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Abstract

Aim: To screen novel markers for hepatocellular carcinoma (HCC) by a combination of expression profile, interaction
network analysis and clinical validation.
Methods: HCC significant molecules which are differentially expressed or had genetic variations in HCC tissues
were obtained from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome).
Then, the protein-protein interaction (PPI) network of these molecules was constructed. Three topological features of
the network ('Degree', 'Betweenness', and 'Closeness') and the k-core algorithm were used to screen candidate HCC
markers which play crucial roles in tumorigenesis of HCC. Furthermore, the clinical significance of two candidate
HCC markers growth factor receptor-bound 2 (GRB2) and GRB2-associated-binding protein 1 (GAB1) was validated.
Results: In total, 6179 HCC significant genes and 977 HCC significant proteins were collected from existing HCC
related databases. After network analysis, 331 candidate HCC markers were identified. Especially, GAB1 has the
highest k-coreness suggesting its central localization in HCC related network, and the interaction between GRB2 and
GAB1 has the largest edge-betweenness implying it may be biologically important to the function of HCC related
network. As the results of clinical validation, the expression levels of both GRB2 and GAB1 proteins were significantly
higher in HCC tissues than those in their adjacent nonneoplastic tissues. More importantly, the combined GRB2 and
GAB1 protein expression was significantly associated with aggressive tumor progression and poor prognosis in
patients with HCC.
Conclusion: This study provided an integrative analysis by combining expression profile and interaction network
analysis to identify a list of biologically significant HCC related markers and pathways. Further experimental
validation indicated that the aberrant expression of GRB2 and GAB1 proteins may be strongly related to tumor
progression and prognosis in patients with HCC. The overexpression of GRB2 in combination with upregulation of
GAB1 may be an unfavorable prognostic factor for HCC.
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Introduction

Hepatocellular carcinoma (HCC) accounts for one of the
most common malignant tumors and the third leading cause of
cancer-related deaths worldwide [1]. The distribution of HCC is
unbalanced throughout the world, with the highest incidence in

Asia and Sub-Saharan Africa, especially in China, an endemic
area with almost one third of the HBsAg carriers worldwide.
The overall 5-year survival rate for HCC patients is still only 5%
[2]. Approximately 70% of patients may relapse within 5 years
after surgery and more than 80% of postoperative recurrence
occurs in the remnant liver [3,4]. Several attempts have been
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made to predict the occurrence and prognosis of HCC based
on single or multiple clinicopathologic features such as the
severity of the liver function, age, tumor size, grade,
microvascular invasion, portal vein thrombosis, and the
presence of microsatellite regions [5,6]. However, HCC
patients with the same clinicopathologic features often display
different outcome, suggesting that there may be several
complex molecular and cellular events involved in the
development and aggressive progression of HCC. Thus,
elucidating the molecular mechanisms underlying tumor
progression and identifying the key markers that differentiate
the occurrence and the various stages of HCC are essential for
developing novel prognostic factors and improve therapeutic
strategies.

With the development of high-throughput methods (such as
large-scale genome-wide microarray and mass spectrometry),
a wealth of information on biologically relevant systems of
human cancer are now available. For example, Lim et al. [7]
constructed a molecular prognostic model to predict the
disease-free survival in patients with HCC by gene expression
profiling; Wang et al. [8] found the common and different
characteristics of the three types of liver cancer: HCC,
cholangiocarcinoma (CC), and combined HCC-CC (CHC) by
comparing their gene expression profilings; Marshall et al. [9]
investigated global gene expression profiles from HCC arising
in different liver diseases to test whether HCC development is
driven by expression of common or different genes, which
could provide new diagnostic markers or therapeutic targets.
However, accumulating studies have found that crucial disease
genes and proteins often show relatively slight changes in their
expression patterns between normal and disease states,
suggesting that the differential expression analysis may miss
some slightly differentially expressed but functionally important
genes and proteins. Therefore, it is necessary to develop an
efficient method to analyze the high-throughput expression
profile data in order to uncover important biological
relationships.

Since protein-protein interaction (PPI) networks constitute
the basis of most life processes, such studies might enable us
to systematically realize the behaviors and properties of
biological molecules. Rapid advances in network biology
indicate that cancer genes and proteins do not function in
isolation; instead, they work in interconnected pathways and
molecular networks at multiple levels [10]. Our study group has
recently developed two systems biology-based classifiers for
early diagnosis of HCC and prostate cancer (PCa),
respectively, by combining differential gene and protein
expression and topological characteristics of human protein
interaction networks, and also demonstrated that these
classifiers may efficiently enhance the diagnostic performance
for HCC and PCa [11,12]. On this basis, in the current study,
we intend to collect full-scale HCC related data including HCC
significant genes and proteins which were differentially
expressed or had genetic variations in HCC tissues relative to
their corresponding normal tissues from five existing HCC
related databases (OncoDB.HCC [13], HCC.net [14],
dbHCCvar [15], EHCO [16] and Liverome [17]). In order to
investigate the functional relationships between these

significant molecules, we constructed the protein-protein
interaction network and analyzed the topological features of
nodes to screen novel markers for HCC. We further perform
the experimental validation on the clinical significance of
candidate HCC markers by immunohistochemistry analysis.

