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Abstract

Jasmonate (JA) signalling is mediated by the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins, which are degraded upon
JA perception to release downstream responses. The ZIM protein domain is characteristic of the larger TIFY protein family. It
is currently unknown if the atypical member TIFY8 is involved in JA signalling. Here we show that the TIFY8 ZIM domain is
functional and mediated interaction with PEAPOD proteins and NINJA. TIFY8 interacted with TOPLESS through NINJA and
accordingly acted as a transcriptional repressor. TIFY8 expression was inversely correlated with JAZ expression during
development and after infection with Pseudomonas syringae. Nevertheless, transgenic lines with altered TIFY8 expression
did not show changes in JA sensitivity. Despite the functional ZIM domain, no interaction with JAZ proteins could be found.
In contrast, TIFY8 was found in protein complexes involved in regulation of dephosphorylation, deubiquitination and O-
linked N-acetylglucosamine modification suggesting an important role in nuclear signal transduction.
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Introduction

Jasmonates (JAs) are plant-specific hormones that regulate

processes such as vegetative growth, cell cycle progression,

trichome formation, senescence, male fertility and responses to

both abiotic and biotic stresses. JAs are known to control the

production of a myriad of species-specific secondary metabolites.

Moreover, JA signals can be integrated with signals of other plant

hormones such as auxins, abscisic acid, ethylene, gibberellins and

salicylic acid (SA), which fine-tunes different responses, for

example during plant defence [1–7]. Conversely, pathogens have

developed diverse mechanisms to suppress plant defences and

successfully infect the plants [7,8]. One of the best studied cases is

the hemibiotrophic bacterial pathogen Pseudomonas syringae. Several

pathovars of this species produce the phytotoxin coronatine

(COR), an important virulence factor and a structural analogue of

(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile), the bioactive form of JAs

[9]. Following P. syringae infection, COR mimics JA-Ile, and

thereby induces the JA signalling pathway. In turn, the activation

of the JA-responses partially inhibits the SA-dependent defence

responses that are triggered after P. syringae infection, thereby

allowing bacterial colonization and symptom development [7,10–

13].

The discovery of the JASMONATE-ZIM DOMAIN (JAZ)

proteins signified a breakthrough in the study of JA perception and

signalling [14–16]. JAZ proteins act as negative regulators of JA

signalling. In the absence of JAs, they bind and repress multiple

transcription factors controlling the expression of JA-responsive

genes. The presence of JA-Ile targets JAZ proteins for proteasomal

degradation, releasing the transcription factors to regulate JA-

dependent gene expression [17,18].

Arabidopsis (Arabidopsis thaliana) has 12 JAZ proteins that belong

to the plant-specific TIFY family, named after the core TIF[F/

Y]XG motif within the Zinc-finger protein expressed in Inflores-

cence Meristem (ZIM) protein domain, conserved amongst all the

family members [19,20]. The TIFY family can be divided in two

classes, according to the presence of a C2C2-GATA domain

(Figure 1). The Arabidopsis genome harbours three proteins that

contain a C2C2-GATA and a divergent ZIM domain, ZIM

(At4g24470), ZIM-LIKE1 (ZML1, At3g21175), and ZML2

(At1g51600), which are classified as group I TIFY proteins. None

of the 12 JAZ proteins contains the C2C2-GATA domain and

thus all belong to Class II. Other members of class II are TIFY8

(At4g32570) and the PEAPOD (PPD) proteins PPD1 (At4g14713)

and PPD2 (At4g14720) (Figure 1).

The different domains present in the JAZ proteins (Figure 1)

provide the specificity for protein-protein interactions that

determine the differential formation of complexes in the absence

or presence of the hormone [18]. All 12 JAZ proteins possess a C-

terminal Jas domain [16], which mediates interaction with several

transcription factors, including several bHLH- and R2R3-MYB-

type factors that regulate different JA-dependent responses [18].

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e84891



The Jas domain also mediates the interaction of JAZ proteins with

CORONATINE-INSENSITIVE1 (COI1) [14–16]. COI1 is the

F-box subunit of SCFCOI1, an E3-ubiquitin ligase complex

[21,22]. JA-Ile or COR can act as a ‘‘molecular glue’’ between

COI1 and the JAZ proteins [23–26]. This interaction targets the

JAZ proteins for 26S-mediated proteasomal degradation.

The ZIM domain is known to mediate homo- and hetero-

dimerization between JAZ proteins [27,28] and to exert the

repressor function of the JAZ proteins, as it enables the

recruitment of the co-repressor TOPLESS (TPL) through

interaction with the NOVEL INTERACTOR OF JAZ (NINJA)

protein [29,30]. NINJA possesses an ETHYLENE RESPONSE

FACTOR (ERF)–associated amphiphilic repression (EAR) motif

through which it can interact with TPL. A subset of the JAZ

proteins, i.e. JAZ5 to JAZ8, has been found to contain EAR motifs

as well [31] (Figure 1) and were recently reported to be capable of

directly interacting with TPL without a need for NINJA [32–34].

Compared to the JAZs, the PPD1 and PPD2 proteins contain

an additional N-terminal PPD-domain and a divergent C-terminal

Jas domain [19]. PPD proteins have been described to regulate

leaf lamina size [35] and the PPD2 protein was reported as an

interactor of the coat protein promoter of the Tomato golden mosaic

virus, suggesting DNA-binding activity [36].

The TIFY8 protein (encoded by At4g32570) is an atypical TIFY

family member for which no other specific protein domains

besides the ZIM domain have been described. TIFY8 has been

reported to interact with the NINJA adaptor protein and a wide

set of proteins in yeast two-hybrid assays [29,34], and to be

downregulated upon Cabbage leaf curl virus infection [37]. To date,

its function remains unknown.

In this study, we report on the characterization of TIFY8. We

confirm the ZIM domain to be functional and mediate interaction

with NINJA-TPL and PPD proteins. TIFY8 expression or TIFY8

stability were not affected by JA treatment, nor was interaction

with known JA-signalling proteins besides NINJA observed.

