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Abstract

Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global
analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic
material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using
whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based
on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been
examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations
detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor
tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive
overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found
that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of
the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by
including RNA-sequencing information.
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Introduction

The introduction of massively parallel DNA sequencing has

massively increased the amount of genetic information that can be

generated from tissue and cell samples [1]. Genome-wide analyses

of genetic structure are particularly valuable in cancer research,

where they can provide important information on the origins of

the disease and the optimal course of treatment. However, the

quantity of tissue available for study is often limited. Therefore, to

facilitate detailed analyses of tumor heterogeneity, there is a need

for highly sensitive methods that can efficiently amplify the

genomes of cancer cells from small samples and for sequencing the

functional parts of the genome. This is not only true for cancer

research, metagenomic studies of environmental viruses and

microbial communities also deal with low-copy number and

heterogeneous DNA composition where the biases of amplification

techniques also are of importance [2,3,4,5]. Whole genome

amplification (WGA) [6,7,8] and target enrichment [9,10,11] are

valuable techniques that are finding increasingly common usage in

established cancer research pipelines [12,13,14]. Numerous

reagents and commercial sequence capture kits have been

developed for these purposes, and comparative reviews indicate

that most of them are very effective for targeted exome capture

[15,16,17]. A recent study used WGA in conjunction with exome

sequence capture to analyze genomic variation in kidney cancer

cells at the single nucleotide level [18,19]. The results obtained

demonstrated that the combination of these two methods provides

a powerful tool for identifying new disease-causing mutations even

when working with very small quantities of input genetic material.

Multiple displacement amplification is suitable for mutation

analysis because it has both high resolution and genome coverage

and also high accuracy at the nucleotide level, making it superior

to degenerate oligonucleotide primed amplification for identifying

novel causative mutations. However, there is a need to fully

investigate the limitations and scope of this combined approach.

Still there areas that have not been explored and the use of an

amplification method before target enrichment might induce more

false positives, introduce a bias due to low copy number as starting

material and therefore comparison of exome sequencing of

unamplified and whole genome amplified material are warranted.

A number of approaches can be used to evaluate the bias

introduced when using these two technologies together and to

validate identified genetic variations. These include performing

analyses on unamplified material (although the availability of a

sufficiently large sample may prove limiting here), PCR cloning

and Sanger sequencing of genome regions, performing replicate

runs (possibly using alternate reagents), and the use of comple-
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mentary RNA sequencing, among others. The latter two methods

are probably most suitable for validation on a global scale, and

RNA sequencing has the added advantage that it can be used to

confirm the expression of mutated alleles. However, it should be

noted that Sanger sequencing of amplicons remains the gold

standard in mutation analysis.

This paper describes an investigation into the performance of

WGA using the phi29 polymerase followed by exome sequence

capture and massively parallel sequencing of lung cancer tumor

material. To assess the biases of this approach, we sequenced

unamplified material and also performed RNA sequencing. Based

on our findings, we propose a strategy for identifying biologically

relevant variations.

Materials and Methods

Samples
Samples from sixteen patients diagnosed with non-small cell

lung cancer (NSCLC) were obtained from the Institut de Gustave

Roussy and Institut Mutualiste Montsouris (IMM), Paris. All

participants gave their written informed consent to participate in

the study. Both tumor tissue samples and healthy samples were

obtained from each patient and extracted to isolate their genomic

DNA and RNA. Microscope analysis indicated that the tumor cell

content of the tumor samples was .70%. Genomic DNA was

isolated from peritumoral tissue using the QIAamp DNA Mini Kit

(Qiagen, Hilden, Germany), which produced eluates with DNA

concentrations ranging from 2 to 41.6 ng/ul. RNA samples were

extracted according to the manufacturer’s instructions using the

Trizol Reagent from Invitrogen. The obtained RNA concentra-

tions ranged from 102.2 to 2060.4 ng/ul. The ethical guidelines of

the CHEMORES consortium (www.chemores.org) were observed

during this work, which was conducted with the aim of generating

a systems biology database for studying resistance to chemother-

apy. The study was approved by the local ethics committee, the

Institutional Ethics Committee of the IMM RECHERCHE,

Institut Mutualiste Montsouris, Paris, France.

Whole Genome Amplification (WGA)
DNA amplification was performed using the Illustra GenomiPhi

V2 DNA Amplification kit (GE Healthcare, Waukesha, Wisconsin)

with random hexameric primers, according to the manufacturer’s

instructions [14], [15]. The samples were subjected to gel

electrophoresis to confirm that the WGA reaction has been

successful (data not shown).

