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Abstract

Backgroud: Type III secretion systems (T3SSs) are central to the pathogenesis and specifically deliver their secreted
substrates (type III secreted proteins, T3SPs) into host cells. Since T3SPs play a crucial role in pathogen-host interactions,
identifying them is crucial to our understanding of the pathogenic mechanisms of T3SSs. This study reports a novel and
effective method for identifying the distinctive residues which are conserved different from other SPs for T3SPs prediction.
Moreover, the importance of several sequence features was evaluated and further, a promising prediction model was
constructed.

Results: Based on the conservation profiles constructed by a position-specific scoring matrix (PSSM), 52 distinctive residues
were identified. To our knowledge, this is the first attempt to identify the distinct residues of T3SPs. Of the 52 distinct
residues, the first 30 amino acid residues are all included, which is consistent with previous studies reporting that the
secretion signal generally occurs within the first 30 residue positions. However, the remaining 22 positions span residues
30–100 were also proven by our method to contain important signal information for T3SP secretion because the
translocation of many effectors also depends on the chaperone-binding residues that follow the secretion signal. For further
feature optimisation and compression, permutation importance analysis was conducted to select 62 optimal sequence
features. A prediction model across 16 species was developed using random forest to classify T3SPs and non-T3 SPs, with
high receiver operating curve of 0.93 in the 10-fold cross validation and an accuracy of 94.29% for the test set. Moreover,
when performing on a common independent dataset, the results demonstrate that our method outperforms all the others
published to date. Finally, the novel, experimentally confirmed T3 effectors were used to further demonstrate the model’s
correct application. The model and all data used in this paper are freely available at http://cic.scu.edu.cn/bioinformatics/
T3SPs.zip.
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Introduction

Currently, eight types (type I to type VIII) of secretion systems

in Gram-negative bacteria have been identified according to their

outer membrane secretion mechanisms [1]. With these systems,

various types of proteins and virulence factors are secreted and

transported to the surrounding environment to promote bacterial

survival [2]. The type III secretion system (T3SS) is a specialised

protein delivery system that has been widely encoded in many

Gram-negative bacteria, such as Salmonella, Yersinia, Shigella,

Escherichia, Pseudomonas, etc. [3,4]. T3SSs are central to the

pathogenesis and virulence of many important Gram-negative

bacterial pathogens. Bacterial type III secreted proteins (T3SPs)

are delivered into host cells specifically via T3SSs, which play

important roles in host-pathogen interactions and have proven to

be powerful weapons used by pathogens against the host immune

defenses [4,5]. Because the secretion mechanism of T3SS is not yet

fully understood, the recognition of novel T3SPs is an important

and challenging task for the study of T3SSs. However, to adapt in

different hosts and defend against immune system attacks, T3SPs

evolve very quickly and their amino acid sequences are highly

variable [6]. Many T3SPs have no homology with other effectors

in public databases [7]. Therefore, it is notoriously challenging to

develop a reliable computational method to effectively identify

T3SPs.

In recent years, many computational methods have been

proposed to predict the functions of secreted proteins [8–13].

Due to the great diversity and feature specificity of T3SP

sequences, these methods cannot be simply repurposed to predict

T3SPs. Thus, special approaches have been developed to predict

T3SPs. Methods based on sequence alignment were originally

proposed [14–16], but the low sequence similarity between

different T3SPs leads to the poor performance of these methods.
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We know that secretion is the process that the secreted proteins

are produced from the bodies of bacterial and translocation refers

to translocate the effectors from the bacterial cytosol into host cells.

So T3SPs typically include a ‘‘leader sequence’’ that signals

export, a chaperone-binding sequence or translocation signals

following the leader sequences [17–19]. It has been reported that

the actual secretion signal is generally in the first 30 amino acids

[20–25], but the secretion of T3SPs needs to be guided by the

chaperone-binding sequences or translocation signals [18,19,26–

28]. Studies have also detected an amino acid composition (AAC)

bias in the N-terminal sequences of T3SPs. For example, Guttman

et al. found high Ser content and the low Asp content in the first 50

amino acids of most effectors in P. syringae [29]. Based on the

general features of the N-terminal peptides, different machine

learning methods have been adopted to predict T3SPs, e.g., Naive

Bayes (NB) [30], artificial neural network (ANN) [31] and support

vector machine (SVM) [27,29,32–35]. Arnold et al. [30] developed

the first universal in silico program, EffectiveT3, by incorporating

the AAC and secondary structures of N-terminal residues. Löwer

and Schneider [31] proposed an ANN model based on a sliding

window to capture signal features among the first 30 amino acids.