Instead, Tandem Affinity Purification (TAP) of TIFY8 identified

multiple interaction partners including possible transcriptional

regulators involved in plant growth and development. According-

ly, overexpression of TIFY8 did not lead to altered JA responses

but was correlated with reduced root growth.

Results

The TIFY8 protein is an atypical TIFY protein
A phylogenetic tree based on the ZIM domain sequence shows

that the TIFY8 ZIM domain is closely related to that of the JAZ

proteins, but that TIFY8 lacks additional domains present in the

TIFY family such as the CCT, C2C2-GATA, EAR, Jas or PPD

domains (Figure 1) [20]. This atypical domain structure prompted

us to study TIFY8 conservation in the plant kingdom. According

to the PLAZA comparative genomics platform (http://

bioinformatics.psb.ugent.be/plaza; [38]) TIFY8 is present in the

fern Selaginella moellendorffii, the moss Physcomitrella patens and in

dicots, but appears to be lost in monocots. Within the dicots

studied, TIFY8 orthologues are mostly present as unique genes,

including in Arabidopsis (Figure S1).

TIFY8 contains a functional ZIM domain
The ZIM domain is known to mediate homo- and hetero-

dimerization of JAZ proteins [27,28] and interaction with NINJA

[29]. To investigate if the ZIM domain sequence observed in

TIFY8 is functional, we tested interaction of TIFY8 with all group

II TIFY proteins and NINJA. Direct binding of TIFY8 to both

NINJA and PPD proteins was observed, but not to any of the JAZ

proteins (Figure 2A). Interaction of all class II TIFY proteins with

NINJA was tested in parallel as a control and confirmed

interaction with most JAZ as previously reported [29]. TIFY8

homodimerization could not be assessed due to autoactivation.

Finally, using truncations of TIFY8 we confirmed that the ZIM

domain of TIFY8 is necessary and sufficient for the interaction

with NINJA and PPD2 (Figure 2B–C).

The TIFY8 protein lacks the Jas-domain, typical for the JAZ

proteins and required for their interaction with COI1. We tested

stability of the TIFY8 protein in the presence of JAs. Arabidopsis

seedling cultures producing protein G/streptavidin-binding pep-

tide (GS)-tagged TIFY8 protein (see also below) were treated for

1 h with 50 mM JA and protein accumulation was scored by

immunoblot analysis. TIFY8-GS accumulation was not affected

by JA treatment, in contrast to that of GS-tagged JAZ1 proteins,

which were largely degraded within 1 h of JA application

(Figure 2D). Together, these data support that the TIFY8 protein

is stable upon JA treatment corresponding to the absence of a Jas

domain.

Identification of TIFY8 interacting proteins
To unravel the molecular function of TIFY8, TAP in

Arabidopsis cell cultures [39] was performed. GS-tagged TIFY8

(TIFY8-GS) was stably expressed under control of the CaMV 35S

promoter and TIFY8 protein complexes were purified. The

experiment was performed using MALDI-TOF/TOF peptide

identification and on independent purifications with Orbitrap

Figure 1. The TIFY protein family in Arabidopsis. Phylogenetic
tree of the Arabidopsis TIFY family members based on the ZIM domain
(Z) protein sequence. AT4G27110 and AT3G20580 were chosen as the
outgroup. AT4G27110 contains a TIFY motif but is not conserved in the
domain outside this motif. Consequently, it is not considered to be a
real TIFY protein. The second protein, AT3G20580, is its closest
homologue within the parsed region. The numbers above the branches
are bootstrap values from 100 replicates and assess the robustness of
the tree. Additional protein domains are shown. C: CONSTANS, CO-like,
and TOC1 (CCT) domain; G: C2C2-GATA Zn-finger; P: PEAPOD domain; J:
Jas domain; J* Jas-like domain; E: EAR domain. Figure adapted from
[20].
doi:10.1371/journal.pone.0084891.g001
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mass spectrometry, shown to increase the number of detected

interactor-derived peptides [40]. In the latter experiments we also

included samples of cell cultures treated for 1 h with JA.

We could confirm interaction with NINJA and PPD2.

Moreover, new proteins not previously associated with NINJA

or JAZ proteins were retrieved (Table 1, Table S1 and Dataset S1).

Remarkably, TPL was identified only after JA treatment, a fact

that might be explained by an increase in the TPL protein pool

available for interaction with TIFY8 following JA-mediated

degradation of the JAZ proteins. In agreement with the Y2H

analysis, TAP with TIFY8 did not retrieve any of the JAZ proteins

as potential interactors.

Our results reflect a wide diversity within the TIFY8 interactors

(Table 1); suggesting TIFY8 may have pleiotropic roles. For

instance, several protein phosphatases (PP2As) and an ubiquitin

protease (UBP12) are detected. The latter has been shown to be an

active ubiquitin protease that, together with its homologue

UBP13, negatively regulates plant immunity [41]. Two PHD-

finger proteins, OBERON2 (OBE2) and TITANIA (TTA2), are

also found. These two proteins belong to a small protein family

formed by 4 members (OBE1/2 and TTA1/2), which play a role

in regulating MONOPTEROS-mediated gene expression during

embryonic root meristem initiation [42,43]. Also the N-acetylglu-

cosaminyltransferase SPINDLY (SPY) was retrieved. SPY is

known to function as a negative regulator of GA signalling and

also mediates cytokinin responses in leaves and flowers [44,45].

Finally two homologous proteins of unknown function were

retrieved, encoded by At4g32295 and At3g24150.

