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Abstract

Background: Oestrogen receptor (ER) positive (luminal) tumours account for the largest proportion of females with breast
cancer. Theirs is a heterogeneous disease presenting clinical challenges in managing their treatment. Three main biological
luminal groups have been identified but clinically these can be distilled into two prognostic groups in which Luminal A are
accorded good prognosis and Luminal B correlate with poor prognosis. Further biomarkers are needed to attain
classification consensus. Machine learning approaches like Artificial Neural Networks (ANNs) have been used for
classification and identification of biomarkers in breast cancer using high throughput data. In this study, we have used an
artificial neural network (ANN) approach to identify DACH1 as a candidate luminal marker and its role in predicting clinical
outcome in breast cancer is assessed.

Materials and methods: A reiterative ANN approach incorporating a network inferencing algorithm was used to identify ER-
associated biomarkers in a publically available cDNA microarray dataset. DACH1 was identified in having a strong influence
on ER associated markers and a positive association with ER. Its clinical relevance in predicting breast cancer specific survival
was investigated by statistically assessing protein expression levels after immunohistochemistry in a series of unselected
breast cancers, formatted as a tissue microarray.

Results: Strong nuclear DACH1 staining is more prevalent in tubular and lobular breast cancer. Its expression correlated
with ER-alpha positive tumours expressing PgR, epithelial cytokeratins (CK)18/19 and ‘luminal-like’ markers of good
prognosis including FOXA1 and RERG (p,0.05). DACH1 is increased in patients showing longer cancer specific survival and
disease free interval and reduced metastasis formation (p,0.001). Nuclear DACH1 showed a negative association with
markers of aggressive growth and poor prognosis.

Conclusion: Nuclear DACH1 expression appears to be a Luminal A biomarker predictive of good prognosis, but is not
independent of clinical stage, tumour size, NPI status or systemic therapy.
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Introduction

Breast cancer is the most common cancer in females and the

third most common cause of cancer death in the UK after lung

and large bowel cancer [1]. Recent studies have confirmed the

heterogeneity of breast cancer arising from inherited and acquired

genetic variation. It has recently been proposed that 10 molecular

breast cancer groups exist [2], building on the overarching and

simpler four group molecular stratification established more than a

decade ago [3–6]. The largest of these groups comprise oestrogen

receptor (ER) positive (luminal) tumours with the latest evidence

suggesting complex clinical diversity and mortality risk [2]. It has

long been appreciated that the oestrogen receptor has a

compelling role in breast cancer biology because its expression is

both a predictive and independent prognostic factor for disease

outcome, treatment response and recurrence in breast cancer [7].

This is because when activated it induces pro-cancerous cell

signalling pathways, influencing cell growth, survival and differ-

entiation.

Gene expression array data has shown the luminal family of

breast cancer includes at least one high risk subgroup, several

intermediate risk subgroups (including a luminal B subgroup), and

two good prognosis subgroups comprising a ‘pure’ ER luminal A

subgroup and a mixed ER positive/negative subgroup [2].

Improved classification delivering clinical utility is required to
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achieve more effective therapeutic treatment and to identify

patients that will be refractory to anti-hormonal therapy. Luminal

A tumours tend to be low grade tumours that are characterised by

over expression of ER-activating genes including LIV1, CCND1,

FOXA1, XBP1, GATA3 and Bcl-2 [8]. Contrasting with this,

luminal B cancers are high grade, show increased proliferation

(Ki67 positive) and growth factor receptors such as EGFR, and

have variable HER2 expression [9]. A number of studies have

attempted to phenotype luminal subgroups using protein bio-

markers with immunohistochemistry, and to relate these to

increased risk of adverse events. For example the transferrin

receptor, CD71, is involved in the uptake of iron and is expressed

on cells showing high proliferation, and previously we reported it

to be an independent prognosticator of an ER+ subgroup

characterised by poor prognosis and resistance to endocrine

therapy [10]. Another example is the proliferation related marker

TK1 which is an enzyme involved in the synthesis of thymidine

triphosphate needed by the proliferating cells to enter S phase

[11]. In addition, CARM 1 [12] and PELP1 are transcriptional

corepressors and indicators of reduced disease free survival in

luminal cancers [13]. PELP1 is a coactivator that binds with the

AF-2 domain (oestrogen responsive element) of ERa, facilitating

downstream estradiol-induced DNA synthesis and cell prolifera-

tion [14].