Target Enrichment of WGA Material
Following WGA of the DNA from the tumor cells and the

healthy samples, sequence capture was performed following the

protocol provided with the solution-based Roche Nimblegen EZ

kit (Roche-NimbleGen, Madison, WI, USA). Concentrations were

measured using Qubit, after which libraries were prepared for

Illumina sequencing. The samples were multiplexed and clustered

on a cBot cluster generation system, using a paired-end read

cluster generation kit according to the manufacturer’s instructions.

The samples were spiked with 1% PhiX Library for quality control

purposes and sequenced on an Illumina HiSeq2000 instrument

using paired end 26100 bp technology (Illumina, San Diego, CA,

USA). Base conversion was achieved using Illumina’s OLB v1.9

software.

Target Enrichment of Unamplified Material
For comparative purposes, sequence capture of unamplified

tumor DNA material was achieved according to the protocol

provided with the SureSelect Human All Exon V4 kit (Agilent,

Santa Clara, CA, USA). Library preparation and sequencing were

performed using the HiSeq2000 instrument as described above.

Alignment and Variant Calling of Genomic DNA
The reads obtained by sequencing the DNA samples were

quality checked using FastQC, and aligned against the reference

genome HG19 using Mosaik-aligner version 2.1 (http://code.

google.com/p/mosaik-aligner/). The coverage and total number

of reads were evaluated for each sample. Variant calling was

performed using GATK version 1.5.2.1 and was based on

positions having .10-fold coverage with a phred scaled quality

score above 30 in order to reduce the number of false positives.

The total numbers of heterozygous and homozygous variants as

well as the ratio of the two were calculated for each sample. The

ratio of transversions to transitions was calculated for each sample

using custom scripts.

Comparison of WGA and Unamplified Sequencing of
Tumor DNA

To evaluate the reliability of WGA as a sample preparation

method for exome capture, we compared single nucleotide variant

(SNV) calls obtained using WGA to those obtained using

unamplified sequencing. First, the genetic variants were filtered

to include only exonic regions (CCDS) covered by both the

Nimblegen Sequence Capture and Agilent SureSelect. The

numbers of genetic variants found by WGA, unamplified

sequencing, or both were then extracted using custom scripts

and compared using Venn diagrams for each patient. The

coverage of genetic variants found uniquely by WGA and

unamplified sequencing was also investigated, along with the

coverage of shared genetic variants. In addition, we examined the

ratio of variant reads to total reads for sequencing following WGA

and unamplified sequencing.

To evaluate the effect of coverage filtering on the observed

discrepancies between genetic variants identified using WGA and

without amplification, the alignment files for the unamplified

sequences (BAM files without coverage filtering) were inspected to

check for the presence of variants identified only by WGA and vice

versa.

Identification of Tumor Specific Mutations
Tumor specific mutations were identified by removing variants

found by sequencing after WGA of the patient’s normal tissue

DNA from the variants found by sequencing of WGA tumor tissue

DNA. The total number of exonic mutations for each patient was

calculated. To evaluate the performance of sequencing following

WGA in identifying mutations, the mutations found in each

patient were compared to genetic variants found by sequencing

unamplified tumor tissue.

The ratio of tumor specific mutations to the total number of

genetic variants was also investigated for variants found exclusively

by sequencing following WGA as well as for those identified by

unamplified sequencing alone and those identified by both

methods (shared variants).

RNA Sequencing, Alignment and Variant Calling
Eleven of the 16 tumor tissue samples provided RNA of

sufficient quality and quantity for analysis. These samples were

sequenced using the RNA TruSeq kit (Illumina) and a Illumina

HiSeq2000 instrument, and aligned to the reference genome

(HG19) using Tophat (version 1.0.14). Cufflinks (version 0.8.3) was

used to compute FPKM values, and variants having .10-fold

WGA Assessment
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coverage and quality scores above 30 were called by mpileup

(Samtools). Samtools was used since GATK gave inconclusive

variant calls in this pipeline.

To further evaluate the performance of WGA in mutation

identification, we analyzed the BAM files obtained during RNA

sequencing to determine whether they reflected the genotype calls

obtained by sequencing WGA DNA.

To evaluate the use of RNA sequencing for variant calling, we

investigated the number and fraction of bi-allelically expressed

genes for all variants found by sequencing both WGA and

unamplified material. To ensure that only bi-allelically expressed

genes were considered, genes were excluded from the comparison

unless they had at least one heterozygous variant according to

RNA sequencing and were in the top 75% of genes with an FPKM

value of at least one.

Results

Patients
The patients’ characteristics are presented in Table 1. All

patient samples were analyzed by sequence capture and massively

parallel sequencing either after WGA or using unamplified

material. In addition, RNA sequencing was performed on a

subset of samples. Exome sequencing following WGA yielded an

average of 36 M reads/patient with a sequence quality of at least

20 and 60X on target coverage for tumor samples, and an average

of 34 M reads/patient with a sequence quality of at least 20 and

67X on target coverage for normal samples. Exome sequencing of

unamplified tumor material generated a total of 39 M reads/

patient with a sequence quality of at least 20 and 74X on target

coverage (see Table 2).