Materials and Methods

The technical strategy of this study was shown in Figure 1.

Data preparation
HCC-significant gene and protein collection.  HCC-

significant genes and proteins were collected from five HCC
related databases, including OncoDB.HCC (Last modified on
Apr. 2008, http://oncodb.hcc.ibms.sinica.edu.tw/index.htm),
HCC.net (Update time: Apr 18, 2010, http://
www.megabionet.org/hcc/index.php), dbHCCvar (Last modified
on Sep 4, 2012, http://genetmed.fudan.edu.cn/dbHCCvar/),
EHCO (Encyclopedia of Hepatocellular Carcinoma genes
Online, Last modified on Sep, 2012, http://
ehco.iis.sinica.edu.tw), and Liverome (Last modified on Apr 14,
2011, http://liverome.kobic.re.kr/). For HCC-related molecular
events, OncoDB.HCC is the first comprehensive HCC
oncogenomic database and contains 577 HCC-related genes
[13]. HCC.Net, which has compiled a network with thousands
of HCC-related genes identified in different types and stages of
HCC, contains 2,131 HCC-related genes [14]. dbHCCvar is an
online database which contains 636 human genetic variations
and 195 human genes which have been statistically tested to
be associated with HCC [15]. EHCO is derived from thirteen
gene sets related to HCC and gives 3833 HCC-significant
genes [16]. Liverome is a curated database of liver cancer-
related gene signatures [17]. There are 6024 gene signatures
obtained mostly from published microarray and proteomic
studies, and thoroughly curated by experts. In order to facilitate
data analysis, the different ID types for HCC significant genes
and proteins were converted to ID from UniProtKB-Swiss-Prot/
TrEmbL. The detailed information on these HCC significant
genes and proteins is described in Table S1.

Protein-protein interaction (PPI) data.  PPI data were
imported from eight existing PPI databases including Human
Annotated and Predicted Protein Interaction Database (HAPPI)
[18], Reactome [19], Online Predicted Human Interaction
Database (OPHID) [20], InAct [21], Human Protein Reference
Database (HPRD) [22], Molecular interaction Database (MINT)
[23], Database of Interacting Proteins (DIP) [24], and PDZBase
[25]. The detailed information on these PPI databases is
described in Table S2.

Gene Ontology (GO) and pathway enrichment analysis
for HCC significant genes and proteins

We used Database for Annotation, Visualization and
Integrated Discovery [26] (DAVID, http://david.abcc.ncifcrf.gov/
home.jsp,version 6.7) for GO enrichment analysis. DAVID now
provides a comprehensive set of functional annotation tools for
investigators to understand biological meaning behind large list
of genes. We also performed pathway enrichment analysis
using pathway data obtained from the FTP service of KEGG
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Figure 1.  A schematic diagram of this systems biology-based analysis for HCC marker identification.  First, HCC significant
molecules which were differentially expressed or had genetic variations in HCC tissues relative to their corresponding normal
tissues were collected from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome).
Second, their protein-protein interaction networks were constructed and the hub proteins were chosen according to node degree.
Third, a list of candidate HCC markers were identified by calculating four topological features of the network ('Degree',
'Betweenness', ‘Closeness’ and 'K-coreness' ). After that, the key PPIs of candidate HCC markers were selected by K-core analysis
and edge-betweenness algorithm. The K-core of a graph is defined as the largest subgraph where every node has at least k links.
For each choice of k, we determine the k-cores by iteratively pruning all nodes with degree lower than k and their incident links. The
edge-betweenness algorithm is a top-down, divisive method for grouping network components into modules. Edge-betweenness
centrality is the frequency of an edge that places on the shortest paths between all pairs of vertices. The edges with highest
betweenness values are most likely to lie between sub-graphs. Here, we chose PPI (between RL30_HUMAN and GRB2_HUMAN)
with highest edge-betweenness as the most important PPI in HCC network because it may connect different cores with the shortest
paths. Finally, the clinical significance of RL30_HUMAN (RPL30) and GRB2_HUMAN (GRB2) was validated using a large cohort of
patients with HCC.
doi: 10.1371/journal.pone.0085170.g001
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[27] (Kyoto Encyclopedia of Genes and Genomes, http://
www.genome.jp/kegg/, Last updated: Oct 16, 2012). The
KEGG PATHWAY section is a collection of manually
constructed pathway maps representing information on
molecular interaction and reaction networks.

