a known animal feature.

For our research, we defined the percent of correctly identified

animals (Pcorrect) as the number of correctly mapped animals

divided by number of known animals in the pasture. The percent

omission error (Pomiss) specified missed animals and was calculated

as the number of missed animals divided by the number of known

animals in the pasture. The percent commission error (Pcommiss)

specified incorrectly mapped animals and was calculated by

dividing the number of incorrectly mapped animals by the total

number of mapped animals in the pasture. The total number of

features mapped divided by the number of known animals in a

pasture combines errors of commission, omission, and correctly

identified animals and was therefore not examined.

Image Analysis
We radiometrically calibrated images to percent reflectance

using an Exotech four-band radiometer nested with the camera

system and vignette errors removed using established lens

parameters prior to analysis [40]. Rectification of images to the

Universal Transverse Mercator System (UTM), NAD83 datum

occurred in ERDAS Imagine 9.1.0 using existing ortho-corrected

1 m resolution color imagery collected by the National Agricul-

tural Imagery Program (NAIP). The average root mean square

error (RMSE) was 2.0 pixels across all pastures with a range of 0.6

to 4.8 pixels between pastures and the NAIP base map. We

considered this RMSE error acceptable since our imagery was

collected at a spatial resolution of 0.25 m and the NAIP base map

consisted of 1 m pixels. In addition to image to map registration,

temporal image-to-image registration spatially linked the T1

image to the T2 image for each pasture by manually connecting

features common to both images (i.e. tie points) [41]. The mean

image-to-image RMSE was 1.9 pixels across all pastures with a

range of 1.1 to 3.1 using an average of 37 ground control points for

each pasture [41]. No active farm equipment was present in any of

the pastures during image acquisition thus animals were the only

features that moved between acquisitions.

A principal component analysis was conducted on each pasture

image to reduce dimensionality and to extract the first component,

which contained the highest amount of correlated information

between the three input bands [41,42]. A differenced image was

obtained by subtracting the first principal component of the T1

image from the first principal component T2 image (Figure 1). To

reduce edge effects, we clipped the differenced images to the

minimum extent of T1 and T2. The initial difference image

consisted of absolute pixel-to-pixel difference values with low

difference values representing inherent image differences caused

by atmospheric and/or sensor calibration differences and high

difference values representing potential animals. Using the known

animal locations from the pasture images, we identified image

differences that were correctly associated with animals to establish

spectral thresholds that represented animal pixels. Pixels within the

spectral threshold values (high difference) were converted to

polygons in ArcGIS 10.2 without any smoothing of polygon

boundaries thus maintaining size and shape characteristics. Pixels

outside the spectral threshold values (low difference) were removed

from the analysis. A potential source of error at this step was the

inclusion of spectral values from non-animal ‘‘edge’’ pixels into the

threshold range representing animals (i.e. pixel or point spread

function, [41,43]. The amount of spectral information incorpo-

rated from the pixels surrounding animals was variable and

resulted in an unpredictable number of pixels being added to

animal features and causing large differences in the size of

polygons representing animals. Although the physical size of an

adult cow or horse was set as the initial area limit (B. Bowmen,

personnel communication), the inconsistencies of polygon sizes

associated with known animals forced us to empirically establish a

size threshold. Through this process, we determined areas .10 m2

were too large to be animals and areas , 0.99 m2 were too small

to be animals. The 10 m2 upper limit was established to account

for multiple animals close enough in proximity to be identified as a

single feature. Reducing the upper limit below 10 m2 had little

effect on commission errors but substantially increased omission

errors. Polygons outside of the spatial threshold range were

removed and the remaining polygons were considered potential

animals.

Results

The average size of the pastures was 6.2 hectares 62.6 (6STD)

with the largest pasture, 9.7 hectares and the smallest pasture 1.9

hectares. The total number of known animals in the eight pastures

was 158 with a minimum of three animals in pasture eight and a

maximum of 38 animals in pastures seven and two (Table 1).

There were 385 total polygons mapped across the eight pastures

and per pasture counts ranged from 15 polygons to 136 polygons.

The total number of incorrectly mapped polygons was 265 with a

mean of 33 (643) and a minimum of zero polygons in pasture

seven and a maximum of 122 incorrectly mapped polygons in

pasture six (Table 1).