Variant Calling after DNA Sequencing
Genetic variants in all samples were called using GATK [20],

giving heterozygote:homozygote ratios ranging from 1.7 to 2.3 in

samples subjected to WGA, and from 1.7 to 4.9 for unamplified

samples (see Table 2). For the unamplified material, four patient

samples (127, 146, 225, and 344) yielded anomalously high

heterozygote:homozygote ratios (ranging from 4.5–4.9) and were

therefore excluded from further comparative analyses. The

transition:transversion ratio ranged from 2.0 to 3.4 for all samples.

The average total number of variants detected in samples

following WGA was 8073 for tumor tissue and 8277 for normal

tissue (Table 2).

Comparison of WGA and Unamplified Sequencing of
Tumor DNA

To identify biases that may be introduced by WGA, SNVs

identified in the sequencing data obtained using WGA and

unamplified material were compared using Venn diagrams (see

Figure 1). The numbers of genetic variants called for WGA and

unamplified material from tumor samples from two representative

Table 1. Patient characteristics.

Patient Gender Chemo Relapse pT pN pM
Cancer
subtype

Smoking
status

Unamplified
DNA (Tumor)

WGA DNA
(Normal/Tumor) RNA (Tumor)

118 Female – Yes 2 0 0 AC Current 3 3 3

127 Female – No 2 0 0 AC Current 3 3

140 Male – No 2 0 1 AC Former 3 3 3

146 Male Cisplatin/
Vinorelbine

Yes 4 1 0 AC Former 3 3

210 Female Cisplatin/
Vinorelbine

Yes 1 2 0 AC Former 3 3 3

225 Female Cisplatin/
Vinorelbine

No 2 2 0 AC Current 3 3 3

247 Female Cisplatin/
Vinorelbine

Yes N/A N/A 0 AC Current 3 3

255 Male – Yes 2 2 0 AC Former 3 3 3

278 Male Cisplatin/
Vinorelbine

No 2 2 0 AC Current 3 3 3

295 Female – Yes 2 0 0 AC Former 3 3 3

322 Male Cisplatin/
Vinorelbine

Yes 2 2 0 AC Former 3 3

344 Male Cisplatin/
Vinorelbine

No 3 1 0 AC Former 3 3 3

396 Male – Yes 2 0 0 AC Current 3 3 3

412 Male – No 2 1 0 SCC Current 3 3 3

421 Female Cisplatin/
Vinorelbine

Yes 1 2 0 AC Current 3 3 3

541 Female – No 1 1 0 AC Current 3 3

AC = Adenocarcinoma.
SCC = Squamous cell carcinoma.
pT = Postsurgical histopathological classification of primary tumour.
pN = Postsurgical histopathological classification of regional node.
pM = Postsurgical histopathological classification of distant metastasis.
doi:10.1371/journal.pone.0084785.t001

WGA Assessment
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Table 2. Summary of variant calling following DNA sequencing.

