
Accuracy of MicroRNA Discovery Pipelines in Non-Model
Organisms Using Closely Related Species Genomes
Kayvan Etebari, Sassan Asgari*

School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia

Abstract

Mapping small reads to genome reference is an essential and more common approach to identify microRNAs (miRNAs) in
an organism. Using closely related species genomes as proxy references can facilitate miRNA expression studies in non-
model species that their genomes are not available. However, the level of error this introduces is mostly unknown, as this is
the result of evolutionary distance between the proxy reference and the species of interest. To evaluate the accuracy of
miRNA discovery pipelines in non-model organisms, small RNA library data from a mosquito, Aedes aegypti, were mapped to
three well annotated insect genomes as proxy references using miRanalyzer with two strict and loose mapping criteria. In
addition, another web-based miRNA discovery pipeline (DSAP) was used as a control for program performance. Using
miRanalyzer, more than 80% reduction was observed in the number of mapped reads using strict criterion when proxy
genome references were used; however, only 20% reduction was recorded for mapped reads to other species known
mature miRNA datasets. Except a few changes in ranking, mapping criteria did not make any significant differences in the
profile of the most abundant miRNAs in A. aegypti when its original or a proxy genome was used as reference. However,
more variation was observed in miRNA ranking profile when DSAP was used as analysing tool. Overall, the results also
suggested that using a proxy reference did not change the most abundant miRNAs’ differential expression profiles when
infected or non-infected libraries were compared. However, usage of a proxy reference could provide about 67% of the
original outcome from more extremely up- or down-regulated miRNA profiles. Although using closely related species
genome incurred some losses in the number of miRNAs, the most abundant miRNAs along with their differential expression
profile would be acceptable based on the sensitivity level of each project.
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Introduction

microRNAs (miRNAs) are small non-coding RNAs of ,22

nucleotides, which are highly conserved among evolutionarily

related species, and many even have homologs in distantly related

species [1]. They have added a new facet of control to the complex

network of gene transcription pathways and regulate around 30–

75% of different mRNA transcripts in eukaryote cells [2]. miRNAs

regulate the expression of target genes by binding to complemen-

tary sequences in the target mRNA and play important roles in

various biological processes through post-transcriptional regula-

tion of gene expression. Differential expression of miRNAs under

various biological conditions, such as development, immune

challenge, host-microorganism interactions and stresses has been

reported in many species [3–11]. These characteristics have made

some miRNAs suitable biomarkers for disease diagnostics [12,13].

In recent years, the number of miRNA annotations has

increased particularly in large and/or poorly annotated genomes

[14] due to the large amount of sequencing data that can readily

be produced by next generation sequencing platforms, such as the

Illumina and Solexa. Since identifying the first miRNA in

Caenorhabditis elegans [15], massive numbers of miRNAs have been

identified in other model organisms. In the last few years, by

increasing our knowledge of miRNA biology and also significant

reductions in sequencing costs, the number of research projects

with a focus on the role of miRNA under different biological

conditions in non-model organisms has also increased. Due to

improvements in prediction algorithms, miRNA discovery from

various non-model organisms has advanced, with 21,264 miRNAs

known to date (miRBase v19.0). There are a few technical factors

such as sequencing accuracy, genomic mapping efficacy, and small

RNA library preparations, which make small RNA-seq (smRNA-

seq) data interpretation a daunting task [14,16]. Using this

technology in a species lacking genomic resources is quite

challenging due to high levels of small RNA diversity and

concerns over read mapping accuracy in the absence of a genome

scaffold.

In many studies, detection of known/conserved miRNAs and

their expression levels is a priority rather than discovery of novel

miRNAs. In this case, mapping millions of sequencing reads to a

reference genome can be replaced by aligning these small reads

against the sequences of known miRNAs in other species. Many

miRNA analysis tools, such as miRExpress [17] and DSAP [18],

have been developed based on this approach which could be used

to determine miRNA expression profiles when genomic sequences

are unavailable. Using other organisms’ genomes as proxy
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reference to identify conserved miRNAs in non-model species has

been approached by many research groups [19–22]. How well do

miRNA discovery pipelines perform for miRNA discovery analysis

from smRNA-Seq data in the absence of a sequenced genome?