TIFY8 recruits TOPLESS via NINJA
We further studied the interaction with NINJA and TPL, given

our interest in these proteins and their established role in

orchestrating repression of gene expression [29]. First, we assessed

the intracellular localization of TIFY8. Confocal imaging of

Arabidopsis plants expressing a TIFY8-GFP fusion protein showed

that TIFY8 localizes to the nucleus (Figure 3A–C). This also

correlates with the proven nuclear localization of many of the

interacting proteins detected by TAP, such as NINJA, PPD, SPY

or OBE2 [29,36,46,47]. JAZ proteins function as transcriptional

repressors by recruiting the repressor protein TPL through

NINJA, forming a ternary repression complex [29]. Hence, we

studied the capacity of TIFY8 to form such repressor protein

complexes. Since TIFY8 lacks an EAR motif itself, it likely cannot

directly interact with TPL. This is supported by Y2H assays in

which we tested interactions with the N-terminal fragment of TPL

(TPL-N), containing the LisH, CTLH and TOP domains which

were shown to be essential for binding to the EAR motif and

mediate other protein-protein interactions [48,49]. TIFY8 was

unable to bind TPL-N in contrast to NINJA (Figure 3D). This

corroborates our previous report showing direct interaction

Figure 2. The ZIM domain of TIFY8 is functional. A, Y2H analysis of TIFY8 interaction with class II TIFY proteins. NINJA was included as a
positive control for JAZ interaction. B, C, Analysis of TIFY8 truncations to map the interaction domain with NINJA (B) and PPD2 (C). Co-transformation
of the PJ69-4A yeast strain with TIFY8 or NINJA and all TIFY family members in Gateway-compatible pGADT7 and pGBKT7 vectors, respectively.
Transformed yeasts were spotted on control medium lacking Leu and Trp (-2) or selective medium additionally lacking His (-3). AD: activation domain;
BD: DNA-binding domain. Controls for autoactivation are provided by transformation with the corresponding empty vector. D, Immunoblot analysis
of 7 day-old Arabidopsis seedlings overexpressing the TIFY8- or JAZ1-GS fusions after 1 h treatment with either 50 mM JA or ethanol (mock).
Immunoblot using the Peroxidase Anti-Peroxidase (PAP) (top) and anti-cdc2 (bottom) antibodies.
doi:10.1371/journal.pone.0084891.g002
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between TPL and NINJA [29,34]. Next, we performed a yeast-

three hybrid assay. In addition to GAL4-AD fused TIFY8 and

GAL4DBD fused TPL-N we expressed HisFLAG-NLS fused

NINJA in the yeast. Only in presence of NINJA, but not the empty

vector, the reporter is activated (Figure 3E). This suggests that that

NINJA can act as an adaptor protein between TIFY8 and TPL

similar as we have shown for JAZ3 [50].

TIFY8 acts as a transcriptional repressor
To assess the potential repressor activity of TIFY8 we

performed transient expression assays in tobacco protoplasts.

TIFY8 was fused to the GAL4DBD and co-expressed with a

construct expressing the firefly luciferase (fLUC) reporter gene

under the control of GAL4 binding elements. Targeting TIFY8 to

the UAS promoter reduced basal expression strongly, comparable

to the effect of JAZ1:GAL4DBD (Figure 3F). Taken together, our

findings demonstrate that TIFY8 acts as a repressor of gene

expression, similar to the JAZ proteins [29].

TIFY8 expression is repressed by infection with
Pseudomonas syringae

It is known that JAZ transcription is rapidly and highly induced

by JAs [14,15,29]. Accordingly, JAZ10 expression in Arabidopsis

Col-0 seedlings was induced after 24 h treatment with different

concentrations of JA and coronatine (Figure 4A). In contrast,

TIFY8 transcript levels were found not to be altered (Figure 4B).

Consulting publicly available microarray data revealed that TIFY8

gene expression can be altered by different (a)biotic stresses.

Amongst them, the hemibiotrophic pathogen P. syringae pv. tomato

DC3000 (Pst DC3000) causes transcriptional repression of TIFY8

(http://www.genevestigator.com; [51]). To validate these obser-

vations, bioassays with the virulent Pst DC3000 strain were

performed. Plant samples of Col-0 wild type plants were harvested

prior to and 24 h after inoculation with Pst DC3000. JAZ10 was

highly induced (Figure 4C) as reported before [52]. In contrast,

TIFY8 expression was significantly downregulated, in agreement

with the public microarray data (Figure 4D).

Study of TIFY8 expression by promoter::GUS analysis
Analysis of TIFY8 expression with Genevestigator (http://www.

genevestigator.com; [51]) or eFP Browser (http://bar.utoronto.

ca/efp/cgi-bin/efpWeb.cgi; [53]) suggested that TIFY8 might

display an expression pattern opposite to that of many of the JAZ

members, in particular JAZ1, JAZ2, JAZ3, JAZ5, JAZ7, JAZ8 and

JAZ10 (Figure S2).

To study the TIFY8 expression pattern throughout the plant’s

life span in more detail, we generated transgenic lines carrying a

pTIFY8::GUS-GFP reporter construct and compared GUS

expression in these lines with that in Arabidopsis lines carrying

the pJAZ1::GUS-GFP construct that we previously reported [54].

Sampling seedlings at several time points during early develop-

ment showed that TIFY8 is expressed both in shoots and roots. In

shoots, the TIFY8 promoter drives expression in cotyledons and

young true leaves, in which expression gradually diminishes

towards the base of the leaf during development (Figure 5A, B and

J). Strong GUS activity was detected in the shoot apical meristem

and emerging leaves (Figure 5E). In roots, we detected very strong

activity in the root tip (Figure 5G). In several organs, such as the

root tip and cotyledons, pTIFY8-driven expression pattern is

opposite to that driven by pJAZ1. In root tips, pTIFY8 is strongly

active whereas pJAZ1 seems to be inactive. Conversely, the TIFY8

promoter does not drive reporter gene expression in the cotyledon

tip, in contrast to the JAZ1 promoter (Figure 5E-F and 5C–D,

respectively). Additionally, pTIFY8-driven GUS activity was

Table 1. Overview of prey proteins identified through TAP using TIFY8 as bait.