WGA tumor
Total
Hetero

Total
Homo

Ratio
Hetero/
homo

Transition/
Transversion rate

Coverage in
target regions

Total
reads

118(T) 7359 4136 1.78 3.42 39.67 35.55 M

127(T) 8068 4627 1.74 3.32 72.28 37.43 M

140(T) 7904 4411 1.79 3.25 59.33 34.73 M

146(T) 8104 4247 1.91 3.23 61.05 34.47 M

210(T) 7806 4333 1.80 2.96 53.72 54.23 M

225(T) 8088 4258 1.90 2.91 83.70 43.54 M

247(T) 7091 3498 2.03 2.58 24.65 19.77 M

255(T) 7387 4215 1.75 3.29 62.69 33.76 M

278(T) 8328 4612 1.81 3.11 107.10 57.96 M

295(T) 7517 4451 1.69 3.24 48.06 28.13 M

322(T) 9019 4173 2.16 2.53 49.57 19.14 M

344(T) 8107 4300 1.89 3.08 59.31 29.42 M

396(T) 7408 4169 1.78 3.06 31.25 35.00 M

412(T) 8755 4752 1.84 2.84 98.08 45.19 M

421(T) 8552 4489 1.91 2.95 81.62 37.04 M

541(T) 9669 4511 2.14 3.11 35.20 37.75 M

Average 8073 4324 1.87 3.06 60.46 36.44 M

StDev 683 286 0.14 0.25 23.45 10.40

Unamplified tumor

118(T) 9006 4823 1.87 2.95 48.39 26.08 M

127(T) 14029 3152 4.45 3.27 87.78 32.40 M

140(T) 8725 4875 1.79 3.16 64.98 35.76 M

146(T) 15193 3123 4.86 3.18 85.07 29.08 M

210(T) 8860 5117 1.73 3.17 79.28 26.47 M

225(T) 14270 3081 4.63 3.30 73.46 24.50 M

247(T) 8879 5066 1.75 3.22 108.08 53.61 M

255(T) 8743 4891 1.79 3.26 81.93 42.86 M

295(T) 8717 5067 1.72 3.03 54.27 110.79 M

278(T) 8656 4998 1.73 3.21 88.89 47.00 M

322(T) 8650 4991 1.73 3.11 73.08 37.62 M

344(T) 14161 3006 4.71 3.15 77.05 26.14 M

396(T) 7627 4455 1.71 3.27 36.48 17.41 M

412(T) 8473 4940 1.72 3.21 73.48 38.37 M

421(T) 9085 4977 1.83 3.14 81.82 45.31 M

541(T) 10900 5329 2.05 3.17 73.85 37.67 M

Average 10248 4493 2.50 3.18 74.24 39.44 M

StDev 2574 855 1.29 0.09 17.11 21.30

WGA normal

118(N) 7476 4154 1.80 3.43 73.07 38.26 M

127(N) 9290 4619 2.01 2.64 101.20 23.63 M

140(N) 7288 3984 1.83 3.41 59.76 35.17 M

146(N) 8292 4613 1.80 3.32 67.14 37.40 M

210(N) 7894 4334 1.82 3.13 48.37 39.87 M

225(N) 11154 4935 2.26 2.07 127.39 75.50 M

247(N) 8925 4940 1.81 3.27 123.26 37.12 M

255(N) 8560 4771 1.79 3.25 83.78 26.35 M

295(N) 6506 3414 1.91 3.18 27.59 29.18 M

278(N) 6961 3966 1.76 3.10 30.67 28.21 M

WGA Assessment
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patients 140 and 295 are presented in Figures 1A and 1C. Most

(74%) of the identified genetic variants were observed in both the

amplified and the unamplified sequence data (Table 3). However,

in most patients (83%) the number of unique variants identified in

the unamplified material was greater than that observed following

whole genome amplification. The coverage of genetic variants

found uniquely by WGA and without amplification is presented

using box plots for patients 140 and 295 in Figures 1B and 1D,

along with coverage data for genetic variants observed in both sets

of sequencing data (results for samples from the other patients

Table 2. Cont.

WGA tumor
Total
Hetero

Total
Homo

Ratio
Hetero/
homo

Transition/
Transversion rate

Coverage in
target regions

Total
reads

322(N) 7747 4610 1.68 3.29 56.95 25.81 M

344(N) 8082 4298 1.88 3.09 60.13 17.95 M

396(N) 7276 4035 1.80 3.18 27.70 34.08 M

412(N) 8010 4156 1.93 2.84 38.52 26.65 M

421(N) 8561 4579 1.87 3.11 64.07 30.20 M

541(N) 10411 4840 2.15 3.03 78.53 46.44 M

Average 8277 4391 1.88 3.08 66.76 34.49 M

StDev 1224 423 0.15 0.34 30.79 13.08

doi:10.1371/journal.pone.0084785.t002

Figure 1. Genetic variants unique or shared between analysis. A) Venn diagram illustrating the distribution of SNVs for patient 140. Unique
variants found by WGA are represented in light blue, and unique variants found without amplification are shown in light green. Shared variants
identified by both methods are shown in green. B) Boxplot of the coverage of genetic variants found uniquely by WGA, without amplification, and
with both methods for patient 140. The two leftmost boxes represent shared variant calls with coverage in those positions for WGA and without
amplification, respectively. The two rightmost boxes represent the coverage over unique positions for each method. C) Venn diagram illustrating the
distribution of SNVs for patient 295. Unique variants found by WGA are represented in light blue, and unique variants found without amplification are
shown in light green. Shared variants identified by both methods are shown in green. D) Boxplot of the coverage of genetic variants found uniquely
by WGA, without amplification, and with both methods for patient 295. The two leftmost boxes represent shared variant calls with coverage in those
positions for WGA and without amplification, respectively. The two rightmost boxes represent the coverage over unique positions for each method.
doi:10.1371/journal.pone.0084785.g001

WGA Assessment
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considered are presented in Figure S1). The coverage of unique

variants was consistently lower than that for common variants that

could explain some of the discrepancies. Figure 2 provides a

representative comparison of the results obtained with WGA and

without amplification, showing the distribution of coverage over

the exons of the gene SPINK1. Notably, the peaks for the WGA

sequence are somewhat broader than those for the unamplified

material in line with the overall lower coverage on target as

compared to unamplified material for similar number of reads.