Network analysis
Network construction.  HCC significant proteins were used

to construct HCC related network. The PPI data were obtained
from eight existing PPI databases as mentioned above. Then,
we applied Navigator software (Version 2.2.1) and Cytoscape
(Version 2.8.1) to visualize the networks.

Defining network topological feature set.  For each node i
in HCC related network, we defined five measures for
assessing its topological property: (1) 'Degree' is defined as the
number of links to node i; (2) 'Node Betweenness' is defined as
the number of edges running through node i. (3) ‘Closeness’ is
defined as the inverse of the farness which is the sum of node i
distances to all other nodes. The Closeness centrality can be
regarded as a measure of how long it will take to spread
information from node i to all other nodes sequentially. Degree,
node betweenness and closeness centralities can measure a
protein’s topological importance in the network. The larger a
protein’s degree/betweenness/closeness centrality is, the more
important the protein is in the PPI network [28]. (4) K-core
analysis is an iterative process in which the nodes are removed
from the networks in order of least-connected [29]. The core of
maximum order is defined as the main core or the highest k-
core of the network. A k-core sub-network of the original
network can be generated by recursively deleting vertices from
the network whose degree is less than k. This results in a
series of sub-networks that gradually reveal the globally central
region of the original network. On this basis, 'K value' is used to
measure the centrality of node i. (5) 'Edge Betweenness' is
defined as the frequency of an edge that places on the shortest
paths between all pairs of vertices in network [30]. The edges
with highest betweenness values are most likely to lie between
sub-graphs.

Experimental validation
After the expression profile and interaction network analyses,

GRB2 and GAB1 were chosen to perform experimental
validation in order to investigate the clinical significance of the
two proteins in human HCC.

Ethics Statement.  The study was approved by the
Research Ethics Committee of 302nd Hospital of PLA, Beijing,
China. Written informed consent was obtained from all of the
patients. All specimens were handled and made anonymous
according to the ethical and legal standards.

Patients and Tissue Samples.  A total of 130 patients with
primary HCC who underwent a curative liver resection at the
302nd Hospital of PLA, Beijing, China, were included in this
study. One hundred and thirty self pairs of HCC and adjacent
nonneoplastic liver tissues (as control tissues) obtained from
these patients with HCC were retrieved from the tissue bank of
the Department of Pathology in the 302nd Hospital of PLA.
These patients were diagnosed as HCC between 2001 and
2006. None of the patients recruited in this study had

chemotherapy or radiotherapy before the surgery. HCC
diagnosis was based on World Health Organization (WHO)
criteria. Tumor differentiation was defined according to the
Edmondson grading system. Liver function was assessed
using the Child-Pugh scoring system. Tumor staging was
determined according to the sixth edition of the tumor-node-
metastasis (TNM) classification of the International Union
against Cancer. The clinicopathological features of 130
patients are summarized in Table 1.

The median follow-up period was 8.6 years. Postoperative
surveillance included routine clinical and laboratory
examinations every third month, computed tomography scans
of the abdomen, and radiographs of the chest every third
month. After 5 years, the examination interval was extended to
12 months.

Immunohistochemistry analysis.  GRB2, GAB1 and
phosphorylated ERK1 (p-ERK1) expression were
immunohistochemically evaluated in paraffin-embedded
specimens of 130 pairs of HCC and adjacent nonneoplastic
liver tissues. Surgical specimens were fixed in 10% formalin,
embedded in paraffin, and sectioned at a 4 μm thickness. For
heat-induced epitope retrieval, deparaffinized sections were
soaked in 10 mM citrate buffer (pH 6.0) and treated at 95°C for
30 min using the microwave oven method.
Immunohistochemical staining was performed using the avidin-
biotin immunoperoxidase technique according to our previous
studies [31-33]. The activity of endogenous peroxidase was
blocked by incubation with 0.3% H2O2 in methanol for 15 min,
and nonspecific immunoglobulin binding was blocked by
incubation with 10% normal goat serum for 10 min. Sections
were incubated at room temperature for 4 h with anti-GRB2
rabbit polyclonal antibody (#ab111031, Abcam, Cambridge,
United Kingdom), or anti-GAB1 rabbit polyclonal antibody
(#ab59362, Abcam, Cambridge, United Kingdom), or anti-
phosphorylated ERK1 (phospho Y204) rabbit polyclonal
antibody (#ab131438, Abcam, Cambridge, United Kingdom),
and were then rinsed and incubated for 30 min with a
biotinylated second antibody. After washing, the sections were
incubated for 30 min with horseradish peroxidase-conjugated
streptavidin, and were finally treated with 3,3’-diaminobenzidine
tetrahydrochloride in 0.01% H2O2 for 10 min. The slides were
counterstained with Meyer’s hematoxylin. The negative
controls were processed in a similar manner with PBS instead
of primary antibody. The positive GRB2, GAB1 and p-ERK1
expression confirmed by western blotting were used as positive
controls for immunostaining.