AGI Protein MALDI TOF/TOF mock Orbitrap Mock Orbitrap 50 mM JA

TIFY proteins

AT4G32570 TIFY8 2 2 2

AT4G14720 PPD2 2 2 2

Repressor proteins

AT4G28910 NINJA 2 2 2

AT1G15750 TPL 2

Other

AT4G32295 Unknown 2 2 2

AT3G24150 Unknown 2 2

AT3G11540 SPY 2 2

AT1G51690 ATB alpha 2 2

AT5G48160 OBE2 2 2

AT3G63500 TTA2 2 2

AT3G08530/AT3G11130 Clathrin, heavy chain 1 2

AT4G23460/AT4G11380 Adaptin family protein 1 1

AT3G25800 PP2A-4 2

AT2G42500 PP2A-3 2

AT5G06600 UBP12 2

Proteins were identified using peptide-based homology analysis of MS data. Background proteins identified in control experiments were withdrawn. Number indicates
the times the prey was identified in 2 experiments with each bait protein. Abbreviations: AGI, Arabidopsis Genome Identifier; PPD2, PEAPOD2; NINJA, NOVEL
INTERACTOR OF JAZ; TPL, TOPLESS; SPY, SPINDLY; TTA2, TITANIA2; PP2A, PROTEIN PHOSPHATASE2A; UBP12, UBIQUITIN-SPECIFIC PROTEASE. Detailed MS data can be
found in Table S1 and Dataset S1.
doi:10.1371/journal.pone.0084891.t001
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found in lateral roots, with high expression levels in the elongating

region and the lateral root tip (Figure 5I). In later stages, no GUS

expression was detected in mature rosette leaves (data not shown).

In flowers, pTIFY8 activity was restricted to younger flowers and

not detected in older flowers or siliques, whereas the JAZ1

promoter was active in the stigma at later stages of flower

development and in the base and the tip of siliques (Figure 5L–O).

TIFY8 overexpression affects primary root growth
Because of the intriguing expression pattern we decided to

generate transgenic lines with altered TIFY8 expression and assess

their phenotypes and response to JAs. First, we generated two

independent transgenic lines with enhanced TIFY8 expression,

driven by a pCaMV35S promoter (Figure 6A). We assessed the

response to JA by measuring root growth inhibition and

anthocyanin accumulation, two of the most commonly used

parameters to score JA-responsiveness in Arabidopsis. In the

TIFY8-OE lines, root growth (but not anthocyanin accumulation)

was already significantly reduced in control conditions in both

lines. The TIFY8-OE1 line, which showed strongest TIFY8

overexpression, was also the most affected in root growth

(Figure 6A–B), pointing towards an inverse correlation between

ectopic TIFY8 expression levels and root size. Besides this

pronounced phenotype, we did not observe significant genotype

6 treatment effects for root growth inhibition nor anthocyanin

accumulation in the TIFY8-OE lines when seedlings were treated

with 0.5 mM MeJA (Figure 6B–C). Higher doses than 0.5 mM

MeJA rendered plants that were too small and that consequently

could not be accurately measured. Overall these data suggest that

altered TIFY8 overexpression does not alter the JA response in

transgenic plants, at least not under the conditions tested.

Characterization of TIFY8 T-DNA insertion lines
To further characterize TIFY8 function, we selected a GABI-

KAT and a SAIL T-DNA insertion lines [55,56], referred to as

tify8-1T and tify8-2T, respectively. Sequencing analysis revealed

that the T-DNA was inserted right after the start codon of TIFY8

in tify8-1T and after 219 bp in the first intron in tify8-2T

(Figure 6D). We investigated the generation of TIFY8 transcripts

by real-time PCR (RT-PCR) in these lines with multiple primer

combinations covering the entire length of the gene. Both T-DNA

insertions led to aberrant TIFY8 transcription as a reduction of at

least 70% was seen in the levels of transcripts corresponding to the

first exon and encoding the N-terminus of TIFY8 (primer

combination 1, Figure 6D–E). Unexpectedly, in both lines

transcripts of downstream exons were present in levels that slightly

exceeded those of wild-type Arabidopsis plants (Figure 6E). The

first intron of TIFY8 is 693 bp long compared to an average and

median length of 173 and 101 bp respectively for Arabidopsis

[57]. Therefore we cannot exclude that the first intron functions as

an alternative promoter of a functional, but truncated, TIFY8

transcript that misses the first exon and that contains a start codon

in frame in exon 2 (Figure 6D). We therefore consider the

transcription and function of TIFY8 similarly disturbed in these

two lines, possibly leading to expression, if any, of a truncated

TIFY8 protein.

We assessed root growth for both lines and anthocyanin

accumulation in tify8-1T in absence and presence of JA but no

differences were observed compared to Col-0 (Figure 6F–G).

Discussion

TIFY8 is not involved in JA signalling
Prompted by the TIFY-family phylogeny (Figure S1) and the

interesting developmental expression pattern of TIFY8, which is

the inverse of many JAZ genes (Figure S2), we investigated a

possible role of TIFY8 in JA signalling. At the protein level, we

could show that the ZIM domain of TIFY8 was functional and

facilitated interaction with PPD proteins and NINJA (Figure 2B–

C). However, no evidence in Y2H or TAP was obtained for

interaction with JAZ proteins although the ZIM domain is known

to be responsible for homo- and heterodimerization of JAZ

proteins [27,28]. JA did not influence TIFY8 levels, neither at the

transcript or protein level (Figure 2D and Figure 4B). Further-

more, the plant lines with altered TIFY8 expression that we

generated did not show obvious altered JA responses (figure 6B–C

and F–G). It is currently unclear in which process TIFY8 is

implicated. Overall this suggests that TIFY8 does not directly

interfere in JA signalling, though we cannot exclude that it acts in

Figure 3. TIFY8 is a nuclear transcriptional repressor. A–C, TIFY8
localizes to the nucleus. Confocal root tip imaging of 4-day-old
Arabidopsis seedlings overexpressing the TIFY8-GFP fusion protein
(A), free GFP (B) or SV40-NLS fused GFP (C), respectively. Propidium
iodide staining was performed prior to imaging to enhance the
visualization of the cells. D, NINJA, but not TIFY8, interacts directly with
TPL in Y2H assays. Co-transformation of the PJ69-4A yeast strain with
TIFY8 or NINJA and the N-terminal fragment of TPL (TPL-N) in pGADT7
or pGBKT7 vectors, respectively. Transformed yeast were spotted on
control medium lacking Leu and Trp (-2) or selective medium
additionally lacking His (-3). E, TIFY8 recruits TPL through interaction
with NINJA in Y3H assays. Co-transformation of the PJ69-4A yeast strain
with TIFY8 and TPL-N in Gateway-compatible pGADT7 and pGBKT7
vectors, respectively, together with NLS-3xFLAG-6xHis tagged NINJA in
the pMG426 vector. Transformed yeast were spotted on control
medium lacking Leu, Trp and Ura (-3) or selective medium additionally
lacking His (-4). A negative control is provided by substitution of NINJA
by the empty pMG426 vector. F, TIFY8 acts as a transcriptional
repressor in transient expression assays. Transactivation activity in
tobacco protoplasts transfected with a pUAS–fLUC reporter construct,
effector constructs fused to GAL4DBD, and a 35S:rLUC normalization
construct. Error bars represent 6SE of eight biological replicates.
Asterisks represent significant differences (***, p,0.001, one-way
ANOVA, Tukey HSD’s Post Hoc test).
doi:10.1371/journal.pone.0084891.g003
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processes that are also regulated by JA signalling, such as root