To further evaluate the performance of the two methods in

variant calling, we also compared the unamplified and WGA

sequence data for patients 140 and 295 with respect to the number

of variant reads divided by the total number of reads for each

variant position (see Figure 3). Correlations for the remaining

patients are presented in Figure S2 and Table S2. The ratios

obtained using WGA were comparable to those for unamplified

sequencing, with R2 values ranging from 0.79 to 0.88 in all cases

except the four excluded samples.

Since on average only 74% of the total number of genetic

variants found for each patient were observed in both the WGA

and unamplified sequence data, we further examined the effect of

coverage filtering on the discrepancies between genetic variants

identified in WGA and unamplified material. This was done by

calculating the fraction of variants that were only identified by

WGA but were also present in the alignment files (BAM files

without coverage filtering) for the unamplified sequences, and vice

Figure 2. Example of coverage representation in unamplified and whole genome amplified DNA in patient 295 across the SPINK1
gene.
doi:10.1371/journal.pone.0084785.g002

Table 3. Summary data for SNVs in positions identified in
both WGA and unamplified sequence data, and using only
one of the two methods.

Patient-ID Number of SNV

WGA Shared Unamplified

118 722 (6%) 10985 (73%) 3260 (23%)

140 759 (6%) 11781 (81%) 1953 (14%)

210 1099 (9%) 11413 (75%) 2715 (19%)

247 1964 (17%) 9483 (59%) 4591 (33%)

255 606 (5%) 11162 (78%) 2615 (19%)

278 861 (7%) 12250 (84%) 1535 (11%)

295 650 (5%) 11464 (77%) 2716 (19%)

322 3866 (26%) 10821 (61%) 3023 (22%)

396 2076 (17%) 10151 (71%) 2119 (17%)

412 1559 (11%) 12216 (81%) 1374 (10%)

421 1204 (9%) 12108 (78%) 2133 (15%)

541 1398 (9%) 13350 (75%) 3096 (19%)

Average (%) 1397 (9%) 11432 (74%) 2594 (17%)

StDev 923 1028 872

doi:10.1371/journal.pone.0084785.t003

WGA Assessment

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e84785



versa (Table 4). On average, 79% of the positions at which genetic

variation was only observed in the sequence data for the

unamplified material were identified in the aligned sequence

BAM file for the WGA material with a coverage value of less than

10. For positions at which genetic variation was only observed in

the WGA sequence data, only 36% were subsequently identified in

the aligned sequence BAM files for the unamplified material with

coverage values of less than 10, indicating a fraction of false

positive variants in the WGA material.

Identification of Tumor Specific Mutations
A key goal when sequencing tumor samples is to identify tumor

specific mutations. We therefore compared the tumor-specific

variants detected in the WGA sequence data to those for the

unamplified material. On average, the WGA sequence data for the

tumor samples contained 1942 tumor specific mutations (i.e.

positions with coverage .10 for which no variation was detected

in the WGA sequence data for the healthy tissue samples). To

study these mutations more in detail, we compared the WGA

results to those obtained for unamplified tumor sample DNA and

Figure 3. The relationship between variant and total reads per position depending on analysis. A) The relationship between the
numbers of variant reads divided by total reads for SNVs identified by sequencing WGA and unamplified DNA per position in patient 140. B) The
relationship between the numbers of variant reads divided by total reads for SNVs identified by sequencing WGA and unamplified DNA per position
in patient 295.
doi:10.1371/journal.pone.0084785.g003

Table 4. Comparison of unique and tumor specific variants in unamplified DNA, WGA DNA and RNA.

Patient
ID

% of unique
unamplified with
coverage ,10 in
WGA bamfile

% of unique WGA
with coverage ,10 in
unamplified bamfile

% unique WGA
in RNA
with coverage ,10

WGA tumor
specific

% tumor specific
confirmed in
unamplified

% WGA tumor specific
in
RNA (bam) with
coverage ,10

118 71.7 57.6 69.9 1080 70.4 68.9

140 72.7 57.7 65.0 1644 77.9 64.2

210 84.8 21.8 62.5 630 33.3 59.4

247 90.9 5.7 – 2095 13.8 –

255 81.6 43.1 65.0 698 62.9 63.0

295 79.7 43.7 100.0 3510 81.5 100.0

278 73.3 50.9 63.4 1819 82.1 58.6

322 79.8 9.4 – 5377 11.4 –

396 79.7 53.6 64.9 1778 39.0 63.9

412 72.3 32.4 58.9 2580 60 60.5

421 78.3 27.2 100.0 994 38.1 100.0

541 82.0 25.9 – 1098 32.2 –

Average 78.9 35.8 72.2 1942 50.2 70.9

StDev 5.7 18.1 16.0 1363 19.7 16.8

doi:10.1371/journal.pone.0084785.t004

WGA Assessment
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were able to confirm the presence of just over half of them (50.2%;

see Table 4).