In this study, two mosquito small RNA library data from Aedes

aegypti were aligned to two closely related (Anopheles gambiae and

Drosophila melanogaster) and one distantly related (Bombyx mori) insect

genomes as proxy references to evaluate the accuracy of

identification of known and novel miRNAs and their differential

expression if the original genome sequence was not available. The

outcomes of these analyses were validated by comparing the results

when the original genome sequence was used as the standard

reference genome. miRanalyzer and DSAP were selected for this

study as they are user-friendly web servers with a short

computational time and their overall approach towards miRNA

detection has made them popular. The information in regards to

the accuracy of miRNA discovery pipelines using closely related

organisms’ genomes could provide valuable knowledge for

Figure 1. Number of reads from A. aegypti smRNA-seq data mapped to four selected species unique mature miRNA sequences in
miRBase.
doi:10.1371/journal.pone.0084747.g001

Figure 2. Number of reads from A. aegypti smRNA-seq data mapped to four selected species sequence of pre-miRNA hairpins in
miRBase.
doi:10.1371/journal.pone.0084747.g002
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scientists interested in the distribution patterns of miRNAs or

discovering new miRNAs in non-model species.

Results and Discussion

Mapping Small Reads to Databases and Prediction of
Conserved miRNAs
To identify known miRNAs in the libraries, we used the

miRBase repository [23] which offers mature and precursor

miRNA (pre-miRNA) sequences. As expected, more reads

mapped to A. aegypti’s original mature miRNA set in comparison

with those of other species in both analysis pipelines. More than

20% reduction was observed in the number of mapped reads using

the strict criterion when other species miRNA sets were used as

alignment proxy references (Fig. 1). The difference between the

number of mapped reads when both mapping criteria were

applied for the two closely related species, A. aegypti and A. gambiae,

was around 20%, while applying the loose criterion (max 2

possible mismatches) led to significant enhancement in the number

of reads mapped to known mature miRNAs in D. melanogaster and

B. mori datasets (Fig. 1). In this case, allowance of two mismatches

increased the coverage of data processing and showed the opposite

pattern when the genome sequences were used as proxy alignment

references.

The number of reads that were mapped to known mature

miRNAs by DSAP was significantly less compared to miRanalyzer

and this is due to inflexible aligning algorithm of DSAP (Fig. 1).

The only reads that showed 100% identities were retained in

DSAP, while miRanalyzer is able to analyse the isomers and

potential variations in miRNA sequence. A software performance

study showed DSAP and miRanalyzer keep the highest percentage

of reads in the process of mapping among other miRNA discovery

pipelines [24]. However, in the current analysis, the number of

used reads demonstrated significant differences between the two

pipelines. This indicates miRanalyzer utilized a larger portion of

the available data for further analysis. miRanalyzer was developed

as a sensitive learning algorithm to predict conserved and novel

miRNAs with an AUC (Area Under Curve) of 97.9% and recall

values of up to 75% on unseen data [25].

Figure 2 shows the number of reads mapped to known pre-

miRNA sequences in miRBase, which in contrast to mature

miRNA, using both mapping criteria, more reads were mapped to

B. mori reference genome. Overall, the number of mapped reads

when the strict criterion was applied, which allows just one

mismatch in the reference dataset, was significantly lower than

that of the loose criterion. Indeed, 83 and 13 times enrichment was

observed in the number of mappable reads with the loose criterion

in D. melanogaster and A. aegypti, respectively (Fig. 2). The pre-

miRNA is more diverged than mature miRNA among different

species and thus more mapped reads were expected with the loose

criterion, which allows for more mismatches in the proxy reference

genomes. Therefore, using loose criterion increased the coverage

when a proxy reference was used and the results suggested that

potentially there could be more homologous miRNAs in A. aegypti

that have not been reported and remain to be discovered.