Following a hematoxylin counterstaining, immunostaining
was scored by two independent experienced pathologists, who
were blinded to the clinicopathological parameters and clinical
outcomes of the patients. The scores of the two pathologists
were compared and any discrepant scores were trained
through re-examining the stainings by both pathologists to
achieve a consensus score. The numbers of positive-staining
cells showing immunoreactivity in the cytoplasm for GAB1 and
p-ERK1, and in the cell nucleus and cytoplasm for GRB2 in ten
representative microscopic fields were counted and the
percentage of positive cells was calculated. The percentage
scoring of immunoreactive tumor cells was as follows: 0 (0%),
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1 (1-10%), 2 (11-50%) and 3 (>50%). The staining intensity
was visually scored and stratified as follows: 0 (negative), 1
(weak), 2 (moderate) and 3 (strong). A final immunoreactive
score (IRS) was obtained for each case by multiplying the
percentage and the intensity score. Therefore, tumors with a
multiplied score exceeding median of total scores for GRB2,
GAB1 and p-ERK1 were deemed to be high expression
groups; all other scores were considered to be low expression
groups.

Statistical analysis.  The software of SPSS version13.0 for
Windows (SPSS Inc, IL, USA) and SAS 9.1 (SAS Institute,
Cary, NC) was used for statistical analysis. The chi-squared
test was used to show differences in categorical variables.
Patient survival and the differences in patient survival were
determined by the Kaplan-Meier method and the log-rank test,
respectively. A Cox regression analysis (proportional hazard
model) was performed for the multivariate analyses of
prognostic factors. Differences were considered statistically
significant when P was less than 0.05.

Results

Identification of candidate HCC markers
In total, 6179 HCC significant genes and 977 HCC significant

proteins which were differentially expressed or had genetic
variations in HCC tissues relative to their corresponding normal
tissues were collected from five existing HCC related
databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and
Liverome) after removing redundancy. The detailed information
on these HCC significant genes and proteins is described in
Table S1. Since multiple biological processes or pathways are
implicated in tumorigenesis and tumor progression of HCC, we
constructed HCC related network using PPI information of HCC
significant proteins. This network consists of 14713 nodes and
144925 edges (Figure 2A). According to the previous study of
Li et al. [34], we identified a node as a hub protein if its degree
is more than 2 fold of the median degree of all nodes in a
network. The network of hub HCC significant proteins consists
of 14713 nodes and 61143 edges (Figure 2B). Four topological
features, 'Degree,' 'Betweenness', 'Closeness' and 'K value'

Table 1. Association of GRB2 and GAB1 expression with clinicopathological features of 130 hepatocellular carcinoma
patients.

Clinicopathological Features Case GRB2-high (n, %) P GAB1-high (n, %) P GRB2-high/ GAB1-high (n, %) P
Age (years)        
≤50 72 36 (50.00) NS 36 (50.00) NS 30 (41.67) NS
>50 58 29 (50.00)  31 (53.45)  26 (44.83)  

Gender        
Male 96 48 (52.08) NS 50 (52.08) NS 42 (43.75) NS
Female 34 17 (50.00)  17 (50.00)  14 (41.18)  

Serum AFP        
Positive 72 47 (65.28) 0.006 41 (56.94) NS 40 (55.56) 0.01
Negative 58 18 (31.03)  26 (44.83)  16 (27.59)  

Tumor stage        
T1 23 0 (0) 0.01 2 (8.70) 0.01 0 (0) 0.006
T2 40 19 (47.50)  21 (52.50)  15 (37.50)  
T3 52 34 (65.38)  33 (63.46)  31 (59.62)  
T4 15 12 (80.00)  11 (73.33)  10 (100.00)  

Tumor grade        
G1 31 13 (41.94) NS 10 (32.26) 0.02 10 (32.26) 0.02
G2 76 37 (48.68)  40 (52.63)  31 (40.79)  
G3 23 15 (65.22)  17 (73.91)  15 (65.22)  

Growth pattern        
Trabecular 101 50 (49.50) NS 50 (49.50) NS 41 (40.59) NS
Nontrabecular 29 15 (51.72)  18 (62.07)  15 (51.72)  

Cirrhosis        
Yes 86 43 (50.00) NS 43 (50.00) NS 38 (44.19) NS
No 44 22 (50.00)  24 (54.55)  18 (40.91)  

Underlying liver disease        
Alcoholic 25 12 (48.00) NS 14 (56.00) NS 11 (44.00) NS
Hepatitis B 49 26 (53.06)  26 (53.06)  22 (44.90)  
Hepatitis C 35 18 (51.43)  18 (51.43)  16 (45.71)  
Unknown 21 9 (42.86)  9 (42.86)  7 (33.33)  