Validation of Identified Genetic Variants using RNA
Sequencing

To determine whether it might be possible to use RNA-

sequencing to validate mutation data, we calculated the fraction of

tumor specific mutations (on average 1942) for which a

corresponding position could be identified in the RNA sequence

alignment files. On average, 71% of the mutations identified based

on analysis of WGA sequence data were confirmed in this way (see

the final column of Table 4).

To evaluate the use of RNA sequencing for variant calling, we

used the number of bi-allelically expressed genes (i.e. genes with at

least one heterozygous variant) and the list of the entire set of

variants. We looked at the fraction of these genes for which

analyses of the WGA and unamplified sequence data had also

resulted in the identification of at least one genetic variant. In this

comparison, we focused on transcripts with FPKM values above

2.8. To rule out mono-allelic expression, we chose transcripts for

which two alleles were expressed (as indicated by the minor allele

accounting for at least 20% of all transcripts) and compared the

RNA sequence data to DNA sequence data for genes that

exhibited variation when using either or both of the two tested

sample preparation methods. Bi-allelic expression was observed

for 37.6 percent of the expressed genes (representing the top 75%

of all genes with FPKM.1). In total, 39% of the bi-allelic genes

found by RNA sequencing also contained at least one genetic

variant that was identified by sequencing of WGA and unampli-

fied DNA. (See Table S2).

Discussion

In general the coverage, total number of heterozygotes,

homozygotes, transition/transversion rate and total number of

reads were comparable for sequences produced by WGA and

when using unamplified material, indicating that both methods

worked well on most samples. Most (74%) of the SNVs identified

in this work were observed in both the WGA sequence data and

that for the unamplified material. Conversely, 9% of the identified

SNVs were observed only in the WGA sequence data and 18%

were observed only in the sequence data for the unamplified

material. Of the SNVs found by both methods the read ratios for

variant and total reads were also equivalent (R2 = 0.79–0.88,

Table S1), but with some biased for the variant allele by WGA.

The SNV that were identified by only one of the two sample

preparation methods generally had lower coverage than those

identified by both, indicating that these SNVs are located in

regions that are more difficult to sequence. This is in accordance

with the data presented by Indap et al. that also showed that down

sampling bam files from sequencing of WGA samples results in

reduction in accurately called variants [21]. When the search was

expanded by removing the coverage filter, it was determined that

72% of the genetic variants found uniquely by sequencing

unamplified material were present in the WGA alignment file.

However a similar search expansion for the BAM file of the

unamplified material identified only 36% of the genetic variants

found in the filtered WGA data. This suggests that WGA might

introduce some false positive genetic variation. Jiang et al. showed

biased for WGA when comparing constitutional genetic variants

called after WGA and shot-gun re-sequencing in a single sample,

with an higher error rate for false negatives than false positives

[22]. This difference compared to our results might be due to the

presence of low frequency mutations in our material which might

introduce a bias for the WGA.

All the WGA samples had satisfactory quality control results,

including phred based quality scores, mapped reads values, and

number of called variants, etc., and also had acceptable ratios of

heterozygous/homozygous SNVs. However, four samples of the

unamplified material did not satisfy this last criterion. Interestingly,

of the four samples with higher heterozygous/homozygous ratios,

sample 127 had a tumor content of 65%, which may have

interfered with the relative abundance of heterozygotes and

homozygotes. Samples 146 and 344 represented more morpho-

logically aggressive cancers, with tumors at a later stage of

development than was the case for the other samples. As a result,

the sampled material may have been surrounded by tumor tissue

with different levels of tumor progression. Since the unamplified

method requires larger samples than are used with WGA, it is

possible that they may have incorporated material with different

levels of tumor development and would therefore exhibit a higher

level of genetic variation than would be observed for the WGA

samples. This highlights the importance of considering factors

other than read depth and standard quality measures alone, even

for samples that seem to satisfy conventional criteria. A more

detailed analysis of these samples focusing on the read ratios and

SNV coverage for the WGA and unamplified sequence data

revealed an even more pronounced skew (see Figure S1 and S2).

Also note that the difference in coverage and variants might also

be due to the use of two different exome kits, however, we have

tried to minimize the effects of this by only comparing the regions

covered by both enrichment methodologies.

In cancer research, there is great interest in identifying tumor

specific mutations [23,24]. This was achieved by comparing the

variants found in the WGA sequence data for tumor samples and

healthy tissue, and excluding all variants present in the latter. On

average, 1942 tumor-specific variants were identified in this way

for each tumor sample, although only 46% of these could be

confirmed by sequencing the unamplified tumor sample DNA.