The two types of pipelines used in this study had the highest

mature miRNA prediction success in software performance tests of

Homo sapiens and C. elegans small RNA sequencing data [26]. In the

current study, the number of predicted mature and pre-miRNAs

were compared with species standard, which was defined as the

total number of miRNAs for each species found in miRBase.

When the reads were aligned to A. aegypti’s reported miRNAs using

miRanalyzer, sequences of 84 known mature miRNAs were

identified with strict criterion, which is almost 67.7% of the

reported miRNAs from this species, while choosing the loose

criterion increased this value to 93.5%, which is 116 miRNAs

(Fig. 3A; Table 1).

In all cases, DSAP values were lower than those of miRanalyzer

when strict criterion was applied. For example, only 5.1% of B.

mori miRNA were identified by aligning A. aegypti small RNA reads

to B. mori known miRNAs (Table 1). Using DSAP or strict

criterion and other insect species data as proxy reference

significantly reduced the number of detected miRNAs for A.

aegypti small RNA library (Fig. 3A). Notably, using loose criterion

dramatically increased the prediction values with B. mori and D.

melanogaster proxy miRNA references (Fig. 3A). The results suggest

that probably there are many insect conserved miRNAs which

have not been reported from A. aegypti and their homologues could

easily be identified in two genetically well annotated species B. mori

and D. melanogaster. miRanalyzer detected 65.7% of A. gambiae

mature miRNA sequences when A. aegypti small RNA reads were

aligned to known A. gambiae miRNAs in miRBase, a value very

close to its original species discovery rate (67.7% in A. aegypti). The

data in Table 1 also show that the strict criterion provided around

10% of known miRNAs in phylogenetically distant species D.

melanogaster and B. mori, suggesting high levels of diversification in

miRNAs evolution. The majority of those miRNAs (around 84%)

were identified with loose criterion in the two species, which shows

that there are more than three mismatches or differences between

A. aegypti mature sequences with those of two phylogenetically

distant species. High level of conservation is expected between D.

melanogaster and the two other mosquitoes (Aedes and Anopheles);

Figure 3. Number of conserved or known miRNAs identified in A. aegypti smRNA-seq data by miRanalyzer and DSAP. A) The total
number of identified miRNAs with strict and loose criteria by mapping to species unique sequences in miRbase. B) Number of overlap or common
miRNAs between A. aegypti and other selected species.
doi:10.1371/journal.pone.0084747.g003

Table 1. Identification rate of known mature and precursor miRNAs from A. aegypti in four selected species.

Species loose criterion strict criterion DSAP (Mature)

Mature pre-miRNA Mature pre-miRNA

Aedes aegypti 93.5% 84.2% 67.7% 30.7% 62.1%

Anopheles gambiae 93.8% 94.0% 65.7% 44.8% 58.5%

Drosophila melanogaster 83.8% 99.6% 13.6% 1.3% 8.4%

Bombyx mori 84.0% 97.3% 10.5% 1.4% 5.1%

doi:10.1371/journal.pone.0084747.t001
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however, previous comparative genomic analysis suggested that

several fruit fly developmental genes could not be identified in

mosquito genomes [27]. As a consequence, it is expected that a

number of Drosophila miRNAs may not have orthologues in

mosquitoes.

Research indicates that evolution of miRNAs is an ongoing

process and the continuing innovation of novel miRNA families in

different organisms is not the only way of evolution in this group of

small RNAs but also the diversification of established families

producing additional paralogues of miRNAs [28]. The pair-wise

sequence identity of paralogous pre-miRNA sequences are often

below 50–60% while their mature miRNA sequences show high

level of conservation [29]. Previous studies have shown that the

terminal loop is the least conserved part of pre-miRNAs [21,30].

As shown in Table 1, with strict criterion, only less than 1.5% of

pre-miRNAs were identified when D. melanogaster and B. mori

genomes were used as proxy references.