Animal presence in an image had a high probability of being

correctly identified by single day image differencing, but the

percent commission error (over-counting) varied considerably

among pastures. The mean Pcorrect across the eight pastures was

82% (617 (STD, Table 1) and the mean Pcommiss was 53%

(636%), and ranged from 0% to 95%. The mean Pomiss was 18%

(617%) and ranged from 0% to 50% (Table 1). The Pcorrect and

Table 2. Mean image-to-image mis-registration errors (STD,
standard deviation of five distance differences (meters) for
each pasture; SE, standard error) across 5 points in the X and Y
directions for eight pastures.

Pasture Mean X STD X Mean Y STD Y

6 26 14 128 99

1 37 19 59 23

2 40 35 108 88

5 54 50 99 65

7 55 34 35 18

4 70 40 63 63

8 90 39 143 123

3 91 42 211 165

Mean 58 106

SE 20 37

doi:10.1371/journal.pone.0085239.t002
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Pomiss were inversely related to each other due to the equation to

calculate them, thus as Pcorrect increased, Pomiss decreased.

Across the eight pastures, image differencing resulted in six

polygons representing multiple individuals (i.e., adjacent animals).

One pasture had a single polygon representing two animals, one

pasture had two polygons representing four individuals, and one

pasture had three polygons representing six individuals (Table 1).

Discussion

Regardless of the feature to be examined or the temporal

frequency, change detection with remotely sensed imagery

requires precise spatial registration and correction/normalization

of atmospheric differences to avoid false positives [21,41,44,45].

Small misalignments between the T1 and T2 images were

identified as changes and resulted in high commission errors. To

assess mis-registration, we measured the coordinates of five

common features between T1 and T2 for each pasture. The

points were different from those used as control points in the

image-to-image rectification. All of the pastures had mis-registra-

tions errors less than 1 m in the X direction and 2.11 m in the Y

direction (Table 2). The mean Y mis-registration error of 1.06 m

could effectively encompass the length of a small adult cow, which

suggests small spatial errors could be incorrectly mapped as

animals emphasizing the importance of precise image registration

when attempting to identify small features with image differencing.

Image thresholding is often an exploratory process that requires

human interpretation, cannot be replicated, and is often incon-

sistent [46–50]. We attempted to automate the identification of

spectral and spatial thresholding values for animal identification in

aerial imagery without success [51]. Attributing non-animal pixels

to animal features due to the point spread function added to the

confusion of identifying specific spatial thresholding values and

increased the maximum size of a polygon representing a single

animal. While our maximum spatial threshold of 10 m2 is

arguably large for representation of a single animal, it effectively

represented two animals in close proximity.

In addition to mis-registration errors adding to the commission

error, shadows also contributed to over-counting errors. Shadows

present in images collected on the same day but at different times

will exhibit changes, which could mimic animal movements.

Images collected at a similar time of day on successive days and if

possible, when the sun is directly over-head should reduce shadow

effects. The number of days separating T1 and T2 image

acquisitions should be less than a week to avoid changes in sun

angle and/or dramatic changes in the surrounding vegetation due

to growth, senescence, etc. Additionally, 1–2 days, with 7 days

maximum, separating image acquisitions should ensure both

spatial and temporal population closure so that differences in the

number of animals are minimal. To ensure closure of the

population, imagery should not be acquired during times of

migration or dispersal of young, nor when there is predictable

movement of individuals into (i.e., immigration) or out of (i.e.,

emigration) the population. Additions of newborn animals to the

population should be minimal for most species except in spring.

Unless imagery acquisition occurs during a hunting season or

during a catastrophic die-off, deaths should be minimal between

1–7 days.

In summary, fine scale temporal image differencing will

correctly detect 82% of the animals present in an image but also

over-count 53%. Thus, certain precautions should be addressed

prior to applying this technique. First, although Pomiss was

relatively low, Pcommiss was high and was similar to counts in

remotely sensed imagery for Canada geese, snow geese, and

caribou [52] that were over-estimated due to inclusion of

erroneously classified background areas. Second, identification of

spectral thresholds that represented animals was a heuristic process

that relied on human interpretation, which may not be without

bias. Third, image differencing requires precise image registration

to avoid spurious areas of change that can result in large numbers

of incorrectly mapped polygons. To help mitigate registration

errors, ground control points should be set prior to image

acquisition to facilitate accurate and precise registration of T1 to

T2. Fourth, enough time must pass for animal movement to occur

between image acquisitions but not enough time for the

population to experience immigration, emigration, births, or

deaths. Additionally, species should not be experiencing seasonal

or annual migrations. Fifth, the non-animal portions of the image

(i.e., the background) should be as homogenous as possible to

enhance differentiation between animals and their background.