This should be compared to the observation that 89% of all SNVs

(i.e. both tumor-specific and non-tumor specific SNVs, average

11432 shared variants) identified by sequencing tumor samples

following WGA could be confirmed by sequencing unamplified

material. This suggests that WGA introduces some false positive

calls that are identified as mutations when the patient’s constitu-

tional genetic variation is eliminated. Interestingly, 10% of the

genetic variants found using both the unamplified and WGA

protocols were mutations, i.e. variations identified by exome

sequencing for both WGA and unamplified tumor DNA that were

not present in the sequence of DNA from healthy samples. Of the

SNVs found uniquely by WGA, 54% were identified as mutations.

This value is comparable to the average number of confirmed

mutations for this sample preparation method i.e. the fraction of

WGA mutations (WGA pos and normal neg) found also by exome

sequencing of unamplified tumor is almost the same as the fraction

of mutations found only in the WGA exomes. Here we compared

the coding genetic mutations found by standardized bioinformatic

pipelines in WGA samples versus non-WGA samples. We have

taken into account the coverage of the different capturing

methods, and identified variants with and without a coverage

filter. This has its limitation in that low coverage areas might be

biased by inaccurate genotyping in these regions. However, in the

coding region most bioinformatic pipelines do find mutations by

comparing sequencing of both tumor and normal tissue. There are

bioinformatic tools to deal with these issues like VarScan 2 [25]

and pibase [26], but this might have the limitation of only studying

high quality regions.
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RNA-sequencing (RNA-seq) could potentially be useful for

validating mutations identified in WGA sequence data. On

average, we found that 71% of such mutations can be covered

by RNA sequencing if the adequate sequencing depth can be

achieved. However, the drawbacks of variant calling based on

RNA sequence data are that it depends on bi-allelic expression

and that there is a lack of variant calling tools that are designed for

variant calling based on RNA-seq data. To eliminate the influence

of bi-allelic expression on the variant calls, we determined the

number of genes that were expressed bi-allelically (i.e. for which

we found heterozygous SNVs) based on the RNA-seq data and

also determined how many of these genes contained variants based

on the WGA and unamplified tumor DNA sequence data. On

average, 39% of the genes called with heterozygous variants in

RNA-seq could also be verified by inspection of the WGA and

unamplified tumor sequence data. This indicates that a large

fraction of the variant calls obtained from RNA sequence data

cannot be validated [27]. Although it is possible that the advent of

rapid and affordable RNA sequencing might eliminate these

discrepancies to some extent [28]. A further advantage of using

RNA-seq data is that only genetic variants in highly expressed

genes are identified.

Overall, the results presented herein indicate that the use of

WGA in conjunction with sequence capture can identify a large

fraction of the genetic variants found without using amplification

when doing exome sequencing. However, a comparatively high

fraction of the mutations identified using WGA alone cannot be

confirmed using other methods. The main concern regarding the

use of WGA in conjunction with sequence capture for mutation

analysis is of course the introduction of false positives, which in this

study was found to some extent. However, the use of WGA for

identifying SNVs and constitutional genetic variants seems to be

reliable, although caution should be taken when using WGA to

identify mutations.
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Minne and Markus Borgströms stiftelse. The authors would like to

acknowledge support from Science for Life Laboratory, the national

infrastructure SNISS, and Uppmax for providing assistance in massive

parallel sequencing and computational infrastructure.

Author Contributions

Conceived and designed the experiments: JH HG MH MK JL. Performed

the experiments: JH CO PV MH MK. Analyzed the data: JH HG MH

MK JL. Contributed reagents/materials/analysis tools: JH HG CO PV

MH MK JL. Wrote the paper: JH HG JL.

References

1. Stahl PL, Lundeberg J (2012) Toward the single-hour high-quality genome.

Annual review of biochemistry 81: 359–378.

2. Duhaime MB, Deng L, Poulos BT, Sullivan MB (2012) Towards quantitative

metagenomics of wild viruses and other ultra-low concentration DNA samples: a

rigorous assessment and optimization of the linker amplification method.

Environ Microbiol 14: 2526–2537.

3. Yilmaz S, Allgaier M, Hugenholtz P (2010) Multiple displacement amplification

compromises quantitative analysis of metagenomes. Nat Methods 7: 943–944.

4. Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, et al.

(2013) Sequencing platform and library preparation choices impact viral

metagenomes. BMC Genomics 14: 320.

5. Duhaime MB, Sullivan MB (2012) Ocean viruses: rigorously evaluating the

metagenomic sample-to-sequence pipeline. Virology 434: 181–186.