The number of conserved miRNAs between A. aegypti and other

selected species are presented in Fig. 3B. The results revealed that

using the strict criterion 41, 44 and 39 miRNAs were common

Figure 4. Percentage of unique reads from A. aegypti smRNA-seq data aligned to genome sequences from four different insects
using strict or loose criterion.
doi:10.1371/journal.pone.0084747.g004

Figure 5. Number of novel miRNA candidates predicted in A. aegypti smRNA-seq data by mapping to four selected species
genomes. ‘‘Perfect Dicer pattern: A perfect 39 2 nt overhang exists for the most expressed read and not more than 3 read clusters do exist on the pre-
miRNA (one for the mature, one for the mature* and one for the loop sequences). Diffuse Dicer patter: A 39 1–4 nt overhang exists for the most
expressed read and not more than 3 read clusters do exist on the pre-miRNA. Low fluctuation: No Dicer pattern has been detected but only one read
cluster does exist. No Dicer pattern: No Dicer pattern has been detected or too many read cluster do exist’’ [25].
doi:10.1371/journal.pone.0084747.g005
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between A. aegypti and A. gambiae, D. melanogaster and B. mori,

respectively. This overlap in detected miRNAs between species in

each analysis suggests that several undescribed miRNAs poten-

tially remain to be discovered in A. aegypti. The first A. aegypti

miRNA repository was reported in 2009 by mapping 545

pyrosequencing data to the mosquito’s genome using the BLAST

algorithm, which probably led to missing many potential miRNAs

due to the allocated mapping criteria [31].

The results from this study also suggests high levels of

conservation or similarity in miRNA repertoires among phyloge-

netically close species; for example 56 out of 61 A. gambiae miRNAs

(,92%) were identified with A. aegypti small RNA library while this

value reduced to 13% (64 out of 474) in the phylogenetically

distant species B. mori when loose criterion was applied (Fig. 3B). In

addition, it has been reported that most mosquito miRNAs are

conserved across divergent species with only 11 distinct miRNA

genes to be mosquito-specific [31–33]. However, we only recalled

around 50% of A. aegypti miRNAs when another mosquito’s

genome (A. gambiae) or known miRNA dataset was used as proxy

reference (Fig. 3B).

Mapping Small RNAs to Genome References and
Prediction of Novel miRNAs
As expected, the number of reads from the A. aegypti small RNA

libraries that mapped to the A. aegypti genome sequence were

significantly higher than matched reads to other proxy genome

references. When the loose criterion was applied, the percentage of

unique reads matched to the genome increased (Fig. 4). A laxer

mapping to miRNAs or other libraries such as Rapbase, Rfam will

remove more reads prior to the mapping to the genome.

Therefore, less reads are mapped to the genome as they are

removed at earlier stages. However, when other organism’s

genomes were selected as proxy references, the number of non-

matched reads considerably increased once the strict criterion was

applied. The sensitivity of the Burrows–Wheeler Transform

(BWT)-based algorithms such as Bowtie, which is used in

miRanalyzer, decreases exponentially with the number of

mismatches in genome reference. Improvements of mapping

criteria are essential for the analysis of small RNA reads when

proxy reference genomes are utilized for mapping purposes

[34,35]. DSAP is not able to perform this task because it is only

designed for the identification of known miRNAs, which is

independent of a complete genome sequence.

As mentioned above, identification of more potential novel

miRNAs in A. aegypti was expected since in the previous step it was

Table 2. The top 20 most abundant A. aegypti miRNAs identified by miRanalyzer, when reads aligned to four species database.