In recent times, various computational approaches have been

developed for cancer classification and diagnosis prediction [15].

In breast cancer hierarchical clustering analysis of gene expression

array data has proven useful in providing broad molecular

classification [3], but other techniques are required to identify

biomarkers defining membership to various subgroups. Subse-

quently, computer algorithms incorporating a multilayer percep-

tron based Artificial Neural Network (ANN) method [16] have

been adopted to identify cancer-relevant biomarkers to assist in

clinical decision-making [17,18]. Previously ANN has been used to

identify a panel of protein biomarkers [19] capable of classifying

breast cancer patients parallel to that achieved using gene

expression profiling [3]. ANNs have proved to be capable of

modelling biological systems more precisely than conventional

statistical techniques [20], and are successful for avoiding over-

fitting and to produce generalised models with validation subsets in

breast cancer dataset [21].

In this study we used an ANN based network inference

approach [22] to identify ER-associated biomarkers with the aim

of improving classification of luminal breast cancer group based on

cancer specific survival. Seventeen candidate genes were identified

including the Drosophila dachshund (dac) gene. DACH1 belongs

to the nuclear protein family undertaking a vital role in promoting

differentiation of Drosophila eye and limb and retinal determina-

tion signalling pathway [23,24]. In humans, DACH1 is known to

repress tumorigenesis in human breast and prostate cancers [25]

and down regulates EGFR and cyclin D1 in tumour cells [26].

Furthermore, DACH1 may control stem cell gene expression [27]

preventing cancer cell migration needed for metastasis develop-

ment [28]. DACH1 was selected for further study because it is

hypothesised that high levels of DACH1 will competitively inhibit

the growth promoting activity of PELP1 and consequently will be

associated with improved prognosis. The current study aims to

characterise the association of DACH1 with other cancer relevant

biomarkers in the luminal subtype of breast cancer, with the

emphasis being in determining its possible role as a clinical

classifier of disease outcome and as a prognostic biomarker.

Materials and Methods

This study was approved by the Nottingham Research Ethics

Committee 2 under the title ‘Development of a molecular genetics

classification of breast cancer’.

Breast cancer microarray dataset
To identify genes associated with ER status in breast cancer a

cDNA microarray dataset, E-GEOD-20194 [29], was selected

from the public repository ArrayExpress [30], submitted by Micro

Array Quality Control consortium. The dataset comprises

expression values for 22,283 probe sets targeting gene transcripts

across 278 samples (ER positive = 164 and ER negative = 114)

with tumour stage ranging from I-III.

ANN architecture and model development
The ANN architecture encompasses supervised learning from a

multilayer perceptron model employing two hidden nodes with a

sigmoidal transfer function. The samples were subjected to Monte

Carlo Cross Validation strategy by randomly segregating them

into three different subsets namely: train (to perform learning), test

(for early stopping when the network fails to perform better with a

threshold of 3000 epochs or 1000 epochs without improvement in

mean square errors (MSE) and validation subsets (to authenticate

the model performance on previously unseen data) in a proportion

of 60%, 20% and 20% respectively. Each of the 22,283 probe sets

were used as individual input variables in the model. The

algorithm used a momentum of 0.5 and learning rate of 0.1.

The error differences in actual and predicted values were used to

update the weights with a back propagation algorithm. The

complete ANN model is reiterated 50 times with random

sampling. Across 50 ANN model predictions, the average MSE

of a test subset for each input variable was considered to determine

their predictive capability for ER class.