development or resistance to pathogens like P. syringae. The advent

of new genome editing tools for generating knock-out lines in

Arabidopsis holds great promise to study the function of genes

such as TIFY8 with possible complex transcription and insufficient

coverage by T-DNA insertion lines [58].

TIFY8 is a repressor of gene expression
We could show that TIFY8 acts as a transcriptional repressor

when targeted to a heterologous promoter (Figure 3F). This

corresponds with the proposed recruitment of TPL through the

adaptor protein NINJA. Recently, TPL has emerged as the

common element of repressor complexes that control a variety of

plant processes. At least 219 transcription factors contain the EAR

motif responsible for TPL interaction [31]. In addition, transcrip-

tion factors can recruit TPL via adaptor proteins such as NINJA or

the recently described protein TIE1 that links TCP transcription

factors to TPL [59]. Accordingly, many TPL interactors have

been found in Y2H screens [34,60], which has led to the coining of

the terms ‘‘EAR repressorome’’ and ‘‘TPL interactome’’.

We could not obtain evidence that TIFY8 binds plant DNA.

Therefore, we postulate that it might itself function as an adaptor,

binding transcription factors. In agreement with this, the TIFY8

protein has been found to interact with several other proteins in

Y2H-screens [34] and TAP analysis (this study). Some of these

interactors correspond to transcription or other regulatory factors

potentially involved in different pathways. These include INNER

NO OUTER (INO, At1g23420, involved in ovule outer

integument development, [61]), RESPONSE REGULATOR 14

(ARR14, At2g01760, involved in cytokinin signalling, [62]),

ABERRANT LATERAL ROOT FORMATION 14 (ALF4,

At5g11030, involved in lateral root development, [63]) from the

Y2H-screen and PPD (involved in leaf development, [35]),

OBERON (OBE) and TITANIA (TTA) (both involved in

embryonic root meristem initiation, [42,43]), and SPINDLY

(involved in cytokinin and gibberellin signalling, [45,64]) reported

here. The obe1 obe2 and tta1 tta2 double mutants are defective in

root development [42,43]. Therefore, it is tempting to speculate

that the expression patterns of TIFY8 in the root and the root

phenotype of the TIFY8-OE1 line correlate with the interaction of

TIFY8 with proteins such as OBE2 and TTA2 and postulate a

role for TIFY8 in the regulation of root growth and development.

Figure 4. TIFY8 is not induced by JA and is repressed by Pst DC3000 infection. A–B, RT-PCR analysis of JAZ10 (A) TIFY8 (B) expression after JA
treatment. Arabidopsis wild-type seeds were germinated on MS media and, after 8 days, transferred to liquid MS media supplied with different
concentrations of JA or COR or equivalent amounts of DMSO (mock treatment). Transcript levels were studied 24 h after treatment. Error bars
represent 6SE of four biological replicates. C–D, JAZ10 and TIFY8 expression after infection with Pst DC3000. Transcript levels were studied in 5-week-
old Arabidopsis rosette leaves prior to or 24 h after inoculation with Pst DC3000. Error bars represent 6SE of three biological replicates. UBC
(AT5G25760) was used as internal control and expression values were normalized to those of the wild-type after mock treatment. (NS, p.0.05;
***, p,0.001, t-test).
doi:10.1371/journal.pone.0084891.g004
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Experimental Procedures

Yeast two-hybrid and three-hybrid assays
Yeast two- and three-hybrid analysis was performed as

described [65]. In brief, the Saccharomyces cerevisiae PJ69-4A yeast

strain was co-transformed with bait and prey expressed from

pGADT7 en pGBKT7 vectors. Transformants were selected on

SD media lacking Leu and Trp (-2). Three individual transfor-

mants were grown overnight in liquid (-2) media, and a tenfold

dilution of these cultures was dropped on control (-2) and selective

media additionally lacking His (-3). Empty vectors were used as

negative controls.

In Y3H assays, the MultiSite pMG426 (Ura) vector was used for

expression of NINJA, driven by the GDP promoter and C-

terminally fused to the SV40 NLS-3xFLAG-6xHis tag ([50];

http://gateway.psb.ugent.be). Yeasts were allowed to grow for 2

days at 30uC before interaction was scored.

Tandem Affinity Purification (using MALDI TOF/TOF MS)
Entry clones containing the CaMV 35S promoter, the bait ORF

and the GS-TAP tag were recombined by MultiSite Gateway LR

reaction with pKCTAP as destination vector [66,67]. Arabidopsis

cell suspension cultures (PSB-D) were transformed without callus

selection as described previously [68]. Tandem affinity purifica-

tions were performed as described [67,68] with the exception that

the soluble protein fraction was obtained by centrifuging twice at

36,900 g for 20 min at 4uC.

Proteolysis and peptide isolation, acquisition of mass spectra by

a 4800 MALDI TOF/TOF Proteomics Analyzer (AB SCIEX),

and MS-based protein homology identification based on the TAIR

genomic database [69] were performed as described in [39].

Experimental background proteins were subtracted based on

approximately 40 TAP experiments on wild-type cultures and

cultures expressing TAP-tagged mock GUS, RFP and GFP

proteins [39].