This model gives high selectivity but low sensitivity. Sato et al. [32]

introduced N-terminal flexibility, structure-related parameters and

a codon adaptation index to refine the discriminatory power of the

classifier. With the AAC features, secondary structure and

accessibility information, a SVM model by Yang et al. [33]

achieves a sensitivity of 65% for P. syringae T3SPs. However,

except the method by Samudrala, et al. [27], none of these

methods utilise position-specific features. Most recently, Wang

et al. developed a BPBAac model based on position-specific AAC

components for T3SP prediction. This model gives very high

sensitivity of 97.42% in classifying T3SPs and non-T3 proteins

[34]. Dong et al. used the profile-based k-spaced amino acid pair

composition (HHCKSAAP) to represent the N-terminal sequences

and they called this new method, BEAN [35]. This method has

been demonstrated to be superior to others. However, the

position-specific residues containing important signal information

remain to be identified. Moreover, these methods are all

developed for classifying T3SPs and non-T3 proteins. Since

previous studies have successfully identified the secreted proteins

(SPs) from other proteins [8–11,36], it is more essential, but also

more difficult to distinguish T3SPs from other SPs (non-T3 SPs).

Moreover, the confirmed T3SPs used by previous studies are not

sufficient. The largest number of T3SPs was 595, which was used

by Löwer and Schneider [31]. However, most were not validated,

and some with high homologies were not excluded, which affects

the generalisability of the predictions.

In this work, experimentally verified T3SPs from 16 bacterial

species were collected, and the non-T3 SPs from seven other types

(T1, T2 and T4–T8) were all included. Thus, a comprehensive

and unbiased dataset with lower than 25% sequence similarity was

constructed, and a new method based on position-specific residue

conservation profiles was proposed to identify T3SPs from the

non-T3 SPs.

As reported, the leader sequences are commonly encoded

within the first 30 residues [20–25,37], but it is difficult to develop

heuristic rules to identify them [27,30]. The translocation of many

effectors also depends on the chaperone-binding domains or

translocation signals [18,19,26] that span residues 25 to 100 [18].

However, among the 100 residues, those that are distinctive for

T3SPs prediction have not been identified. In this paper, we make

a first attempt to identify them. First, the conservation profiles of

the N-terminal 100 residues were constructed using a position-

specific scoring matrix (PSSM). Then taking the PSSM profiles of

residues as the inputs, significance analysis was implemented to

reveal the significant differences between T3SPs and non-T3 SPs

using SAM. Thus, 52 functionally important residues were

identified, including all the first 30 amino acid residues that are

the signal peptide and the 22 chaperone-binding or translocation

residues beyond the first 30 positions.

Using the protein sequence information, including AAC, solvent

accessibility information, secondary structure and six physico-

chemical properties, the sequence fragment of 52 position-specific

residues was translated into 250 numerical variables. Permutation

importance analysis was used to optimise these features, and 62

optimal features were selected. Finally, a prediction model was

developed using random forests (RF). The model gives a high

receiver operating curve (AUC) of 0.9277 for the 10-fold cross

validation and an accuracy of 92.56% for the test set. Moreover,

when constructing a common independent dataset, the results

demonstrate that this method is superior to the existing sequence-

based methods. To demonstrate the model’s application, new

experimentally verified effectors were predicted by our model, and

nearly all sequences were successfully identified.

Materials and Methods

Dataset Collection
Although the in-depth study of bacterial secretomes has

progressed and an increasing number of secreted proteins have

been discovered from Gram-negative bacteria, the sequence data

have not yet been systematically integrated. To collect the secreted

proteins, an extensive literature search was carried out to obtain

information on protein or gene IDs and certain secretory types.

Then, the corresponding sequences were collected from Swiss-Prot

and TrEMBL [38]. After eliminating sequences with less than 100

amino acids, 1139 SPs were collected, including all secretory types

from type I to type VIII. This dataset consists of 787 non-T3 SPs

and 352 T3SPs. In addition, other experimentally verified T3SPs

were also collected from the previous works of Wang et al. [34] and

Tay et al. [39], respectively, to increase the comprehensiveness of

the T3SP data. In total, the dataset of T3SPs contains 662 protein

sequences. According to the different secretion mechanisms, the

proteins are grouped into eight classes and shown in Supplemen-

tary Table S1.

Reports have shown that the translocation of some effectors

only depends on the first ,50 residues, e.g. AvrBs2 in Xanthomonas

[19], Tir in Enteropathogenic Escherichia coli [40] and PopD in

Pseudomonas aeruginosa [41]. Moreover, the conserved chaperone-

binding domain found by Costa et al. only covers the first 25 to 45

N-terminal residues [28]. But there are still many other effectors

that require the first ,100 residues to be secreted or trans-located.

For example, translocation signals in some Yops are located in the

first 50–100 residues [42,43]. The chaperone-binding site of SopE

covers the first 39 to 77 N-terminal residues [44] and that of YopE

is located between amino acid residues 15–100 [45]. The

chaperone SycH binding domain in YopH extends from residues

20 to 70 [46]. It also has been proven that the region between

residues 15 and 78 of SopE is responsible for binding the

chaperone InvB [47]. Moreover, previous studies have shown that

the maximal secretion or translocation may require the first 100

amino acids [7,19,33,36,48], in which the signal peptides of T3SPs

may be contained [34,49–51]. Instead of using full-length protein

sequences for prediction, we only focused on the N-terminus in

this study. Thus, only the first 100 residues were extracted from

the dataset in all following calculations.