Note: ’NS’ refers to the differences among groups have no statistical significance.
doi: 10.1371/journal.pone.0085170.t001
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(defined in 'Materials and methods' section), were chosen to
identify candidate HCC markers. After calculating the value of
the four features for each hub HCC significant protein in the
PPI network, the median values of 'Degree', 'Betweenness',
'Closeness' and 'K value' were 67, 0.03, 39.37 and 31,
respectively. Therefore, we determined that HCC significant
proteins with 'Degree'>67, 'Betweenness'>0.03,
'Closeness'>39.37, and 'K value'>31 were candidate HCC
markers for tumor therapy. As a result, 331 proteins were
identified as candidate HCC markers. Please see detail
information on topological features and the PPI network of
these candidate HCC markers in Table S3 and Figure 2C,
respectively.

Enrichment analysis of candidate HCC markers
In order to investigate the biological characteristics of 331

candidate HCC markers, enrichment analysis based on GO
annotation system was performed. This system uses a
controlled and hierarchical vocabulary to assign function to
genes or gene products in any organism. The results showed
that the molecular functions of candidate HCC markers could
be divided into 26 groups. Please see all the results of GO
enrichment analysis on candidate HCC targets in Table S4.
Figure 3A shows the top three groups of molecular functions
that have the most candidate HCC markers. One of the most
important molecular functions is protein serine/threonine kinase
activity. There were 99 candidate HCC markers with this
activity. For example, the cyclin-dependent kinases (CDKs),
key regulators of the cell cycle, have been demonstrated to be
activated in HCC and promote the tumor progression [35]; the
mitogen-activated protein kinases (MAPKs), as a focal point for
signal transduction following activation of both G-protein-linked
and tyrosine kinase growth factor receptors, have been
reported to be involved in the regulation of apoptosis of tumor
cells and be associated with aggressive progression of HCC
[36]. In the biological process category, the candidate HCC
markers more frequently play roles in cellular protein metabolic
process, translational elongation and intracellular signaling

cascade, which are associated with cancer development and
metastasis of HCC.

In terms of pathway information which is important for
understanding gene and protein function, cancer related
pathways, such as MAPK signaling pathway, mTOR signaling
pathway, and focal adhesion, were the most associated
pathways of candidate HCC markers (Figure 3B). Please see
all the results of KEGG pathway enrichment analysis in Table
S4.

Identification of crucial candidate HCC markers for
experimental validation

In order to identify the crucial candidate HCC markers for
experimental validation from 331 candidate HCC markers, a
co-expression network was constructed using the K-core
analysis. The k values of candidate HCC markers were ranged
from 9 to 57. Please see detail information on k values of
candidate HCC markers in Table S3. We showed the 12
innermost cores of the co-expression network in Figure 4. Fifty-
eight candidate HCC markers, such as eukaryotic translation
initiation factor 3 subunit E (EIF3E), GAB1, and eukaryotic
translation initiation factor 5 (EIF5), etc. were located in the
innermost core (k=57).

Furthermore, we calculated the edge-betweenness to find
the most important PPI in the co-expression network. As the
result (Please see detail information on edge-betweenness of
the co-expression network in Table S5), the interaction
between GRB2 and GAB1 had the highest edge-betweenness
and connected different cores in the co-expression network
(Figure 4).

Since GAB1 has the highest k-coreness suggesting its
central localization in HCC related network, and the interaction
between GRB2 and GAB1 has the largest edge-betweenness
implying it may be biologically important to the function of HCC
related network, we performed the experimental validation to
evaluate the clinical significance of GRB2 and GAB1 in HCC.

Figure 2.  Protein-protein interaction (PPI) networks of HCC significant proteins.  (A) PPI network of HCC significant proteins.
This network consists of 14713 nodes and 144925 edges. (B) PPI network of hub HCC significant proteins which extracted from (A).
This network consists of 14713 nodes and 61143 edges. (C) PPI network of candidate HCC markers which extracted from (B). This
network consists of 331 nodes and 7207 edges.
doi: 10.1371/journal.pone.0085170.g002
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Experimental Validation
Upregulation of GRB2 and GAB1 proteins in HCC

tissues.  The subcellular localization and the expression
pattern of GRB2 and GAB1 proteins in 130 self pairs of HCC
and adjacent nonneoplastic liver tissues were observed by the
immunohistochemistry analysis. As shown in Figure 5A and
5D, GRB2 positive staining was localized in the cell nucleus
and cytoplasm, while GAB1 positive staining was localized in
the cytoplasm of tumor cells in HCC tissues. Compared with
the adjacent nonneoplastic tissues, the expression levels of
GRB2 (IRS for HCC vs. nonneoplastic liver: 6.32±1.50 vs.
2.67±0.32, P<0.001, Figure 5C) and GAB1 (IRS for HCC vs.
nonneoplastic liver: 5.72±0.95 vs. 1.75±0.48, P<0.001, Figure
5F) proteins were all significantly increased in HCC tissues.
Based on the scoring system used in the present study, 56
(43.08%) cases were both high expression of GRB2 and
GAB1, 54 (41.54%) cases were both low expression of GRB2
and GAB1, 9 (6.92%) cases were GRB2-high and GAB1-low
expression, and 11 (8.46%) cases were GRB2-low and GAB1-
high expression. As determined by Spearman’s correlation, the
GRB2 expression was significantly associated with the GAB1
expression (r=0.68, P=0.01).