Interaction network development
To evaluate the interactions between the highly predictive

probe sets for ER class, we have employed the interaction

algorithm based on an ANN model described earlier [31]. Briefly,

from a set of 100 probes, 99 probe expression values (inputs) were

used to predict a single one (output). An ANN model was trained

until an optimal solution is found minimising the difference

between the expected output and the predicted. The weights for

the optimised model were recorded. This process was iteratively

repeated, selecting new inputs from the 100 set, until all probe

expressions are predicted from the remaining probes. The weights

quantify the intensity of the relation between source and target

which could be positive (stimulating) or negative (inhibiting). The

analysis generated a matrix of 9,900 bidirectional interactions for

all 100 probes. These were subsequently filtered to select the top

100 interactions for further visualisation.

The interaction network was visualised using CytoscapeH Ver

2.7.0 [32], which symbolised each probe set as a node and

interaction as an edge. To give directionality for the interactions

each input was considered as source, the output as target, and the

weights recorded for the prediction as interaction values. The

directionality for the edge is given according to source and target,

and the weight of the interaction is materialised by the thickness of

the edges.

Patient selection and immunohistochemistry
Tissue microarray (TMA) sections comprising 993 patients from

the Nottingham Tenovus study (1986–1998) with two tissue cores

represented from each patients tumour. TMA sections were

DACH1 is a Biomarker of Luminal A Breast Cancer
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immunostained to assess the protein expression levels of DACH1.

This TMA is well characterised with data for clinical information,

tissue protein expression of tumour-relevant pathological biomark-

ers and long term clinical follow-up including information on local,

regional and distant tumour recurrence, and cancer specific

survival outcome [10]. Patient management was based on the

Nottingham Prognostic Index (NPI) score and ER status as

previously described [33]. Breast cancer specific survival (BCSS)

was defined as the time (in months) from the date of the primary

surgical treatment to the time of death from breast cancer. Distant

metastasis free interval (DMFI) was defined as the interval (in

months) from the date of the primary surgical treatment to the

date of development of the first distant metastasis.

Four micron thick formalin fixed paraffin-processed TMA and

full face sections were subjected to microwave antigen retrieval in

citrate buffer (pH 6.0), and then immunohistochemically stained

with a rabbit polyclonal antibody against DACH1 (Sigma

HPA012672, St Louis, USA) using a streptavidin biotin technique

(Dako, Cambridge, UK). The DACH1 antibody was optimised for

heterogeneity and specificity at a working dilution of 1:200.

Sections were counterstained in haematoxylin and mounted using

DPX mounting medium. Negative controls comprising omission

of the primary antibody or substitution with an inappropriate

primary antibody of similar immunoglobulin class was used.

The immunohistochemically stained TMA sections were scored

with observers blinded to the clinicopathological features of

tumours and patients’ outcome. Nuclear staining intensity and

percentage of cells stained was assessed in unequivocal malignant

epithelium using the H-score (histochemical score) [34]. Staining

intensity was scored 0, 1, 2 or 3 and the percentage of positive cells

at each intensity subjectively estimated to produce a final score in

the range 0–300. Damaged tissue cores and those that did not

contain invasive carcinoma were censored.

Statistical Analysis
Statistical analysis was performed using SPSS 15.0 (SPSS Inc.,

Chicago, IL, USA) software. Three patient subgroups were

identified representing negative, low and high tumour nuclear

H-scores. The Kaplan-Meier method with a log rank test was used

to model the association of DACH1 group membership with

cancer specific survival. Patients were categorised using an H-score

$200 to define strong DACH1 positivity obtained in the majority

of cells in a patient’s tumour. Association between DACH1

expression and different clinicopathological factors and breast

cancer markers was evaluated using the non-parametric Chi-

Figure 1. DACH1 Interactome. The association of DACH1 with the 100 best predictive genes in ER-positive tumours. The genes are represented as
nodes and interactions as edges. The green edge is a positive interaction and the red edge is a negative interaction. The intensity of the interaction is
represented in terms of the thickness of edge and the directionality with the arrow.
doi:10.1371/journal.pone.0084428.g001
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square test. Patients that died due to causes other than breast

cancer were censored during survival analyses. Multivariate Cox

proportional hazard regression models were used to evaluate any

independent prognostic effect of the variables with 95%

confidence interval. A p-value of ,0.05 was considered to indicate

statistical significance.