Further, to avoid homology bias, a strict criterion was used to

evaluate our method, such that the mutual identity in the dataset

Identification of Type III Secreted Effectors
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was less than 25% [52–55]. Firstly, the non-redundant dataset was

obtained by clustering the sequence segments of 100 residues with

CD-HIT [56] at 30% identity threshold. Then another common

tool, BLASTCLUST program [57] with parameters ‘‘-S 25 -L 0.9

-b F’’ was used to ensure that no clear homologues are present in

the non-redundant dataset. In this way, any two protein segments

from different clusters shared less than 25% identical residues over

90% coverage of any protein. Finally, an unbiased dataset that

included 283 T3 and 313 non-T3 proteins was constructed.

Position-specific Conservation Profiles and Significance
Analysis
The first 100 amino acids have been shown to be very

important for the secretion of T3SPs, but those that are distinctive

for T3SPs prediction remain to be identified. One fact is that the

conservation varies from site to site and some residues with little

conservation have no contributions to T3SPs identification. A

position-specific scoring matrix (PSSM) has been considered as an

Figure 1. Significant difference analysis by SAM for the first 100 residues. The positions with q-values less than 0.05 are in pink, including
the blue parts with q equaling to 0. Those with q.= 0.05 are in green.
doi:10.1371/journal.pone.0084439.g001

Figure 2. The bar charts of the RSDs for the 100 residues positions. The higher RSD value of one residue position means the more significant
conservation difference between T3SPs and non-T3 SPs at this position. The positions with RSD values of ,10% are not distinctive residues.
doi:10.1371/journal.pone.0084439.g002
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effective measure of residue conservation in a given location. It has

been widely used to predict the functional sites [58–63] and

received good results. Studies have shown that evolutionary

profiles obtained from multiple sequence alignment contain more

comprehensive information than a single sequence [64,65]. Here,

we used PSSM to construct the conservation profiles of the first

100 residues using PSI-BLAST to search the Swiss-Prot for

multiple sequence alignment against the query protein. A

conservation profile of a residue consists of the log-likelihoods of

the mutation of 20 standard amino acids. In this way, a protein

was represented into a matrix of 100*20.

To identify the distinct position-specific residues for T3SPs

prediction, a significance analysis was performed to extract the

conservation differences of the 100 residues between T3SPs and

non-T3 SPs using significance analysis of microarrays, (SAM)

established by Tusher et al. [66]. SAM is a statistical technique for

identifying significant genes and is one of the most popular

methods employed for microarray analysis [67–69]. Similar to T-

test, SAM depends on constructing a test statistic to estimate the

null distribution. To identify significant genes, a false discovery

rate (FDR) is proposed as the expected proportion of false positive

findings among those differential expressions [66,67]. FDR is

commonly presented as a q-value, which is the minimum FDR. A

q-value threshold is used to control the FDR at a desirable level.

For selecting significant genes, the input is the expression value of

a gene. Here, SAM was used to detect the significant residues, so

the input is the PSSM profile of a residue. The smaller the q-value

is, the more significant the conservation difference is. A q-value

equalling to 0 means a significant difference with a 100%

confidence level. In our paper, a q-value threshold of 0.05 was

used to determine whether the conservation profiles of the two

residues at the same position are remarkably different between

T3SPs and non-T3 SPs. We performed SAM analysis using the

siggenes package in R language (version 2.13.1) by the following

link: http://www.bioconductor.org/packages/release/bioc/html/

siggenes.html.

Feature Space
After reviewing the previous methods for predicting T3SPs, four

protein features were commonly used in the learning model,

including amino acid composition (AAC) [7,29,33], secondary

structure (SS) [7,30,33], relative solvent accessibility (RSA) [7,33]

and physicochemical properties (PP) [32,33], which are theoretical

pI, total number of negatively charged residues of Asp and Glu

(Nnc) and positively charged residues of Arg and Lys (Npc),

instability index (Ins), aliphatic index (Ali) and grand average

hydrophobicity (Hydro), respectively. The RSA and SS were

predicted by the SABLE protein structure prediction server at

http://sable.cchmc.org/ [70–72]. Using SABLE, the RSA and

contents of three SS types (helix, beta strand and coil) were

obtained for each residue. Here, helix, beta strand and coil are

represented as SSH, SSE and SSC, respectively. Six physico-

chemical properties were estimated for the N-terminal sequence

by the Protparam program at http://web.expasy.org/protparam/

[73].

Table 1. The conservation differences analyzed by SAM for N-terminal 100 residues.