A. aegypti A. gambiae D. melanogaster B. mori

strict loose strict loose strict loose strict loose

miR-184 miR-184 miR-184 miR-184 miR-184-3p miR-184-3p miR-184-3p miR-184-3p

miR-275-3p miR-275-3p miR-275 miR-275 miR-275-3p miR-275-3p miR-275-3p miR-275-3p

miR-317 miR-317 miR-317 miR-317 miR-317-3p miR-317-3p miR-317-3p miR-317-3p

miR-2940-3p+ miR-2940-3p+ – – – – – –

miR-276-3p miR-276-3p miR-276-3p miR-276-3p miR-276a-3p miR-276a-3p miR-276-3p miR-276-3p

miR-92b-3p miR-92b-3p miR-92b miR-92b miR-92b-3p miR-92b-3p – miR-92b

miR-2940-5p+ miR-2940-5p+ – – – – – –

miR-281-5p miR-283 miR-283 miR-283 miR-281-2-5p miR-281-2-5p miR-281-5p miR-281-5p

miR-283 miR-281-5p miR-2 miR-2 miR-283-5p miR-283-5p miR-283-5p miR-283-5p

miR-989 miR-989 miR-989 miR-989 miR-989-3p miR-989-3p miR-2a-3p miR-2a-3p

miR-305-5p miR-305-5p miR-305 miR-305 miR-305-5p miR-305-5p miR-989a miR-989a

miR-34-5p miR-34-5p miR-34 miR-34 miR-2a-3p miR-2a-3p miR-305-5p miR-305-5p

miR-2a-3p miR-2a-3p – – miR-34-5p miR-34-5p miR-34-5p miR-34-5p

miR-998 miR-998 – – miR-998-3p miR-998-3p miR-998 miR-998

miR-14 miR-14 miR-14 miR-14 miR-14-3p miR-14-3p miR-14-3p miR-14-3p

miR-92a-3p miR-92a-3p miR-92a miR-92a miR-92a-3p miR-92a-3p miR-92a

miR-12-5p miR-12-5p miR-12 miR-12 miR-12-5p miR-12-5p miR-12 miR-12

miR-11-3p miR-11-3p miR-11 miR-11 miR-11-3p miR-11-3p miR-11-3p miR-11-3p

miR-1889-5p+ miR-1889-5p+ – – – miR-310-5p++ miR-2779++ miR-2779++

miR-306-5p miR-263a-5p miR-263a miR-263a miR-263a-5p miR-263a-5p miR-263a-5p miR-306a-5p

miR-988++ miR-306 miR-306-5p miR-306-5p miR-71-5p++ miR-263a-5p

miR-970++ bantam++ miR-988-3p++ miR-304-5p++ bantam-3p++ miR-71-5p++

bantam++ miR-988++ bantam-3p++ miR-970-3p++

miR-87++ miR-970++ miR-252-5p++

miR-8++ miR-87++

+A. aegypti species-specific miRNAs.
++The miRNAs that appear at top 20 list when proxy references were used.
doi:10.1371/journal.pone.0084747.t002
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found that a high number of reads mapped to well-annotated

miRNAs from D. melanogaster and B. mori. Accordingly, miRana-

lyzer detected more novel miRNAs in A. aegypti when the

mosquito’s genome was used as reference, compared with when

other organisms’ genomes were used as proxy references. These

miRNAs were classified into four groups (Perfect Dicer pattern,

Diffuse Dicer, low fluctuation and no Dicer patterns) based on the

secondary structure of pre-miRNAs and the read alignments

(Fig. 5). In all the four selected genomes, most of the novel

miRNAs were categorized in low fluctuation and no Dicer

patterns groups. Indeed, identification of novel miRNAs needs

experimental validation but this in silico prediction confirmed that

using the original species genome, the chance to identify new

miRNAs is increased. Detection of fewer novel miRNAs, when

small RNAs were mapped to D. melanogaster and B. mori genomes, is

probably due to identification of many miRNAs that are already

known in these species. In other words, some portions of miRNAs

which were considered as novel (not reported) miRNAs in A. aegypti

in this analysis have already been known or reported as

homologues in other species.

Most of the novel miRNA candidates, which were identified by

miRanalyzer, had very low copy numbers. Comparison of

miRanalyzer with other similar web-based tools suggested that

miRanalyzer is better suited to detect low-expressed novel miRNA

candidates, and novel candidates represented by low abundant

reads may not be excluded from library using its algorithm [24].