In order to validate the hypothesis that GRB2 and GAB1 can
induce the activation of the HGF/MAPK/ERK pathway, we
detected the expression of p-ERK1 protein in 130 self pairs of

HCC and adjacent nonneoplastic liver tissues. As shown in
Figure 5G, p-ERK1 positive staining was localized in the
cytoplasm of tumor cells in HCC tissues. Compared with the
adjacent nonneoplastic tissues, the expression level of p-ERK1
(IRS for HCC vs. nonneoplastic liver: 4.04±0.67 vs. 1.20±0.33,
P<0.001) protein was significantly increased in HCC tissues.
More interestingly, in all four groups according to the combined
expression of GRB2 and GAB1, GRB2-high/GAB1-high
patients expressed the highest level of p-ERK1 protein (all
P=0.01, Figure 5I).

Upregulation of GRB2 and GAB1 proteins associates
with the aggressive tumor progression of HCC.  To
evaluate whether GRB2 and GAB1 protein expression was
associated with clinicopathological features of patients with
HCC, we correlated IRS of GRB2 and GAB1 proteins with
tumor stage, tumor grade, serum AFP level, presence of
cirrhosis, underlying liver disease including alcohol abuse, viral
hepatitis B and C, sex, and age (Table 1). As the results, we
found that the expression levels of GRB2 protein in HCC
tissues with the higher tumor stage (T3~4) and the positive
serum AFP level were significantly lower than those with the
lower tumor stage (T1~2, P=0.01, Table 1) and the negative
serum AFP level (P=0.006, Table 1), respectively. In addition,
the frequencies of aberrant GAB1 expression were higher in
HCC tissues with higher tumor stage (T3~4) than those with

Figure 3.  Top three significantly enriched gene ontology (GO) molecular functions (A) and KEGG pathways (B) involved
by candidate hepatocellular carcinoma (HCC) markers.  The functional distribution of candidate HCC markers was obtained
from GO enrichment analysis. Candidate HCC markers more frequently had protein serine/threonine kinase and pyrophosphatase
activities, and also were involved in dynein binding process. Since the pathway information is important for understanding gene and
protein functions, we also analyzed the enriched KEGG biological pathways among these candidate HCC markers, which were
most commonly implicated in cancer related pathways, such as non-small cell lung cancer, pancreatic cancer and glioma.
'*'P<0.05,'**'P<0.01.
doi: 10.1371/journal.pone.0085170.g003
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lower tumor stage (P=0.01, Table 1). GAB1 overexpression
was also observed more frequently in HCC tissues with high
tumor grade than those with low grade (P=0.02, Table 1). More
importantly, the combined GRB2 and GAB1 protein expression
was significantly associated with serum AFP (P=0.01, Table 1),
tumor stage (P=0.006, Table 1) and tumor grade (P=0.02,
Table 1).

Upregulation of GRB2 and GAB1 proteins predicts the
poor prognosis in patients with HCC.  Five-year disease-
free survival was observed in 30 (23.08%) patients, whereas in
100 (76.92%) patients, disease recurred, and 88 (67.69%)
even died during a 5-year follow-up period. We observed a
trend that 5-year disease-free survival in the group with high
GRB2 expression was significantly poorer than that in the
group with low GRB2 expression (P=0.002, log-rank test;
Figure 6A). Additionally, the Kaplan-Meier plot of 5-year overall
survival curves stratified by GRB2 expression was shown in
Figure 6B. A significant relationship was found between GRB2
expression and 5-year overall survival (P=0.006, log-rank test,
Figure 6B). Similar with GRB2, the disease-free survival

(Figure 6C, P=0.006) and overall survival (Figure 6D, P=0.008)
of HCC patients with high GAB1 expression were both
significantly shorter than those with low GAB1 expression.
Moreover, the association between the co-expression of GRB2/
GAB1 and the survival rates were tested by the method of
Kaplan-Meier. The Chi-square value by Log Rank (Mantel-Cox)
indicated a significant difference among different groups with
regard to the conjoined expression status of GRB2/GAB1
(Figure 6E and F). The results by pairwise comparisons
showed that the statistically significant difference of disease-
free survival and overall survival existed between GRB2-high/
GAB1-high patients and any of other three groups (both
P<0.001). In all four groups, GRB2-high/GAB1-high patients
had the poorest prognosis.