RSD (%) Total number of residues Corresponding positions

100 6 1 7 11 14 15 18

90,100 7 9 10 13 21 22 27 30

80,90 7 6 12 17 19 20 25 50

70,80 1 8

60,70 2 4 23

50,60 7 3 5 16 24 28 39 68

40,50 1 33

30,40 3 32 35 75

20,30 8 29 36 48 52 66 71 78 96

10,20 10 2 26 51 58 76 88 91 94 97 99

0,10 10 46 55 56 59 70 73 83 86 87 98

0 38 31 34 37 38 40 41 42 43 44 45 47 49 53 54 57 60 61

62 63 64 65 67 69 72 74 77 79 80 81 82 84 85 89 90

92 93 95 100

doi:10.1371/journal.pone.0084439.t001

Figure 3. The prediction results of models based on the six
residue sets respectively. Set 4 includes all 52 distinct residues and
the model based only Set 4 yields the highest Sn and MCC.
doi:10.1371/journal.pone.0084439.g003

Identification of Type III Secreted Effectors

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e84439



Random Forest and Permutation Importance Analysis
The random forest (RF) algorithm proposed by Breiman [74]

has been successfully applied to dealing with various biological

problems, such as miRNA–target interactions [75–77]. With the

advantage of bootstrap aggregating (bagging) [78], RF is especially

powerful for the data sets with a large number of features [79]. A

group of decision trees in bagging utilised by RF can reduce the

variance of single trees and thus improve the prediction accuracy.

Moreover, out-of-bag (OOB) data are used to estimate the test

error of a RF model. Given a training set, two thirds of the samples

(in-the-bag) are randomly selected. The remaining samples, called

the OOB data, are left out. In this way, a RF model gives a good

tolerance for the noisy data. According to Breiman’s description

[74], n decision trees (ntree) are trained on different bootstrap

samples from the training data. Each tree is fully grown and left

unpruned. Instead of using all features, RF splits each node by the

best split among randomly sampled m predictors (mtry) at that node

when growing a tree. In this work, the two parameters, ntree (the

number of trees to grow) and mtry (the number of variables

randomly selected as candidates at each node), were optimised

using a grid search approach; the value of ntree was from 500 to

2500 with a step length of 500, and the value of mtry was from 1 to

40 with a step length of 1.

Meanwhile, RF provides two feature importance measures,

including Variable Importance (VI) and Gini Importance (GI)

[78,79]. The VI value of one feature is computed according to the

average decrease of the model accuracy on the OOB samples

when this feature is randomly permuted. Thus, it is also called

permutation accuracy importance measure. The GI is related to

the impurity of the split of a node because some features may be

redundant or have little relevance to T3SPs prediction. To

distinguish significant features from uninformative ones and to

further avoid overfitting, the permutation importance measure was

adopted to evaluate each feature’s contribution to the classifier in

our work. The RF algorithm was implemented by the RF package

in R.

Performance Evaluation
For two-class classification problems, four parameters, sensitiv-

ity (Sn), specificity (Sp), accuracy (Acc) and Matthews Correlation

Coefficient (MCC) were utilised to evaluate the classifier

performance. They are defined as follows:

Table 2. The performance of the RF models based on the six residue sets.

Residue sets RSD (%) No. of residues No. of variables Sn (%) Sp (%) Acc (%) MCC

1 .80 20 80 83.2167.13 81.9466.67 82.5464.86 0.653660.09

2 .40 31 124 83.5766.52 81.9468.04 82.7166.15 0.656360.12

3 .20 42 168 83.9366.37 82.5864.85 83.2264.73 0.666360.08

4 .10 52 208 84.2966.78 83.2366.77 83.7363.12 0.678760.06

5 .0 62 248 82.5067.61 83.2366.77 82.8864.55 0.660660.09

6 $0 100 400 82.8667.94 82.9066.45 82.8868.37 0.662060.04

doi:10.1371/journal.pone.0084439.t002

Figure 4. Feature importance measure for AAC, SS, RSA and PP respectively. AAC, SS, RSA and PP denote amino acid composition,
secondary structure, relative solvent accessibility and physicochemical properties, respectively.
doi:10.1371/journal.pone.0084439.g004
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Sn~
TP

TPzFN
ð1Þ

Sp~
TN

TNzFP
ð2Þ

Acc~
TPzTN

TPzTNzFPzFN
ð3Þ

MCC~

TP|TNð Þ{ FN|FPð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ| TNzFPð Þ| TPzFPð Þ| TNzFNð Þ

p
ð4Þ

Where TP, TN, FP and FN represent true positives, true

negatives, false positives and false negatives, respectively.

To further evaluate the performance of our method, Receiver

Operating Characteristic (ROC) curves and the areas under ROC

curves (AUC) [80] were utilised. The maximum value of the AUC

is 1.0, which denotes a perfect prediction. A random guess gives an

AUC value of 0.5.

Results and Discussion

Distinct Position-specific Residues for T3SPs
The PSSM profiles were calculated for the whole sequences of

283 T3SPs and 313 non-T3 SPs and those of the N-terminal 100

residues were retrieved. Each residue was characterised by 20

values representing the log-likelihoods of mutation of the 20

standard amino acids. Thus, for each position, two matrices were

built, including a T3SP matrix of 20*283 (matrix A) and a non-T3

SP matrix of 20*313 (matrix B). Then, SAM was used to

implement significant difference analysis on matrix A and B.