Identification of Abundant miRNAs
The top twenty most abundant miRNAs in A. aegypti small RNA

libraries were identified by miRanalyzer (Table 2) and DSAP

(Table 3) through mapping reads to the four selected species

references. Using loose or strict criteria did not make any

significant differences in the profile of the most abundant miRNAs

in A. aegypti compared with when its original genome was used as

reference. miR-184, miR-275-3p, miR-317 were the most

abundant miRNAs in all the different analyses. However, the

important A. aegypti’s species-specific miRNA miR-2940 was

missed when other species data were used as proxy references

(Table 2 and 3).

A. aegypti mature miRNA database as a reference showed high

level of similarities between DSAP and miRanlayzer in the top 10

highly expressed miRNAs ranking. However, using other organ-

isms’ known miRNA as reference made more variation in the list

when DSAP was compared with miRanalyzer. The ranking profile

produced by miRanalyzer is more reliable because of its flexible

mapping algorithm and higher data coverage. For example, when

B. mori was selected as a reference, miR-184, which is a very highly

expressed miRNA in most cases, was not allocated in the top 10 by

DSAP (Table 3).

In general, a significant proportion of miRNAs lack homologues

among other species, which is likely due to species-specific

adaptations. They are potentially the most interesting aspects of

a species miRNA evolution, but they could simply be missed

during annotation using inappropriate discovery pipelines and

reference genomes. For example, A. aegypti species-specific miRNA

aae-miR-2940 is one of the highly expressed miRNAs, which was

only identified when A. aegypti’s genome was used as reference. The

miRNA plays important roles in the maintenance of the

endosymbiont Wolbachia in the mosquito and is involved in

inhibition of replication of dengue virus in Wolbachia-infected A.

aegypti [36,37].

Differentially Expressed miRNAs
In many instances, highly differentially expressed miRNAs

under different treatments are of interest to researchers to find

their biological functions in non-model species. To examine the

impact of the species used as a genome reference to determine

differentially expressed miRNA profiles, we used small RNA

libraries from A. aegypti Wolbachia-infected and non-infected Aag2

cells for comparison [38]. miRNAs with an average read number

of less than 10 were discarded from DESeq analysis output file and

then the top 40 extremely up- and down-regulated miRNAs were

selected for comparison (Fig. 6). When the strict criterion was used,

around 27 out of 40 miRNAs were common between analyses

when the genomes of A. aegypti and other species were used as

references. In other words, using other organisms’ genomes as

proxy references could provide about 67% of the outcome when

the original (A. aegypti) genome was used as reference. However,

this value was significantly reduced in phylogenetically distant

species B. mori (17.7%) when loose criterion was applied (Fig. 6).

Differential expression values of 10 most abundant A. aegypti

miRNAs in different analyses are presented in Table 4. Although

in some cases the values are different in each analysis, the overall

patterns are very similar. The results suggested that using other

organisms’ genomes as reference did not change the most

abundant miRNA differential expression profile which was

calculated based on log 2 fold change. Although DSAP provides

visualization interfaces for differential mature miRNA expression

level, reporting non-normalized data is the main limitation of

DSAP for this task. Due to this limitation, the value for log 2 fold

changes in each analysis might vary with its corresponding value in

miRanalyzer.

Table 3. The top 20 most abundant A. aegypti miRNAs
identified by DSAP, when reads aligned to four species
database.

A. aegypti A. gambiae D. melanogaster B. mori

miR-184 miR-184 miR-184 miR-275

miR-275 miR-275 miR-275 miR-276-3p

miR-317 miR-276-3p miR-276a miR-281-5p

miR-2940-3p miR-92b miR-281-2-5p miR-305

miR-276 miR-989 miR-305 miR-14

miR-92b miR-305 miR-998 miR-34

miR-2940-5p miR-34 miR-14 miR-263a

miR-989 miR-14 miR-12 miR-252

miR-305 miR-12 miR-11 miR-2a

miR-11-3p miR-11 miR-970 miR-8*

miR-14 miR-92a miR-988 miR-190

miR-12 miR-970 miR-252 miR-184

miR-34 miR-988 miR-34 miR-277

miR-11 miR-2 bantam miR-7

miR-92a miR-13b miR-2a miR-100

miR-1889-5p miR-278 miR-13b let-7

miR-71 miR-279 miR-278 miR-10

miR-263a miR-190 miR-279 miR-1000

miR-970 miR-277 miR-9b miR-11

bantam-3p miR-7 miR-190 miR-279c

doi:10.1371/journal.pone.0084747.t003
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Conclusions