Although there are variations in snow-pack, a snow-covered

surface could provide a relatively uniform background.

Implications to Enumerating Wild Ungulates
Aerial surveys are one method commonly used to estimate the

population sizes of ungulates and consist of counting the number

of individuals observed on a transect, within a designated strip

width, or across a specified area (e.g., 14,18,19, 28–30, 53, 55–

56,58). Generally, an assumption is made that not all animals

present on the survey were observed and a correction factor is

applied to the survey count. The probability of detection adjusts a

survey count based on the ratio of the number of animals counted

to the number of animals available to be counted during a wildlife

survey [53]. One method of determining the number of available

animals is to tag (e.g. radio collar, color collar, ear tag) a certain

number of animals prior to the survey and record the number of

tagged animals observed during the survey. For example, if 20

deer were fitted with color collars prior to an aerial survey and

during the survey, 10 of those collared deer were observed, the

probability of detection for deer during the survey would be 10/20

or 50%. The count obtained during a survey is then corrected by

dividing the count by the probability of detection. Thus, in the

above example, if 40 deer were counted on the survey, the

adjusted population estimate would be 40/0.50 or 80 deer.

Reported values of the probability of detection for conventional

wildlife surveys range from 52% in caribou (Rangifer spp., [54]),

53–71% for feral ungulate species [55], and 34–82% for mule deer

(Odocoileus hemionus, [56]) depending on group size and habitat type.

Reported detection probabilities of bison (Bison bison bison) are

higher (.92%) than other wildlife species regardless of habitat or

season [57,58]. If we consider an image a ‘‘survey’’, our Pcorrect,

coupled with our Pcommission, is somewhat analogous to the

probability of detection in that it reports the correct number of

animals identified. Our mean Pcorrect of 82% is near or above

reported levels for wildlife surveys and suggests image differencing

could provide an alternative method for counting animals across a

landscape. Application of our method would require an intense

analysis of a small sub-sample of the study area to ascertain the

number of known animals in the area and to determine the

percent of correctly identified animals and errors of omission and

commission. The number of animal located in this area could be

enumerated via ground counts or by examining the imagery to

determine movements.

Although less than 2% (6 out of 385) of the polygons generated

in our process represented two individuals, multiple individuals in

close proximity to each other resulted in confusion during the

identification of spatial thresholds. Multi-animal polygons could

pose an additional complication in application to wildlife species

Image Differencing
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especially when they are in vast herds such as the annual African

wildebeest (Connochaetes taurinus) migration. Identifying clusters that

represent multiple wild animals will require further research and

until it is solved, applications of this technique to herding species

should recognize the potential under-counting bias for individuals

in close proximity to each other.

Drawbacks to wildlife aerial surveys are that errors of omission

(not observing an animal that is present during a survey) and

commission (animals counted twice) are not generally measured,

although see [51]. Knowing the locations of each animal present in

the image allowed us to determine errors of omission and

commission, which could be incorporated into a single correction

factor to adjust counts. Such a correction factor could incorporate

the percent correctly identified, the error of omission, and the

error of commission. Our sample size was small and of limited

scope which prevented the development and evaluation of a

correction factor. Additional test cases are needed to develop a

correction factor that has practical application.

Satellite imagery could provide an alternative source of imagery,

especially in isolated areas such as the Mongolian steppe or large

areas such as the western desert of Utah. There are at least six

satellites that are currently capable of collecting sub-meter imagery

(Quickbird, IKONOS, GeoEye 1, WorldView 1 and 2, and

Pleiades 1 and 2) and have the potential to identify large animals.

The reduction in time required to acquire satellite imagery over a

large study area could facilitate population estimates over areas

previously too large or too isolated to survey. Additionally,

acquisition of remote sensing aerial or satellite imagery has the

potential to reduce or even eliminate negative responses of animal

to low flying aircraft during aerial wildlife surveys [28–32].
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