Finally, 20 q-values were obtained, representing the difference

scores of the 20 log-likelihoods of mutation of the 20 standard

amino acids. The analysis results by SAM for all 100 residues are

shown in Figure 1. The pink parts represent the positions with q-

values less than 0.05, indicating that significant differences are

detected by SAM at these positions between T3SPs and non-T3

SPs. We can see that most q-values of less than 0.05 are

concentrated at the first 30 residue positions and that all blue parts

with q-values equal to 0 are also distributed at this region,

indicating that the signal information is mainly contained among

the first 30 amino acids. However, there are still other scattered

positions (pink parts) that contain a significant conservation

difference beyond the first 30 residues.

To quantitatively characterise the difference between T3SPs

and non-T3 SPs at these 100 positions, if m of the 20 q-values at

each position is less than the threshold of 0.05, the ratio of the

significant difference (RSD) is defined according to the following

equation:

m

20
|100% ð5Þ

The RSDs for the 100 residues are shown in Figure 2, and the

detailed values are listed in Table 1. We find that there are 38

residues with no significant conservation difference between

T3SPs and non-T3 SPs. The 20 q-values of each residue are all

higher than 0.05 and have an RSD value of 0. However, the RSDs

of the remaining 62 residues are higher than 0, indicating that the

conservation differences exist between T3SPs and non-T3 SPs at

these positions. They are most likely the distinct position-specific

residues for T3SPs.

To confirm these distinct residues, according to the RSD values

of the 100 residues, six residue sets were selected for the following

feature representation and model training. Set 1 includes 20

residues with RSD.80%. Set 2 includes 31 residues with

RSD.40%. Set 3 includes 42 residues with RSD.20%. Set 4

includes 52 residues with RSD.10%. Set 5 includes 62 residues

with RSD.0, and Set 6 includes all 100 residues. Here, for

Figure 5. The prediction results of the models based on five
feature groups respectively. The feature group G4 contains 62
individual variables and the model of G4 gives the best performance, so
they are selected as the optimal feature set.
doi:10.1371/journal.pone.0084439.g005

Table 3. The performance of the RF models based on the six feature groups.

Feature group Coverage ratio (%) No. of features Sn (%) Sp (%) Acc (%) MCC

G1 90 139 84.6465.62 83.8766.97 84.2464.28 0.687360.08

G2 80 106 85.0069.34 83.8766.08 84.4165.58 0.691560.11

G3 70 81 85.7164.45 84.1966.66 84.9263.93 0.699760.07

G4 60 62 86.0764.89 84.5267.10 85.2565.06 0.706960.10

G5 50 47 85.0067.86 83.8767.45 84.4165.52 0.691760.11

G6 40 34 84.6465.34 83.8769.05 84.2463.85 0.690260.07

doi:10.1371/journal.pone.0084439.t003
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selecting distinct residues, only residues’ descriptors of RSA and

SS were used for the representation of each residue. So the six

residue sets (Set 1 to 6) contain 80, 124, 168, 208, 248 and 400

feature variables, respectively. Finally, the positive and negative

datasets were randomly divided into a training set and test set by a

9:1 ratio, respectively, and the process of random selection was

repeated 10 times. Thus, six RF models were trained and tested.

The comparison results are shown in Figure 3, and the detailed

information can be observed in Table 2. We can see that the RF

model based on Set 4 gives the highest sensitivity and MCC, which

are 84.29% and 0.68, respectively. Set 4 includes 52 residues with

RSD .10%. It is noticeable that if at least two q-values of a given

residue is less than 0.05, we can infer it is a distinct residue for

T3SPs. It also indicates that SAM is very sensitive in detecting the

conservation difference between T3SPs and non-T3 SPs and

further proves that for a given protein, the function of its residues

is always conservative in the evolutionary process.

The first 30 residues are all exactly included in the 52 distinctive

residues identified by our method (Table 1). Moreover, of these 30

positions, there are 27 residues with RSDs of higher than 50%

(Figure 2). Thus, these data verify the conclusion that the first 30

N-terminal residue positions are most informative for T3SP

prediction [31,33]. In other words, the leader sequence of a T3SP

can be successfully identified by our method. Meanwhile, we also

identified 22 additional distinct residues that are in the chaperone-

binding region or translocation signals, and they also contain

important signal information for T3SP secretion. These findings fit

well with the reports that the T3SP secretion needs to be guided by

Figure 6. The importance score distributions of the 62 optimal individual variables. The blue, green, purple and red colors denote the four
features of AAC, SS, RSA and PP respectively. AAC (E), AAC (H) and AAC (Y) are the amino acids composition of Glu, His and Trp respectively. Hydro,
Ins, Npc and Ali represent hydrophobicity, instability index, the number of positively charged residues and aliphatic index, respectively. RSA is relative
solvent accessibility. SSH, SSE and SSC are the three secondary structure types of helix, beta strand and coil respectively. The following number of
RSA, SSH, SSE and SSC denotes the corresponding residue position.
doi:10.1371/journal.pone.0084439.g006

Table 4. Statistic for the 62 optimal features selected by random forest.