Furthermore, in a multivariate Cox model, including serum
AFP, tumor stage, tumor grading, presence of cirrhosis,
gender, age, GRB2 expression, GAB1 expression and
combined GRB2/GAB1 expression, we found that GRB2
expression (both P=0.01, Table 2), GAB1 expression (both
P=0.01, Table 2) and combined GRB2/GAB1 expression (both

Figure 4.  Co-expression network of 331 candidate HCC markers constructed using the K-core analysis.  Nodes in different
cores are marked with various colors. Blue edges refer to the shortest paths through the interaction between GRB2 and GAB1 for
the connection of different cores.
doi: 10.1371/journal.pone.0085170.g004

Integrative Analysis of Potential Markers for HCC

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e85170



P=0.001, Table 2) were independent poor prognostic factors for
both 5-year disease-free survival and 5-year overall survival in
HCC.

Discussion

Since crucial molecules often show relatively slight changes
between groups of samples (e.g. normal vs. disease),
identifying disease related molecules only from differential

analysis of high-throughput data may be poorly annotated and
lack of biological significance. Our previous studies suggest
that organized knowledge, such as molecular interaction
networks and biological pathways, may help high-throughput
data analysis in significant ways [11,12]. In the current study,
we combined the expression profile and interaction network
analyses to identify a list of biologically significant HCC related
markers and pathways. We also validated the clinical
significance of crucial candidate HCC markers for human HCC.

Figure 5.  Representative immunohistochemical images of GRB2 (A and B), GAB1 (D and E) and p-ERK1 (G and H)
expression in HCC and adjacent non-neoplastic liver tissues (Original magnification×400).  Statistical analyses of IRS for
GRB2 (C), GAB1 (F) and p-ERK1 (I) immunostainings in HCC and adjacent non-neoplastic liver tissues. GRB2 positive staining was
localized in the cell nucleus and cytoplasm, while GAB1 positive staining was localized in the cytoplasm of tumor cells in HCC
tissues. Compared with the adjacent nonneoplastic tissues, the expression levels of GRB2 (IRS for HCC vs. nonneoplastic liver:
6.32±1.50 vs. 2.67±0.32, P<0.001) and GAB1 (IRS for HCC vs. nonneoplastic liver: 5.72±0.95 vs. 1.75±0.48, P<0.001) proteins
were all significantly increased in HCC tissues. More interestingly, in all four groups according to the combined expression of GRB2
and GAB1, GRB2-high/GAB1-high patients expressed the highest level of p-ERK1 protein (all P=0.01).
doi: 10.1371/journal.pone.0085170.g005
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Figure 6.  Disease-free survival and overall survival curves for two groups defined by low and high expression of GRB2 (A
and B) and GAB1 (C and D), and for four groups defined by combined expression of GRB2 and GAB1 (E and F), in patients
with HCC.  The patients with high GRB2 and GAB1 expression had a significantly shorter 5-year overall and disease-free survival
rate than those with low GRB2 and GAB1 expression (both P=0.008). In addition, the results by pairwise comparisons showed that
the statistically significant difference of overall and disease-free survival existed between GRB2-high/GAB1-high patients and any of
other three groups (both P<0.001). In all four groups, GRB2-high/GAB1-high patients had the poorest prognosis.
doi: 10.1371/journal.pone.0085170.g006
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Based on network theory, cancer genes and proteins do not
function in isolation; instead, they work in interconnected
pathways and molecular networks at multiple levels [37]. Here,
we constructed the PPI network of HCC significant proteins
obtained from high-throughput detection and screened the
candidate HCC markers by measuring the topological
characteristics. We calculated degree centrality, betweenness
centrality and closeness centrality of a node, and also
evaluated the importance of co-expression sub-network by K-
core analysis and the influence of PPI in information transfer by
edge-betweenness algorithm. In large real world networks, the
node degree distributions often show a heavy tail, which means
that there are a few, but not zero, nodes with very high node
degrees. These nodes are frequently called hubs, and play a
critical role in the network [38]. On this basis, we identified
2098 hub HCC significant proteins from differential expression
profile. In addition, we calculated degree centrality,
betweenness centrality, closeness centrality and K-coreness to
identify 'Central' nodes which are important and can reach the
whole network more quickly than non-central nodes as
candidate HCC markers. Moreover, the K-core analysis was
performed to construct k-core sub-networks of candidate HCC
markers in order to uncover the co-expression modules which
are embedded in the center of the network. Our data found that
GAB1 was located in the innermost core. More importantly, the
results of the edge-betweenness algorithm showed that the
interaction between two candidate HCC markers--GRB2 and
GAB1 had the highest edge-betweenness, suggesting that
there may be the largest number of shortest paths through this
interaction which may play a crucial role in connecting various
sub-networks in HCC related network.