Analyzing small RNA-Seq data for miRNA discovery has

classically required genomic sequences from the species of interest

in order to map the reads to the reference genome. In the absence

of genome sequences in many non-model organisms, a number of

tools have been developed based on other species’ conserved

miRNA datasets or other closely related species genome sequences

as proxy references; however, the accuracy of these approaches

have not been thoroughly evaluated; although there have been

studies analysing the accuracy of quantitative RNA-Seq for gene

expression in non-model species including de novo transcriptome

assembly and the use of non-target species as reference scaffolds

[39]. These studies have illustrated that using closely related

Figure 6. Unique highly differentially expressed miRNAs in Aag2 cell with and without Wolbachia infection when genomes of
different selected insect species were used as references. Overlap areas show the number of common miRNAs in each comparison with high
level of fold changes (more than 2).
doi:10.1371/journal.pone.0084747.g006

Table 4. Differential expression value of 10 most abundant A. aegypti miRNAs in different analyses when other insects data were
used as reference.

miRNA A. aegypti A. gambiae D. melanogaster B. mori

Loose Strict DSAP Loose Strict DSAP Loose Strict DSAP Loose Strict DSAP

miR-184 20.5547 20.5328 20.42 20.5355 20.5343 20.25 20.3218 20.5075 0.42 20.3062 20.5349 21.77

miR-275-3p 20.9623 20.9398 20.15 20.9430 20.9411 20.75 20.7293 20.9143 0.75 20.7131 20.9411 20.75

miR-317 21.0387 21.0176 20.71 21.0261 21.0275 +‘ 20.7996 20.9923 – 20.7897 21.0191 –

miR-2940-3p 0.2670 0.2888 0.56 – – – – – – – – –

miR-2940-5p 0.5286 0.5509 0.78 – – – – – – – – –

miR-276-3p 20.4760 20.4537 20.11 20.4568 20.4551 20.12 20.2437 20.4287 0.12 20.2269 20.4551 20.12

miR-92b-3p 20.7702 20.7470 2‘ 20.7510 20.7484 20.41 20.5393 20.7172 – 20.5189 – –

miR-283 0.3487 0.3705 1.31 0.3712 0.3872 – 0.5826 0.4100 – 0.6011 0.3872 –

miR-281-5p 21.2454 21.2243 – 0.4644 0.6258 – 21.0115 21.1960 0.90 20.9939 21.2214 20.90

miR-305-5p 20.0195 0.0014 0.19 0.0000 0.0000 0.25 0.2137 0.0268 20.25 0.2299 0.0000 0.25

Differential expression was calculated based on log 2 fold change.
doi:10.1371/journal.pone.0084747.t004
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species genome as reference incurs some losses in the number of

predicted sequences and their expression data; in particular, the

evolutionary distance between species introduces more biases and

errors [39,40].

Our findings indicated that the most abundant and conserved

miRNAs can successfully be identified from a non-model species

smRNA-Seq data by using closely related species genome

references, but using a proxy genome reference does not lead to

the identification of the whole miRNA profile in species without

complete sequenced genome. In addition, this approach provides a

robust starting place for the identification of differentially

expressed miRNAs which are often of great interest to researchers

when comparing samples from cells or organisms under different

treatments (e.g. infected and non-infected). The overall pattern of

differential expression for miRNAs with high copy numbers did

not show any significant changes when other spehcies genomes

were used as proxy references. Accordingly, around 67% of

extremely up- or down-regulated miRNAs were identified by using

strict criterion and other species genomes as proxy references.