The feature information Number of variables Corresponding variables

Amino Acid Composition 3 Glu, His, Trp

Physicochemical properties 4 Hydrophobicity

Total number of positively charged residues

Instability index

Aliphatic index

Relative Solvent Accessibility 25 RSA (3, 4, 8,30)

Secondary structures helix 12 SSH (12,15, 58, 66, 68, 71, 75, 76, 78, 94)

beta strand 7 SSE (12, 13, 58, 66, 71, 75, 76)

coil 11 SSC (5,11, 19,21, 26)

doi:10.1371/journal.pone.0084439.t004
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the chaperone-binding sequences or translocation signals [18,26–

28].

Permutation Importance Analysis by RF
Previous studies have examined four protein feature character-

istics, i.e., AAC, SS, RSA and PPs, that may contribute to the

mechanisms underlying T3SP secretion [29,31–33]. Based on the

52 distinct residues, each protein sequence was translated into a

vector of 234 numerical descriptors by combining these features

(5264+20+6). However, the contribution of individual feature

variables has not been measured, and no conclusive remarks can

be drawn. In addition, the number of variables (234) is relatively

larger than the number of T3SPs (283), which would lead to

overfitting. For feature compression and optimisation, permuta-

tion importance analysis was adopted as a criterion for measuring

the contribution of individual features to T3SP prediction. Nine-

tenths of the samples were randomly selected from T3SP and non-

T3 SP datasets for feature importance scoring. The process was

repeated 100 times with random re-sampling of the constructed

models, and the feature measure scores were averaged.

To evaluate the contributions of the four features AAC, SS,

RSA and PP, the total importance score of each feature was

calculated (Figure 4). Figure 4 shows that SS and RSA give the

highest feature importance scores, which means that both SS and

RSA are important for T3SP prediction. This finding is consistent

with the observations that neither SS nor RSA could improve

classification performance [30] and that the combination of SS

and RSA could improve model performance [33].

Though AAC and PP are less important, with relatively low

importance scores, some individual variables in them are still

important. The importance scores of the 234 variables are given in

descending order (Supplementary Table S2). To select the optimal

variables, according to the coverage ratio of each variable, five

feature groups (marked G1 to G6) were built, and the sum of

coverage ratio was 90%, 80%, 70%, 60%, 50% and 40%,

including 139, 106, 81, 62, 47 and 34 variables, respectively. It

shows that except for the top 139 variables, the remaining 95

variables only have a coverage ratio of 10%, which indicates that

some redundancy does exist in the whole feature set.

Thus, for further feature optimisation, six feature groups were

trained and tested by RF. The performance results are shown in

Figure 5 and Table 3. From Figure 5, we can see that the RF

predictor based on G4 (62 variables) gives the highest Sn and

MCC. Thus, in the following experiments, these optimal 62

variables were selected for constructing the prediction model.

The score distributions of these 62 optimal features are shown in

Figure 6 and Table 4 lists their detailed information. We observed

that among the 62 variables, an overwhelming number of them

(55 variables) are still from SS and RSA. Obviously, a protein’s

function and structure are intimately linked. This result well

demonstrates that the structural features (SA and SS) are

important for the secretion of effectors. It is interesting that most

of those 55 variables are from the first 30 amino acids. All the 25

RSA variables are from the first 30 residues. From the 30 SS

variables selected at this stage, there are 11 coil variables (SSC),

which are all from the first 30 residues, and 10 of them distribute

in the first 25 amino acids. This result exactly confirmed the

observation drawn by Arnold et al. that coiled regions are enriched

in the N-termini of T3SPs by counting the structural features (coil,

helix, beta strand) at each residue within the first 25 amino acids

[30]. In addition, our method also selected 12 helix and 7 beta

strand variables (SSH and SSE), but most of them are from the

residues beyond the first 30 positions. Thus, these results again

demonstrate that the first N-terminal 30 residue positions are most

informative for T3SPs prediction, but other positions within the

100 residues also contain important signal information for T3SP

secretion.

In addition, four PP variables were incorporated, including

Hydro, Ins, Npc and Ali. Hydro has the third highest score among

the 62 optimal variables. This result fits well with previous studies

showing that T3SPs are likely to be unstable and hydrophobic

[15,30,32]. For the AAC information, three AAC variables (Glu,

His, Trp) were selected. Guttman et al. [29] have found a high

proportion of Ser and a low proportion of Asp in T3SPs, but both

Table 5. The performance of different models on the
common independent proteins.

Model Sn (%) Sp (%) Acc (%) MCC

RF (Our method) 68.48 (63/92) 98.00 (98/100) 83.85(161/192) 0.7018

BPBAac 13.04 (12/92) 97.00 (97/100) 56.77 (109/192) 0.1870

EffectiveT3 26.09 (24/92) 92.00 (92/100) 60.42 (116/192) 0.2425

ANN 47.83 (44/92) 90.00 (90/100) 69.79 (134/192) 0.4203

BEAN 46.74 (43/92) 81.00 (81/100) 64.58(124/192) 0.2964

doi:10.1371/journal.pone.0084439.t005

Table 6. Comparison results of our method, Effective T3,
BPBAac and BEAN.