Furthermore, we determined the expression patterns of
GRB2 and GAB1 proteins in 130 HCC tissues and paired

Table 2. Multivariate survival analysis of five-year overall
and disease-free survival in 130 patients with hepatocellular
carcinoma.

Features Five-year overall survival Five-year disease-free survival

 HR 95% CI P HR 95% CI P

Age 1.132 0.316-3.516 0.192 1.536 0.322-3.736 0.125

Gender 1.191 0.345-3.857 0.136 1.559 0.357-3.831 0.131

Serum AFP 1.931 0.685-4.056 0.063 1.953 0.615-4.273 0.062

Tumor stage 2.879 1.366-5.196 0.009 2.686 1.386-6.009 0.01

Tumor grade 1. 563 0.609-4.088 0.081 1.551 0.607-4.466 0.086

Presence of
cirrhosis

1.919 0.738-4.102 0.063 1.921 0.793-4.219 0.062

GRB2
expression

3.798 1.205-8.038 0.01 3.820 1.213-8.186 0.01

GAB1
expression

3.683 1.166-7.679 0.01 3.892 1.172-7.889 0.01

GRB2/GAB1
co-
expression

5.829 1.309-12.061 0.001 5.951 1.318-12.226 0.001

doi: 10.1371/journal.pone.0085170.t002

adjacent non-neoplastic tissues using immunohistochemistry
analysis. GRB2 is a ubiquitously expressed adapter protein
composed of one SH2 domain flanked by amino- and carboxy-
terminal SH3 domains [39]. It provides a critical link between
cell surface growth factor receptors and the Ras signaling
pathway [40]. Accumulating studies have demonstrated the
importance of GRB2 in the oncogenesis of several important
human malignancies. Functionally, GRB2 contributes to tumor
growth, invasiveness and metastasis making it a high priority
target for anti-cancer drug development [41]. GAB1 belongs to
the Gab family which has emerged as crucial signaling
compartments in metazoans [42]. GAB1 is involved in the
amplification and integration of signal transduction evoked by a
variety of extracellular stimuli, including growth factors,
cytokines, antigens, and other molecules [43]. GAB1 plays a
role in tumorigenesis by involving in c-Met receptor signaling,
since c-Met is activated, mutated, or overexpressed in a wide
range of cancers [44]. It also functions as a mediator of EGFR-
signaling-induced tumorigenesis in glioblastomas and intestinal
adenomas [45]. Notably, the interaction between GRB2 and
GAB1 mediates signaling between upstream cell surface
receptor tyrosine kinases (RTKs) and downstream effectors
such as Ras and Akt involved in a diverse array of cellular
activities including growth, survival, proliferation and oncogenic
transformation [46]. The disruption of this interaction may be
implicated in oncogenesis of various human cancers. In HCC,
Yoon et al. [47] indicated that the GRB2-mediated signaling
pathway may be involved in tumor progression and
differentiation of hepatocarcinoma cells; Kondo et al. [48]
reported that coupling of GRB2 to GAB1 could mediate the
HGF-induced strong activation of the ERK pathway, which is
required for the inhibition of HepG2 cell proliferation. In the
current study, we confirmed that the overexpression of GRB2
mainly occurred in the cell nucleus and cytoplasm in HCC
tissues relative to adjacent non-neoplastic tissues, and that
GAB1 expression was markedly upregulated in the cytoplasm
of tumor cells in HCC tissues compared with paired adjacent
non-neoplastic tissues. In addition, our data showed that the
HCC tissues showing high expression of both GRB2 and GAB1
also displayed the activation of ERK1 protein, suggesting that
GRB2 and GAB1 might induce the activation of the HGF/
MAPK/ERK pathway, which has been tied to oncogenic
transformation and cancer progression in HCC [49,50].
Moreover, both the increased expression of GRB2 and GAB1
proteins were significantly associated with aggressive
clinicopathological features of HCC. Interestingly, the
coexpression of GRB2 and GAB1 may be associated with
serum AFP, tumor stage, tumor grade and patient prognosis.
To the best of our knowledge, this is the first study to identify
the coexpression of GRB2 and GAB1 as a useful diagnostic
and prognostic marker for HCC patients.

In conclusion, this study provided an integrative analysis by
combining expression profile and interaction network analysis
to identify a list of biologically significant HCC related markers
and pathways. Further experimental validation indicated that
the aberrant expression of GRB2 and GAB1 proteins may be
strongly related to tumor progression and prognosis in patients
with HCC. The overexpression of GRB2 in combination with
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upregulation of GAB1 may be an unfavorable prognostic factor
for HCC. However, large scale studies will be required for
further verification of the critical roles of other candidate HCC
markers in the development and progression of HCC.
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