However, similar to transcriptome data studies, when the genome

of phylogenetically distant species was used as reference, the

number of identified differentially expressed miRNAs was reduced

to around 13% when loose criterion was applied.

Methods

Dataset Preparation
Two small RNA libraries were generated from two Aedes aegypti

(Diptera; Culicidae) Aag2 cell line samples using the Illumina

TruseqTM Small RNA Preparation kit at LC Sciences Company

(Houston, USA). The purified cDNA libraries were sequenced on

Illumina GAIIx and raw sequencing reads (36 nts) were obtained

using Illumina’s Sequencing Control Studio software version 2.8

followed by real-time sequencing image analysis and base-calling

by Illumina’s Real-Time Analysis version 1.8.70 (LC Sciences,

Houston, USA). Two datasets with 1,409,306 and 3,347,907 raw

reads were obtained from deep sequencing and a tab separated file

with the read sequences and its counts were used as input file for

miRanalyzer [41] and DSAP [18].

miRNA Analysis Workflow
All reads with ‘N’ in their sequences and also those shorter than

17 bases or longer than 26 bases were removed from our datasets.

To detect the number of known miRNAs, the filtered reads were

aligned to the corresponding species miRNA sequences in

miRBase and also they were mapped to the proxy genome

references for predicting novel miRNAs.

An updated version of miRanalyzer, a web based server for the

detection of known and prediction of novel miRNAs was used as

the main pipeline for this analysis. This software is based on a

random forest classifier and implements a highly accurate machine

learning algorithm (Support Vector Machine) to predict new

miRNA candidates from high throughput sequencing data [25].

The ultrafast short read aligner Bowtie was used to align the reads

to the genomes and miRNA database (miRBase v. 19). DSAP, a

deep-sequencing small RNA analysis pipeline was also used as

control to increase our confident to exclude the impact of software

performance on data analysis. DSAP takes a sequence tag file as

input material and data processing is performed using Perl and

Linux shell scripts [18]. For identification of known miRNAs the

clustered reads were aligned with a non-redundant mature

miRNAs reference, as default database, using word-match and

Smith–Waterman algorithm [26].

Further, in a recent software performance evaluation study

based on ROC curve (Receiver Operating Characteristic), an

accuracy level of 68.3% and 67.3% were reported for miRana-

lyzer and DSAP, respectively [24]. This information increased the

reliability of these tools for using in the current study.

The genomes of two closely related species Anopheles gambiae

(Diptera: Culicidae) and Drosophila melanogaster (Diptera: Drosophi-

lidae), and a distantly related species Bombyx mori (Lepidoptera;

Bombycidae) were selected as mapping references to evaluate the

accuracy of miRNA discovery pipeline based on other organisms

genome sequence. A. aegypti genome sequence was used as control

to measure the validity of the approach.

We implemented two sets of analyses based on loose and strict

criteria with miRanalyzer, which were different in the number of

mismatches in the genome and known miRNAs database. Strict

criterion allowed a maximum of 1 mismatch in the genome,

known miRNAs and homologous miRNAs, while loose criterion

allowed a maximum of 2 mismatches in the genome and 3

mismatches for known and homologous miRNAs. For both

criteria, 1 mismatch was allowed for other transcribed libraries

such as Rfam and Rapbase. The software’s default seed alignment

length for Bowtie (17 for Known miRNA, 19 for genomes and 20

for other transcribed libraries) was selected for all the analyses.

In DSAP analysis, hits with 100% sequence identity and full-

length coverage with known miRNAs were considered as perfect

BLAST hits and kept for further analysis. This software classified

other sequence clusters, which showed low sequence homology

with known miRNAs as putative novel miRNAs. However, we did

not use this prediction due to lack of secondary structure

information or any other complementary criteria for consideration

as it is likely to produce a large number of false positives data [26].

Differential expression of miRNAs between two conditions was

analyzed based on the DESeq package [42] on miRanalyzer

server. DSAP is only able to calculate non-normalized miRNA

expression levels between two samples using a log2-transformed

colour matrix.
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