Model Sn (%) Sp (%) Acc (%) MCC

Our method 71.14 98.13 85.11 0.7406

BPBAac 16.78 98.75 59.22 0.2748

EffectiveT3 24.16 95.63 61.17 0.2857

BEAN 54.36 77.50 66.34 0.3282

doi:10.1371/journal.pone.0084439.t006

Figure 7. The ROC curves of 10-fold cross-validation test and
the independent dataset test respectivley. The model gives a high
receiver operating curve (AUC) of 0.9277 for the training set and 0.9900
for the independent test set.
doi:10.1371/journal.pone.0084439.g007

Identification of Type III Secreted Effectors

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e84439



residues were not included. The reason may be that this AAC bias

is only for P. syringae effectors, and this is not accurate because

other effectors do not possess this feature, as pointed by Yang [81].

In our dataset, a broad dataset of genomes from 16 organisms was

collected, including Aeromonas, Citrobacter rodentium, Edwardsiella

tarda, Escherichia coli and Ralstonia solanacearum. However, the

research of Yahara has proved that the AAC of His is an

important feature that directly contributes to the discrimination of

effectors [82], which provides supports for our results.

Performance Comparison with Current Prediction Models
We compared our method with four published methods for

T3SPs prediction, Effective T3 [30], ANN based method [31],

BPBAac [34] and BEAN [35]. In particular, BPBAac and BEAN

are the more recently published method and report the highest

prediction accuracy for T3SPs. Moreover, the data used in BEAN

are all from those in BPBAac. To make a fair comparison among

different models, a common independent dataset was achieved by

comparing our dataset with those of Effective T3, ANN, BPBAac

and BEAN. And then 92 T3 proteins were extracted, but they are

not included in all four models. Because almost all negative

samples were not different among our method and the three

models, we only randomly retrieved 100 non-T3 SPs from our

dataset for testing. Thus, in our prediction model, 191 T3SPs and

213 non-T3 SPs were remained as the training data. These 192

test proteins were predicted by BPBAac tool and the web-servers

of Effective T3, ANN and BEAN, respectively. The prediction

results are listed in Table 5. It clearly demonstrates that our

method outperforms these three models. Although Effective T3

and BPBAac also yield a very high Sp of 97% and 92%

respectively, the Sn is less than 30%. The Sn and Sp obtained by

our model are 68.48% and 98.00%, respectively, which are

significantly higher than those by ANN and BEAN. In addition,

when conducting comparisons using our method, Effective T3,

BPBAac and BEAN, more independent sequences (149 T3SPs)

can be extracted. After retrieving the 160 non-T3 SPs, only a half

of the data were used for training in our model, including 134

T3SPs and 153 non-T3 SPs. A comparison of the results of our

method, Effective T3, BPBAac and BEAN on the 309 common

independent sequences is shown in Table 6. It shows that our

method still performs much better than Effective T3, BPBAac and

BEAN. Our method gives a highest Sn of 71.14%. It also indicates

that our model was also robust when a small-size training dataset

was used.

Overall, compared to other four methods, our method gives the

best performance. After a deep investigation, we can find that

these methods are all based on all the residues at N-terminal

region, but they ignore one fact that some residues with little

conservation have no contributions to T3SPs identification. So

some redundant feature information may be introduced by these

non-distinct residues and weaken the predictive power. Our

predictor was constructed only based on the distinct residues and

then a permutation importance analysis was implemented to

ensure a more optimal feature set, so the performance of our

method was further improved.

Predictor Construction and Testing
Using the whole unbiased dataset of 283 T3SPs and 313 non-

T3 SPs, the final RF predictor was constructed by 10-fold cross-

validation. All samples were randomly divided into 10 subsets of

similar size, 9 subsets were selected to train the model and the

remaining ones were used to test the model. As shown in Table 7

and Figure 7, our model performed well. The average Sn, Sp and

Acc are 86.07%, 84.52%, 85.25%, respectively. According to the

ROC curve, the method yields a high AUC of 0.9277.

To further evaluate the final classifier’s predictive power, an

independent dataset was prepared by retrieving proteins that have

a pairwise identity of,60% identity by CD-HIT and 25%, 60%

by BLAST with those in the whole training set. In consequence, 35

T3SPs and 86 non-T3 SPs were extracted as the testing samples.

The prediction result shows that the predictor gives a good

performance on this test set. The Sn, Sp and AUC are 94.29%,

91.86% and 0.9900, respectively (See Supplementary Table S3

and Figure 7). The detailed prediction result for each testing

protein is shown in Supplementary Table S4.

Table 7. The performance of the RF model by 10-fold cross
validation test.

Test Sn (%) Sp (%) Acc (%) MCC

1 78.57 80.65 79.66 0.5922

2 85.71 83.87 84.75 0.6951

3 92.86 80.65 86.44 0.7367

4 82.14 77.42 79.66 0.5949

5 85.71 77.42 81.36 0.6313

6 92.86 90.32 91.53 0.8308

7 89.29 96.77 93.22 0.8656

8 82.14 93.55 88.14 0.7649

9 82.14 77.42 79.66 0.5949

10 89.29 87.10 88.14 0.7629

Average 86.0764.89 84.5267.10 85.2565.06 0.706960.10

doi:10.1371/journal.pone.0084439.t007

Table 8. The prediction results of different models on the newly discovered effectors.