Results

Identification of the ER interactome
Details of the gene signature associated with ER status were

recently published[22]. The best predictive probe sets for showing

association with ER status were selected based on lowest average

of test error encountered across 10 independent predictive models.

The best predictive probe was found to be 205225_at belonging to

ESR1 gene which codes for oestrogen receptor alpha (ERa). Other

highly predictive probe sets included GATA3, CA12 and NAT1

and DACH1 (205471_s_at).

Interaction network inference
The 100 best ER predictive probes selected from ER-positive

samples were further submitted to a network inference algorithm

to determine the strength and nature of interactions between the

selected probes. The algorithm yielded 9,702 interactions across

10 independent models. To reduce the dimensionality and to

remove insignificant interactions, a filtering strategy was applied to

select only the top 200 interactions based on interaction weight.

Bidirectional interactions were computed for any given pair of

genes accordingly to yield a bidirectional interaction matrix

between each source and target.

A network model of the top 200 (100 positive and 100 negative)

interactions forming positive and negative hubs is shown in Figure

S1. For example, DACH1 (Dachshund homolog 1), SERPINA 5

(Serpin peptidase inhibitor member 5), TFF3 (Trefoil factor 3),

and RARA (Retinoic acid receptor alpha) were connected with the

majority of positive interactions forming positive hubs. In contrast,

SOX11 (SRY (sex determining region Y)-box11), EGFR (Epider-

mal growth factor receptor) and CDH3 (cadherin 3, type 1, P-

cadherin) were connected with the majority of negative interac-

tions forming negative hubs. The strongest positive influence was

found between TFF1 (Trefoil factor 1) and TFF3, and the

strongest negative influence was found between MAPT (Microtu-

bule-associated protein tau) and EGFR.

To establish an interaction map with only DACH1 in luminal

(ER-positive) breast cancer samples, we created a DACH1

interactome (Figure 1) using the 100 best predictive genes.

Computationally, DACH1 was found to be highly positively

influenced by KIAA0882, a variant of TBC1 (tre-2/USP6, BUB2,

cdc16 domain 1) family member 9A, and highly negatively

influenced by IL6ST (Interleukin 6 signal transducer). DACH1

was also found to be highly positively and negatively influencing

CDH3 and SOX11 respectively. An interaction map (Figure S2)

of important genes overlapping with the oestrogen receptor and

DACH1 respectively, shows similarity.

DACH1 protein expression in breast cancer
To test the clinical relevance in breast cancer, the association of

DACH1 protein with clinicopathology features was investigated in

a well characterised patient cohort. The median age of the patients

was 55 years (range 27–70). DACH1 immunostaining was

localised to the nuclei of malignant cells and was found to be

Figure 2. Nuclear DACH1 immunostaining varied in intensity from being strong with expression in a high proportion of cells (a, b),
to weak (c) or negative (d), in breast carcinoma.
doi:10.1371/journal.pone.0084428.g002
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Table 1. Association of DACH1 expression with clinicopathological factors. N = number of samples. Statistically significant p-values
are in bold.