Tandem Affinity Purification (using LC-MS/MS analysis)
A downscaled purification protocol was used. In short, cell

extracts were made on 2.5 g cell culture and cleared by two

subsequent centrifugation steps at 36,9006g for 20 minutes. In the

first purification step, a protein input of 25 mg was incubated with

25 ml of IgG-Sepharose 6 Fast Flow beads (GE Healthcare). For

the second step, 25 ml of Streptavidin Sepharose High Perfor-

mance (Amersham) was used. Final elution was done with 40 ml

Figure 5. Overview or TIFY8 and JAZ1 promoter gene expression. GUS stains of Arabidopsis plants expressing either TIFY8 or JAZ1 promoter
fusions to GUS and GFP. A, B. TIFY8 promoter expression pattern in 5 and 7 day-old seedlings, respectively. C, D. TIFY8 (C) and JAZ1 (D) promoter
expression in 5 day-old cotyledons. E, F. TIFY8 (E) and JAZ1 (F) promoter expression in the shoot apical meristem and emerging leaves of 5 day-old
seedlings. G, H. TIFY8 (G) and JAZ1 (H) promoter expression in the root tip of 5 day-old Arabidopsis seedlings. I. TIFY8 promoter expression in lateral
root of a 10 day-old seedling. J, K. TIFY8 (J) and JAZ1 (K) promoter expression in 14 day-old seedlings. L–O. TIFY8 and JAZ1 promoter expression in
flowers (L, M) and siliques (N, O).
doi:10.1371/journal.pone.0084891.g005
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Figure 6. Characterization of transgenic lines with altered TIFY8 expression. A, RT-PCR analysis of TIFY8 expression levels in two
independent TIFY8-OE lines and compared to wild type. Transcript levels were studied in two-week-old Arabidopsis TIFY8-OE and wildtype seedlings.
UBC (AT5G25760) was used as internal control and expression values were normalized to those of the wildtype. Error bars represent 6SE of three
technical replicates. B–C, Analysis of JA-responsiveness of the TIFY8-OE lines compared to wild-type. Root growth inhibition was scored on 11 days
after stratification (DAS) (B) while anthocyanins were extracted for the same samples used for root growth but harvested 14 DAS (C). Four technical
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16NuPAGE sample buffer containing 20 mM Desthiobiotin for 5

minutes. Beads were separated from eluate in a 1-ml Mobicol

column (MoBiTec, Göttingen, Germany).

Eluted proteins were separated in a short run of 7 minutes on a

4–12% gradient NuPAGE gel (Invitrogen) and visualized with

colloidal Coomassie Brilliant Blue staining. The protein gel was

washed for 2 hours in H2O, polypeptide disulphide bridges were

reduced for 40 min in 25 mL of 6,66 mM DTT in 50 mM

NH4HCO3 and sequentially the thiol groups were alkylated for

30 min in 25 mL 55 mM IAM in 50 mM NH4HCO3. After

washing with H2O, a broad zone containing the proteins was cut

from the protein gel, sliced into 24 gel plugs, and collected

together in a single Eppendorf. Gel plugs were washed twice with

H2O, dehydrated with 95% CH3CN (v/v), rehydrated with H2O

and dehydrated again with 95% CH3CN (v/v). Dehydrated gel

particles were rehydrated in 60 mL digest buffer containing 750 ng

trypsin (MS Gold; Promega, Madison, WI), 50 mM NH4HCO3

and 10% CH3CN (v/v) for 30 min at 4uC. Proteins were digested

at 37uC for 3.5 hours.

The obtained peptide mixtures were introduced into an LC-

MS/MS system, the Ultimate 3000 RSLC nano (Dionex,

Amsterdam, The Netherlands) in-line connected to an LTQ

Orbitrap Velos (Thermo Fisher Scientific, Bremen, Germany).

The sample mixture was loaded on a trapping column (made in-

house, 100 mm internal diameter (I.D.) 620 mm (length), 5 mm

C18 Reprosil-HD beads, Dr. Maisch GmbH, Ammerbuch-

Entringen, Germany). After back-flushing from the trapping

column, the sample was loaded on a reverse-phase column (made

in-house, 75 mm I.D. 6150 mm, 5 mm C18 Reprosil-HD beads,

Dr. Maisch). Peptides were loaded with solvent A (0.1%

trifluoroacetic acid, 2% acetonitrile), and separated with a linear

gradient from 2% solvent A’ (0.1% formic acid) to 50% solvent B’

(0.1% formic acid and 80% acetonitrile) at a flow rate of 300 nL/

min, followed by a wash step reaching 100% solvent B’.

The mass spectrometer was operated in data-dependent mode,

automatically switching between MS and MS/MS acquisition for

the ten most abundant peaks in a given MS spectrum. In the LTQ

Orbitrap Velos, full scan MS spectra were acquired in the

Orbitrap at a target value of 1E6 with a resolution of 60,000. The

ten most intense ions were then isolated for fragmentation in the

linear ion trap, with a dynamic exclusion of 20 seconds. Peptides

were fragmented after filling the ion trap at a target value of 1E4

ion counts.

From the MS/MS data in each LC run, Mascot Generic Files

were created using the Mascot Distiller software (version 2.4.1.0,

Matrix Science, www.matrixscience.com/Distiller.html). When

generating these peak lists, grouping of spectra was allowed with

a maximum intermediate retention time of 30 seconds and a

maximum intermediate scan count of 5 was used where possible.

Grouping was done with 0.005 Da precursor tolerance. A peak list

was only generated when the MS/MS spectrum contained more

than 10 peaks. There was no de-isotoping and the relative signal-

to-noise limit was set to 2. These peak lists were then searched with

the Mascot search engine (version 2.3, MatrixScience, www.

matrixscience.com) using the Mascot Daemon interface (Matrix

Science, www.matrixscience.com). Spectra were searched against

the TAIR10 database containing 35386 sequence entries. Variable

modifications were set to methionine oxidation and methylation of

aspartic acid and glutamic acid. Fixed modifications were set to

carbamidomethylation of cysteines. Mass tolerance on MS was set

to 10 ppm (with Mascot’s C13 option set to 1) and the MS/MS

tolerance at 0.5 Da. The peptide charge was set to 1+, 2+ and 3+
and the instrument setting was set to ESI-TRAP. Trypsin was set

as the protease used, allowing for 1 missed cleavage, and also

cleavage was allowed when arginine or lysine is followed by

proline. Only high confident peptides, ranked one and with scores

above the threshold score, set at 99% confidence, were withheld.