Model
13 experimental effectors
by Yang et al. [33]

35 putative effectors
by Yang et al. [33]

19 new effectors
by Deng et al. [83]

RF (Our method) 10/12 28/35 17/19

BPBAac 10/12 6/35 9/19

EffectiveT3 5/12 2/35 13/19

ANN 10/12 16/35 17/19

BEAN 10/12 20/35 18/19

doi:10.1371/journal.pone.0084439.t008
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Experimental Validation of the Predictor
Finally, we used some candidate effectors to assess the practical

feasibility of our predictor. Yang et al. [33] obtained 57 candidate

effectors from rhizobial bacterial, 17 of these putative effectors

have been verified as T3SPs by wet-bench experiments and the

remaining 40 ones have not been experimentally confirmed. Thus,

we used these proteins to test our predictor’s ability in identifying

novel effectors. Removing the 9 sequences occurring in our

dataset, 13 other experimentally confirmed effectors and 35

putative proteins were remained. Our method correctly predicted

11 from these 13 candidate T3SPs (Supplementary Table S5). In

addition, Supplementary Table S6 presents the prediction results

for the 35 rhizobial T3SPs that have not yet been confirmed and

28 of them are predicted as true positives by our method.

In addition, at the time of doing our calculations, Deng et al.

have experimentally confirmed new T3SPs from enteropathogenic

Escherichia coli (EPEC) and identified two novel effectors, C_0814/

NleJ and LifA [83]. Using the 22 T3SPs confirmed by Deng et al.

[83], our model was further tested. By excluding two proteins

contained in our model and one with less than 100 amino acids,

the remaining 19 T3SPs were predicted by our model (Supple-

mentary Table S7). It shows that only 2 T3SPs were incorrectly

predicted as other SPs and both of the novel effectors were

correctly predicted. As for these new T3 members, we will add

them to our model in the future, and we can expect that the

performance would be further improved. Overall, the results

demonstrate that if the sequence of a SP is obtained, novel T3SPs

can be predicted effectively and efficiently using the predictor

developed in this paper.

Meanwhile, these newly discovered effectors were also predicted

by Effective T3, ANN, BPBAac and BEAN. The comparison

results of our method with them are listed in Table 8. It further

proves that our method does yields the strongest power in

identifying novel effectors.

Conclusion

Because previous methods have been successfully used to

distinguish SPs from non-SPs, it is more essential to develop a

computational method for effectively identifying T3SPs from non-

T3 SPs. This paper introduces a new method for predicting novel

T3SPs using position-specific residue conservation profiles. Based

on the conservation profiles of the first 100 amino acids at the N-

terminal region, 52 distinct position-specific residues were

identified for T3SPs through the significant difference analysis

by SAM. To our knowledge, this is the first attempt to identify

distinct residues for T3SP prediction. Of the 52 distinct residues,

the first 30 amino acid residues are all included, which is consistent

with previous studies reporting that the secretion signal generally

occurs within the first 30 residue positions and are most

informative for T3SPs prediction. However, the remaining 22

positions span residues 30–100 have also proven by our method to

contain important signal information for T3SP secretion because

the physiologically significant translocation of many effectors also

depends on the chaperone-binding residues or translocation

signals that follow the secretion signal. The 62 selected optimal

feature variables show that SA and SS are more important than

AAC and PP, but some individual variables from AAC and PP

also contribute to the mechanisms underlying T3SP secretion.

Combining the information of four features, i.e., AAC, SS, RSA

and PPs, that have been used in previous works for T3SPs

representation, a permutation importance analysis was imple-

mented for further feature optimisation, and 62 optimal feature

variables were obtained. Moreover, feature importance analysis

shows that SA and SS are more important than AAC and PP, but

some individual variables from AAC and PP also contribute to the

mechanisms underlying T3SP secretion.

Thus, based on the 52 distinct residues and 62 optimal feature

variables, a RF predictor was constructed using an unbiased

dataset of proteins with lower than 25% pairwise identity. The

AUC is 0.9277 for the training set and 10-fold cross validation.

When performed on the independent dataset, the model gives a

high AUC of 0.9900.

Moreover, we compared our method with other four models.

Our model consistently performed better than these methods.

Lastly, we used other candidate effectors to test the model’s

application, and the results also demonstrate that almost all T3SPs

can be effectively identified using our model.

As the model was commonly constructed across 16 species, we

believe that our method can be widely used for the efficient

prediction of T3SPs in various bacterial species. Since T3SSs are

central to the pathogenesis and virulence of many important

Gram-negative bacterial pathogens, this work will help us to

elucidate the secretion mechanism and further accelerate our

understanding of pathogenic mechanisms and the development of

potential therapeutics.
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