Clinical Parameter DACH1 absent DACH1 present Chi-square (X2) p-value

N % N %

Age group 12.505 0.006

,40 40 10.31 35 5.79

40–50 128 32.99 176 29.09

51–60 124 31.96 197 32.56

60–75 96 24.74 197 32.56

Menopause 8.912 0.003

Premenopausal 174 44.85 214 35.37

Postmenopausal 214 55.15 391 64.63

Tumour Size 2.283 0.131

#1.5 cm 178 46.23 307 51.17

.1.5 cm 207 53.77 293 48.83

Tumour Stage 0.413 0.813

1 241 62.27 362 60.23

2 112 28.94 183 30.45

3 34 8.79 56 9.32

Tumour Grade 69.335 ,0.001

1 35 9.09 134 22.33

2 94 24.42 226 37.67

3 256 66.49 240 40.00

Nottingham Prognostic Index 22.571 ,0.001

Good 75 19.48 200 33.28

Moderate 233 60.52 309 51.41

Poor 77 20.00 92 15.31

Tumour type 57.194 ,0.001

Ductal - Non Specific Type (NST) 260 68.60 314 53.04

Lobular (Classical and variants) 28 7.39 85 14.36

Tubular & Tubular mixed 50 13.19 136 22.97

Medullary 20 5.28 3 0.51

Special type (Mucinous, Cribriform and Invasive
papillary)

4 1.06 14 4.36

Mixed NST with Lobular and special types 17 4.49 40 6.76

Distant metastasis formation 0.349 0.555

Absent 268 69.43 425 71.19

Present 118 30.57 172 28.81

Tumour recurrence 0.078 0.780

Absent 231 60.63 353 59.73

Present 150 39.37 238 40.27

Vascular invasion 5.345 0.069

Negative 222 57.81 325 54.53

Probable 33 8.59 80 13.42

Definite 129 33.59 191 32.05

Endocrine therapy received 9.085 0.003

Untreated 261 71.12 331 61.41

Treated 106 28.88 208 38.59

doi:10.1371/journal.pone.0084428.t001
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either negative, weak or strong in intensity (Figure 2). DACH1 was

significantly increased in post-menopausal patients with lobular

and tubular cancer types but in contrast, was rarely seen in

patients with medullary cancer. DACH1 expression showed no

significant association with tumour size, tumour stage, metastasis

development, tumour recurrence, or vascular invasion. DACH1

expression was significantly increased in tumours of low grade,

good Nottingham Prognostic Index and candidacy for hormonal

therapy (Table 1).

Association of DACH1 with disease biomarkers
Nuclear DACH1 expression was strongly increased in patients

with ER-alpha positive tumours co-expressing PgR, and epithelial

CK18/19 cytokeratins. Nuclear staining was significantly associ-

ated with ‘luminal-like’ markers of good prognosis including

FOXA1 and RERG. In contrast, strong inverse associations were

found with candidate luminal markers of poor prognosis including

CD71 (Table 2).

Supporting its association with good prognosis, tumour DACH

1 expression correlated with low cell proliferation (MIB1). Low

DACH1 frequency and expression was seen in tumours bearing

markers of poor prognosis including the basal-like markers CK14/

5/6 and EGFR, as well as HER2 and p53 positivity.

Patients’ outcome
Patients with nuclear DACH1 positivity showed a significant

association with cancer specific survival (n = 81 (54%); x2 = 11.96,

p,0.001), disease free interval (n = 81 (54%); x2 = 15.33,

p,0.001), tumour recurrence (n = 72 (52%); x2 = 16.49,

p,0.001) and distant metastasis (n = 72 (51%); x2 = 16.31,

p,0.001) over 5 years post diagnosis (Figure 3). However, the

level of significance lessened for predicting cancer specific survival

(x2 = 2.31, p = 0.13), disease free interval (x2 = 1.75, p = 0.17),

tumour recurrence (x2 = 2.11, p = 0.15) and distant metastasis

(x2 = 3.74, p = 0.053) over 10 years.

The effect of endocrine therapy on the ability of DACH1 to

predict breast cancer specific survival was considered using

Kaplan-Meier modelling. DACH1 positivity was associated with

good survival in patients treated with tamoxifen (x2 = 8.30,

p = 0.004) and in addition, also showed a trend in patients not

receiving tamoxifen (x2 = 3.7, p = 0.055).

The predictive independence of DACH1 was tested using

multivariate models (Cox regression) incorporating endocrine

therapy, clinical stage, tumour size and NPI status. DACH1 was

not found to be independent of these variables for predicting

cancer specific survival.