Only proteins with at least two matched high confident peptides

were retained.

A list of non-specific background proteins was assembled by

combining our previous background list [39] with background

proteins from control GS purifications on mock, GFP-GS, and

GUS-GS cell culture extracts identified with LTQ Orbitrap Velos.

To obtain the final list of interactors, these background proteins

were subtracted from the list of identified proteins.

Transient expression assays
Transient expression assays were performed as described

previously [70]. Protoplasts were prepared from a Bright Yellow-

2 (BY-2) tobacco cell culture and co-transfected with a reporter

plasmid containing the firefly-Luciferase (fLUC) reporter gene

driven by a promoter containing five GAL4-binding sites, a

normalization construct expressing Renilla luciferase (rLUC)

under the control of the 35S promoter and effector constructs.

GAL4DBD fusions were generated by combining pEN-L4-2-R1

(35S promoter), pEN-R2-GAL4DBD-L3 and an entry clone

holding the ORF, combined by MultiSite Gateway LR reaction

with pm43GW7 as destination vector. For each experiment, 2 mg

of each plasmid were used. After transfection, protoplasts were

incubated overnight in the dark, at room temperature and with

gentle agitation. The next day, protoplasts were lysed, and fLUC

and rLUC activities were determined with the Dual-Luciferase

reporter assay system (Promega). Variations in transfection

efficiency and technical error were corrected by normalization of

fLUC by rLUC activities. All transactivation assays were

conducted in an automated experimental set-up. A one-way

ANOVA and Tukey HSD’s Post Hoc test were performed to

confirm statistically significant differences between control and

effector constructs (p,0.05).

Generation of plant lines
The T-DNA knock-out lines tify8-1T and tify8-2T were

retrieved from GABI-KAT and SAIL respectively [55,56] and

genotyped by PCR as homozygous for the T-DNA insertion in the

Col-0 ecotype background.For generation of transgenic plants

with 35S promoter-driven TIFY8 overexpression fused C-termi-

repeats per line and treatment, consisting on up to eight seedlings per repeat (20#n#32), were analysed. Bars represent average 6 SE. Differences
between the transgenic lines assayed and wild-type in control conditions are shown (*: p,0.05; t-test). Statistically significant differences for the
interaction between genotype and treatment were not found (NS, p.0.05, one-way ANOVA). D, Schematic diagram of the TIFY8 (At4g32570) locus.
Black bars, black lines and grey bars represent exons, introns and the untranslated regions, respectively. The T-DNA in the tify8-1T line (GK_738B03) is
inserted immediately after the start codon of TIFY8, and the T-DNA contains the 35S promoter sequence next to the right border (RB). Arrows and
numbers indicate different primer combinations covering different regions of TIFY8. Primer sequences can be found in Table S2. E, RT-PCR analysis of
TIFY8 transcripts in the tify8-1T and tify8-2T lines. Transcript levels were studied in 1-week-old seedlings. Numbers represent the primer combination
used, described in (D). UBC (AT5G25760) was used as internal control and expression values (Y-axis) were normalized to those of the wildtype. Error
bars represent 6SE of three biological replicates. F, Analysis of JA-responsive root growth inhibition of the tify8-1T and tify8-2T lines compared to wild
type performed as in (B). G, JA-responsive anthocyanin accumulation in tify8-1T performed as in (C).
doi:10.1371/journal.pone.0084891.g006

Characterization of TIFY8

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e84891



nally to GFP (TIFY8-GFP) or to a TAP tag (TIFY8-GS) a

destination clone containing the full-length TIFY8 was retrieved

from ABRC (DKLAT4G32570). From this construct, an entry

clone without stop codon was generated by reverse BP reaction

into the entry vector pDONR221 and used for recombination

with the pK7FWG2 and the pKCTAP destination vectors,

respectively [68,71] using the Gateway LR II kit (Invitrogen),

yielding the corresponding expression clones. For overexpression

without a fusion tag (TIFY8-OE), the ABRC entry clone G22977

was recombined with the pFAST-G02 vector [72].For gene

promoter expression assays, a 1175 bp fragment of the TIFY8

promoter was retrieved from the Arabidopsis Promoterome

database (www.psb.ugent.be/SAP) and amplified by PCR to be

cloned in the pDONRP4P1R entry vector. The entry clone was

then used for LR reaction with the pmK7S*NFm14GW

destination vector [73], yielding the TIFY8promoter::GUS-GFP

expression clone.Following cloning and sequence verification, the

expression vectors were transformed into Agrobacterium tumefaciens

C58C1 (pMP90) by electroporation. Transgenic Arabidopsis seeds

were generated by floral dip, using Col-0 as the background

ecotype. Transformants were selected on MS media supplied with

the corresponding antibiotic and homozygous T3 plant lines were

used in the assays.

In vitro plant growth conditions
For all the experiments using plants grown in vitro described,

Arabidopsis seedlings were sterilized by the chlorine gas method

and shown on sterile plates containing the corresponding growth

media. Plates were kept in the dark at 4uC and 2days for

stratification. Then, plates were transferred to a growth room with

21uC temperature and a 16 h light/8 h dark light regime. The day

of the transfer was considered as 0 days after stratification (0 DAS).

Confocal microscopy
Plants expressing the 35S::TIFY8-GFP fusion, 35S::GFP and

35S::NLS-GFP were germinated on solid MS plates (containing

10 g/L of sucrose and 8 g/L agar) placed vertically. On the day of

imaging, seedlings were briefly incubated in propidium iodide

(3 mg/L, Sigma) and subsequently washed and mounted in milliQ

water. Fluorescence microscopy was performed with an Olympus

FV10 ASW confocal microscope.

Protein degradation assays
For the study of TIFY8 stability, homozygous transgenic lines

producing either TIFY8 or JAZ1 fused to a protein G-SBP (GS) C-

terminal tag (TIFY8- or JAZ1-GS) were used. Seeds were grown in

liquid MS media with 10 g/L sucrose (pH 5.7) for 7 days.