6. Siu WK, Mak CM, Siu SL, Siu TS, Pang CY, et al. (2012) Molecular diagnosis

for a fatal case of very long-chain acyl-CoA dehydrogenase deficiency in Hong

Kong Chinese with a novel mutation: a preventable death by newborn

screening. Diagn Mol Pathol 21: 184–187.

7. Silander K, Saarela J (2008) Whole genome amplification with Phi29 DNA

polymerase to enable genetic or genomic analysis of samples of low DNA yield.

Methods in molecular biology 439: 1–18.

8. Lee JC, Tsai LC, Lai PY, Lee CC, Lin CY, et al. (2012) Evaluating the

performance of whole genome amplification for use in low template DNA

typing. Medicine, science, and the law.

9. Illumina (2012) Truseq Exome Enrichment Kit Datasheet. http://www.

illumina.com/documents/products/datasheets/datasheet_truseq_exome_

enrichment_kit.pdf. Accessed 2012 Oct 15.

10. Nimblegen (2011) SeqCap EZ Human Exome Library v3.0 Datasheet. http://

www.nimblegen.com/products/lit/06593518001.pdf. Accessed 2012 Oct 15.

11. Agilent (2012) SureSelect Target Enrichment Human All Exon V4 Datasheet

http://www.chem.agilent.com/en-US/Search/Library/_layouts/Agilent/

PublicationSummary.aspx?whid = 79206.Accessed 2012 Oct 15.

12. Chang H, Jackson DG, Kayne PS, Ross-Macdonald PB, Ryseck RP, et al. (2011)

Exome sequencing reveals comprehensive genomic alterations across eight

cancer cell lines. PloS one 6: e21097.

13. Network CGA (2012) Comprehensive molecular characterization of human

colon and rectal cancer. Nature 487: 330–337.

14. Hannemann J, Meyer-Staeckling S, Kemming D, Alpers I, Joosse SA, et al.

(2011) Quantitative high-resolution genomic analysis of single cancer cells. PloS

one 6: e26362.

15. Asan, Xu Y, Jiang H, Tyler-Smith C, Xue Y, et al. (2011) Comprehensive

comparison of three commercial human whole-exome capture platforms.

Genome biology 12: R95.

16. Parla JS, Iossifov I, Grabill I, Spector MS, Kramer M, et al. (2011) A

comparative analysis of exome capture. Genome biology 12: R97.

17. Sulonen AM, Ellonen P, Almusa H, Lepisto M, Eldfors S, et al. (2011)

Comparison of solution-based exome capture methods for next generation

sequencing. Genome biology 12: R94.

18. Xu X, Hou Y, Yin X, Bao L, Tang A, et al. (2012) Single-cell exome sequencing

reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:

886–895.

19. Hou Y, Song L, Zhu P, Zhang B, Tao Y, et al. (2012) Single-cell exome

sequencing and monoclonal evolution of a JAK2-negative myeloproliferative

neoplasm. Cell 148: 873–885.

20. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The

Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome research 20: 1297–1303.

WGA Assessment

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e84785



21. Indap AR, Cole R, Runge CL, Marth GT, Olivier M (2013) Variant discovery

in targeted resequencing using whole genome amplified DNA. BMC Genomics
14: 468.

22. Jiang T, Yang L, Jiang H, Tian G, Zhang X (2011) High-performance single-

chip exon capture allows accurate whole exome sequencing using the Illumina
Genome Analyzer. Sci China Life Sci 54: 945–952.

23. Murphy SJ, Cheville JC, Zarei S, Johnson SH, Sikkink RA, et al. (2012) Mate
pair sequencing of whole-genome-amplified DNA following laser capture

microdissection of prostate cancer. DNA Res 19: 395–406.

24. Murphy SJ, Hart SN, Lima JF, Kipp BR, Klebig M, et al. (2013) Genetic
alterations associated with progression from pancreatic intraepithelial neoplasia

to invasive pancreatic tumor. Gastroenterology 145: 1098–1109 e1091.

25. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. (2012)

VarScan 2: somatic mutation and copy number alteration discovery in cancer by
exome sequencing. Genome Res 22: 568–576.

26. Forster M, Forster P, Elsharawy A, Hemmrich G, Kreck B, et al. (2013) From

next-generation sequencing alignments to accurate comparison and validation of
single-nucleotide variants: the pibase software. Nucleic Acids Res 41: e16.

27. Cirulli ET, Singh A, Shianna KV, Ge D, Smith JP, et al. (2010) Screening the
human exome: a comparison of whole genome and whole transcriptome

sequencing. Genome biology 11: R57.

28. Chepelev I, Wei G, Tang Q, Zhao K (2009) Detection of single nucleotide
variations in expressed exons of the human genome using RNA-Seq. Nucleic

acids research 37: e106.

WGA Assessment

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e84785