Discussion

In our study, we used an artificial neural network (ANN) based

inference technique to identify ER associated biomarkers capable

of separating good and poor prognosis patients with luminal type

breast cancer. Consistent with expectations, the best predictive

probe for identifying ER status in multiple independent runs was

205225_at representing ESR1 gene coding for oestrogen receptor

alpha. Moreover the regulatory gene DACH1, associated with

TGFb signalling, was identified among the probe sets that

produced a strongly positive interaction with ER status and so

we tested its relevance as a luminal marker of disease progression

by investigating its association with clinicopathologic variables.

The objective is to compile cumulative evidence to produce a

panel of markers capable of clinically guiding in the selection and

management of breast cancer patients within the heterogeneous

luminal class.

Table 2. Association of DACH1 protein with other breast
cancer biomarkers.

Markers

DACH1
absent DACH1 present Chi-square

N % N % (X2) p-value

ER 142.867 ,0.001

Absent 181 49.45 78 13.66

Present 185 50.55 493 86.34

PgR 55.671 ,0.001

Absent 212 58.56 191 33.69

Present 150 41.44 376 66.31

CK18 54.282 ,0.001

Absent 86 24.86 39 7.21

Present 260 75.14 502 92.79

CK19 5.786 0.016

Absent 50 13.51 50 8.61

Present 320 86.49 531 91.39

HER2 6.595 0.010

Absent 311 83.38 524 89.12

Present 62 16.62 64 10.88

E-cadherin 0.853 0.356

Absent 145 40.06 213 37.04

Present 217 59.94 362 62.96

EGFR 6.371 0.012

Absent 249 76.62 425 83.66

Present 76 23.38 83 16.34

CK5/6 66.158 ,0.001

Absent 267 71.97 534 91.75

Present 104 28.03 48 8.25

CK14 11.671 0.001

Absent 304 82.83 518 90.40

Present 63 17.17 55 9.60

p53 33.999 ,0.001

Absent 227 62.71 457 80.04

Present 135 37.29 114 19.96

MIB1 28.563 ,0.001

Absent 59 29.95 154 54.61

Present 138 70.05 128 45.39

FOXA1 26.495 ,0.001

Absent 178 62.9 174 43.0

Present 105 37.1 231 57.0

CD71 25.926 ,0.001

Absent 90 32.4 220 51.9

Present 188 67.6 204 48.1

PELP1 0.375 0.540

Absent 250 87.4 369 85.8

Present 36 12.6 61 14.2

RERG 4.291 0.038

Absent 214 78.7 306 71.7

Present 58 21.3 121 28.3

doi:10.1371/journal.pone.0084428.t002
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We observed three predominant patterns of nuclear DACH1

expression compatible with TSG (tumour suppressor gene)

functionality. Nuclear DACH1 protein expression was significant-

ly associated with markers of good prognosis including low cellular

proliferation (MIB1 expression) and functional apoptosis (Bcl2

expression). It has previously been observed that reduced DACH1

expression occurs in invasive cancer compared to normal breast

epithelium confirmed by our findings where DACH1 expression

showed an inverse association with mitosis and cyclin D1

expression in breast cancer patient samples [26]. More recently,

increased DACH1 expression was reported to correlate with

reduced expression of IL-8 and other related chemokines, thus

inhibiting cellular migration and invasion in MCF10A breast

cancer cells [28]. Further evidence of its TSG function is provided

by the observation that DACH1 homozygous deletion stimulates

tumorigenesis in glioma cells [35], and loss of DACH1 occurs in

high FIGO surgical stage endometrial cancers [36]. Furthermore,

it has also recently been reported that over-expression of DACH1

protein is associated with poor prognosis when expressed in the

cytoplasm rather than nuclei of ovarian cancer cells indicating

disease progression [37], compatible with loss of TSG function. In

vitro cell signalling studies have shown that DACH1 exerts its

regulatory control on TGFb signalling by nuclear binding via

SMAD4 [26,38], competing with precancerous transcriptional

factors. Recent breast cancer studies have shown that DACH1 can

directly influence the gene expression of stem cells, causing them

to under-express CD24 [27]. In addition, it appears that the

tumour suppressor function of DACH1 can be moderated by the

tissue microenvironment including the presence of growth factors,

evidenced by tumorigenesis seen in cell lines grown in vitro in the

presence of IGF-1[39].