Seedlings were treated with 50 mM JA or ethanol (mock) for one

hour. Total protein was extracted and 20 mg loaded on a 4–15%

TGX gel (Bio-Rad,) and run for 20 min at 300 V. Next, blotting

was performed with Trans-blot Turbo transfer 0.2 mm PVDF

membranes (Bio-Rad). A 1/2500 dilution of Peroxidase Anti-

Peroxidase (PAP) antibody (P1291, Sigma-Aldrich) was used for

protein G detection. For detection of CDKA;1, anti-cdc2 PSTAIR

(sc-53, Santa Cruz) was used. Chemiluminescent detection was

performed with Western Bright ECL (Isogen, http://www.isogen-

lifescience.com/).

JA and COR treatment of Arabidopsis wild-type seedlings
Wild-type seedlings were grown as described and, 8 DAS,

transferred to liquid MS media containing the corresponding final

JA or COR concentration, whereas DMSO was used as control

treatment. After 24 hours, the seedlings were harvested and frozen

on liquid Nitrogen.

Semiquantitative RT-PCR analysis
Frozen plant material was ground in a Retsch MM300 mixer

and total RNA was extracted using the Qiagen RNeasy kit

(Qiagen, http://www.qiagen.com/). An RNase-free DNase step

was performed following manufacturer’s instructions for prepara-

tion of RNA. Next, 1 mg of total RNA was used for cDNA

synthesis with the iScript kit (Bio-Rad, http://www.bio-rad.com/).

RT-PCR was performed on a LightCycler 480 system (Roche,

http://www.roche.com) using the Fast Start SYBR Green I PCR

mix (Roche). The primer sequences are provided as Table S2. For

TIFY8 primer pair #4 was used unless stated otherwise. Samples

were amplified as described: one pre-incubation step (95uC, 10 s)

followed by 45 amplification cycles (incubation 95uC for 10 s,

annealing at 65uC for 15 s, elongation at 72uC for 15 s). Primer

efficiency was at least 1.7. Gene expression levels were quantified

relative to the housekeeping gene UBC (AT5G25760).

b-Glucuronidase (GUS) stains
Samples were harvested on Falcon multiwell plates and kept in

90% acetone to clear the tissue. Next, the acetone was removed

and replaced by the GUS staining solution containing 2 mM X-

Gluc solution in N,N-dimethylformamide (DMF), 0.1 M NaPO4

pH 7.0, 1 mM K3Fe(CN)6 and 0.1% Triton X-100 diluted in

distilled water. The samples were incubated at 37uC until blue

coloration appeared. Next, the GUS staining solution was

removed and the plant tissue was cleared with 70% ethanol at

4uC overnight. Sample imaging was performed either in a light

microscope (Leica BXL51) or a binocular (Leica MZ16).

Root growth assay
Seedlings were sown on MS media plates provided with 10 g/L

sucrose, 8 g/L agar, pH 5,7 and the corresponding final MeJA

concentration. Following stratification, plates were placed verti-

cally under the conditions described. Plates were scanned at 11

DAS at a 300 dpi resolution and root length was measured by

means of the EzRhizo software (http://www.root-image-analysis.

org/ez-rhizo). Samples were kept in the growth room for another

three days for anthocyanin accumulation measurements.

Anthocyanin accumulation
At 14 DAS, samples from the root growth assay were harvested

and weighted in pre-frozen 1.5 mL Eppendorf tubes provided with

3-mm metal balls. Samples were frozen on liquid nitrogen and

ground in a Retsch MM300 mixer. For anthocyanin extraction,

each sample was added 750 mL of extraction buffer (MeOH HCl

1%) and kept rotating in the dark for 10 minutes. Next, 500 mL of

water and 200 mL of chloroform were added, mixing inverting the

tubes after each step. Samples were centrifuged for 5 min at full

speed and 200 mL of the supernatant were transferred to a 96-well

plate. Anthocyanin accumulation was measured as A530-A657 and

referred to mg of fresh weight.

Infection of Arabidopsis plants with P. syringae pv.
tomato DC3000

The virulent pathogen P. syringae pv. tomato (Pst) DC3000 was

incubated overnight at 28uC in liquid King’s B (KB) medium as

described previously [74]. Bacterial cells were collected by

centrifugation (10 min, 20006g) and resuspended in 10 mM

MgSO4 to a final density of 56106 colony-forming units per ml

(CFU/ml). This suspension was used for pressure-infiltration of
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leaves of 5-week-old Arabidopsis plants as described [74]. Leaves

were harvested prior to and 24 h after inoculation with Pst

DC3000. Three biological replicates per genotype and time point

were analysed.

Accession Numbers

Arabidopsis Genome Initiative (AGI) accession numbers for the

genes studied: TIFY8 (At4g32570), NINJA (At4g28910), TPL

(At1g15750), PPD2 (At4g14720) and JAZ1 (At1g19180). AGI

codes of interacting proteins identified by tandem affinity

purification are listed in Table 1.

Supporting Information

Figure S1 AtTIFY8 orthologues in other plant species. Blue and

red colours represent the existence or absence of putative

AtTIFY8 orthologues in different species covered by the PLAZA

comparative genomics resource. Numbers in brackets indicate the

number of putative orthologues in each species (http://

bioinformatics.psb.ugent.be/plaza). Orthologous gene families

were inferred through sequence-based clustering with OrthoMCL

[38].

(TIF)

Figure S2 The TIFY8 expression pattern is opposite to that of

JAZ. A. Schematic representation of TIFY8 and JAZ gene

expression patterns in different plant tissues, based on the

hierarchical clustering of publicly available microarray data

(www.genevestigator.com, [51]). JAZ4 and JAZ11 were not

included since microarray data are not available. JAZ12 was not

studied as it is highly expressed in all tissues. B, C. Expression

patterns of TIFY8 (B) and JAZ10 (C) extracted from the eFP

Browser. (http://www.bar.utoronto.ca/efp; [53]).

(TIF)

Table S1 MALDI-TOF/TOF-MS identification of TIFY8

interactors.

(PDF)

Table S2 Primers used in this study.

(PDF)

Dataset S1 Protein Identification details obtained with the LTQ

Orbitrap.

(XLSX)
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