Steroid receptors, coactivators and co-repressors regulate the

activity of ERa. PELP1 (proline, glutamic acid and leucine rich

protein 1) is a coactivator that binds with the AF-2 domain

(oestrogen responsive element) of ERa, facilitating downstream

estradiol-induced DNA synthesis and cell proliferation [14].

Previously, we reported that PELP1 expression is associated with

larger tumours and clinicopathology features indicative of poor

prognosis, including high grade and basal cytokeratin expression

[13]. DACH1 competitively binds with ERa, preventing PELP1

binding [14]. In the current study we found that moderate to high

tumour nuclear DACH1 expression in the majority of cancer cells

is compatible with functionally blocking PELP1 activity, reflected

by its association with good prognosis. Conversely, absent or weak

DACH1 nuclear staining represents unopposed PELP1 mediated

tumour cell growth.

An inverse relationship was seen between DACH1 and basal

type markers including CK14, CK5/6 and EGFR. EGFR is a

member of the HER family associated with multiple downstream

cell signalling pathways leading to adverse clinical outcomes

including tumour growth and metastasis. In accord we found an

inverse association for DACH1 and HER2. In this respect and

similar to our previous report, we propose that DACH1 and

FOXA1 [33] share membership of the Luminal A biomarker

group in being associated with variables of good prognosis.

DACH1 was found to be a predictor of specific survival but was

not independent of hormonal therapy, clinical stage, tumour size

or NPI status. Clinical tests that identify high risk (increased

metastatic potential) patients with breast cancer to select

candidates for chemotherapy treatment are currently under

review [40]. Applying rationalised targeted treatment is necessary

because chemotherapy can result in medical complications,

Figure 3. Kaplan-Meier plots modelling DACH1 expression with 5 year post-diagnostic a) specific survival, b) tumour recurrence,
and c) distant metastasis. All were significant at p,0.001.
doi:10.1371/journal.pone.0084428.g003
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reduced quality of life and economic burden. Crucially, some

cancers present with no greater mortality risk if untreated with

chemotherapy and among these, patients with Luminal A cancers

appear to have good survival prospects (in press). Further

investigation is required to determine if DACH1 and other

Luminal A biomarkers can be used for selecting patients not

requiring chemotherapy.

As ANNs have a proven application in breast cancer patient

classification [22] and for biomarker identification associated with

disease progression [41], in the current study the focus for

relevance to clinical outcome has been exploited. Among the top

ten ranked genes with positive association to ER was the

transcription factor GATA3 known to be associated with ER

[42], ER status [21] and hormonal responsiveness in breast cancer

[43]. Genes showing a negative association with ER included

CA12 which is associated with hypoxia and poor prognosis in

breast cancer [44]. These findings and others in previous studies

support the validity and robustness of the ANN technique and its

application in identifying breast cancer biomarkers.

In summary, we have shown that DACH1 occurs in patients

with ER+ breast cancers and predicts good prognosis. In this

respect DACH1 can be regarded as a Luminal A biomarker.

Supporting Information

Figure S1 Interaction map of 2 (100 positive and 100
negative) interactions from highly predictive probe sets

in ER positive samples. The genes are represented as nodes

and interactions as edges. Green edge is a positive interaction and

red edge is a negative interaction. The intensity of the interaction

is represented in terms of the thickness of edge and the

directionality with the arrow from source to target. The nodes

with multiple interactions (.5) are considered as hubs.

(TIF)

Figure S2 Association of luminal markers with (a) ESR1
and (b) DACH1 in luminal samples. The genes are

represented as nodes and interactions as edges. The green edge

is a positive interaction and the red edge is a negative interaction.

The intensity of the interaction is represented in terms of the

thickness of edge and the directionality with the arrow.

(TIF)
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