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Abstract

Model organisms, such as Drosophila melanogaster, provide powerful experimental tools for the study of development.
However, approaches using model systems need to be complemented by comparative studies for us to gain a deeper
understanding of the functional properties and evolution of developmental processes. New model organisms need to be
established to enable such comparative work. The establishment of new model system requires a detailed description of its
life cycle and development. The resulting staging scheme is essential for providing morphological context for molecular
studies, and allows us to homologise developmental processes between species. In this paper, we provide a staging scheme
and morphological characterisation of the life cycle for an emerging non-drosophilid dipteran model system: the scuttle fly
Megaselia abdita. We pay particular attention to early embryogenesis (cleavage and blastoderm stages up to gastrulation),
the formation and retraction of extraembryonic tissues, and the determination and formation of germ (pole) cells. Despite
the large evolutionary distance between the two species (approximately 150 million years), we find that M. abdita
development is remarkably similar to D. melanogaster in terms of developmental landmarks and their relative timing.
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Introduction

Much work in developmental biology has focused on a small

number of model organisms, such as the vinegar fly Drosophila

melanogaster [1–3]. While limiting our focus to such models can lead

to a more profound molecular understanding of specific embry-

ological processes [3], there are several good reasons to embrace a

broader comparative approach including less well-established

experimental systems [1]. First and foremost, developmental

(and other biological) processes are diverse, and limiting ourselves

to the study of model organisms severely restricts our capability to

appreciate and study this diversity. Second, without proper

evolutionary context, it is impossible to understand the origin

and history (and hence the idiosyncrasies) of any developmental

process. Only a higher sampling of different species will provide

the proper context in which to understand results obtained in

classical experimental models. Last but not least, a comparative

approach is absolutely essential for understanding the principles

underlying the function of regulatory networks responsible for

development. The same outcome—e.g. axis determination,

segmentation, or organ formation—can be achieved in numerous

different ways at the genetic and molecular level. Only by

comparing homologous processes in different species will we be

able to identify and analyse those aspects of development that have

(or do not have) to be conserved to ensure a specific viable

phenotype. For these reasons, it is important to develop new

species—beyond classical models such as D. melanogaster—which

are amenable to experimental investigation in the laboratory.

One important step towards establishing a new experimental

model system for developmental biology is to provide a careful

description and staging scheme for embryogenesis into which

molecular experimental findings can be placed. However, this step

is often neglected. Many staging schemes in current use are based

on the classical embryological literature, but it is difficult to find

recent examples of systematic and integrated descriptions of

embryological development for any established or emergent model

organisms. One example for this trend is the flour beetle Tribolium

castaneum. Although a staging scheme for a closely related species

was published in 1970 [4], and several studies have since

contributed to the characterisation and understanding of specific

morphogenetic processes (see, for example, [5–8]), there is still no

detailed, systematic, and integrated description of this model

organism’s development and life cycle.

In this and the accompanying paper by Jiménez-Guri et al. [9],

we attempt to counter this trend by providing a detailed

developmental schedule, staging scheme, and morphological

characterisation of the life cycle of two non-drosophilid dipteran

species that we use as experimental models in our laboratory: the

scuttle fly Megaselia abdita (this paper), and the moth midge Clogmia

albipunctata [9].

The scuttle fly Megaselia abdita belongs to the family Phoridae

(hump-backed flies) whose lineage is part of the dipteran sub-order
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of Brachycera. Phylogenetic analysis has identified the phorids as

belonging to the earliest branching lineage in the radiation of the

cyclorrhaphan flies, forming part of the paraphyletic assemblage of

Aschiza [10,11]. They diverged from the lineage leading to D.

melanogaster approximately 150 million years ago [10]. The phorid

family is extremely diverse and rich in species, over 4,000 of which

have been described so far. Marshall [12] states that ‘‘the family

Phoridae is like a biodiversity iceberg’’ referring to the potentially

vast number of unnamed and unstudied species. The genus

Megaselia forms one of the largest groups among the phorids. Its

distribution is cosmopolitan. M. abdita is often found along with

another Megaseila species, the coffin fly M. scalaris, feeding on

carrion—including human bodies—which has led to its wide-

spread use in forensics [13–16]. Due to their largely subterranean

lifestyle, both species are better runners than fliers. Despite their

jerky scuttling movement and hump-backed appearance, the

Megaselia genus was described as ‘‘[h]ow a fly ought to be’’ by

Richard Dawkins in his book ‘‘The Ancestor’s Tale’’ [17].

Over the past few years, M. abdita has been gaining popularity as

a model species in the field of evolutionary developmental biology.

In particular, it has been used to investigate the evolution of

antero-posterior axis patterning [18], segment determination [19–

21], head patterning [22], mRNA localisation [20], BMP signaling

[23,24] and the formation and morphology of extraembryonic

tissues [24–26]. Recently, high-throughput sequencing data has

also become available from a transcriptomic analysis of early

embryos [11], while efforts to sequence the M. abdita genome are

also underway (our unpublished data). Despite this, a systematic

characterisation and analysis of its development has yet to be

carried out, and a rigorous staging scheme—long available for D.

melanogaster (reviewed in [27])—has been lacking.

In this paper, we present an overview of the M. abdita life cycle,

as well as a detailed description of its embryonic development with

a special focus on early embryogenesis (cleavage and blastoderm

stages up to gastrulation), the formation of extraembryonic tissues,

and the determination and formation of germ (pole) cells.

Wherever possible, we homologise processes to the established

D. melanogaster staging system.

Results and Discussion

We characterised the development of M. abdita through

observation and timing of life stages using live imaging micros-

copy. Selected stages were examined in more detail by imaging

stained fixed embryo samples and by scanning electron micros-

copy.

The life cycle of M. abdita
An outline of the M. abdita life cycle (Figure 1) has previously

been described in Rafiqi et al. [28]: rearing the animals at 25uC,

under a 16/8 hrs day/night cycle and 75% relative humidity,

resulted in a life cycle duration of 18–20 days; approximately

24 hrs of this are taken up by embryogenesis, four days by larval

development, and 10 days spent in the pupal stage [28]. Under

identical conditions, we observed completion of embryogenesis in

approximately 24 hours, 5 days for larval development, and 12

days in the pupal stage. Although cuticle moulting was difficult to

observe directly, we detected three larval instars. Four days before

emerging, the pupa blackened. Adults survived for between 6–10

days. The average time for completion of the life cycle is in the

range of around 18 days (n = 4).

Embryonic development: an overview
We used live imaging with differential interference contrast

(DIC) to produce a series of movies covering all stages of

embryonic development (for examples, see Movie S1 and Movie

S2). Microscopy was carried out at 25uC under voltalef oil.

Dechorionation of the embryo was necessary to obtain clear DIC

images. Under these conditions, embryogenesis lasts approximate-

ly 27.5 hrs from oviposition until hatching.

Development can be divided into 17 stages roughly corre-

sponding to Bownes’ stages in D. melanogaster [27]. Each stage can

be distinguished by distinct morphological markers, as shown in

Figure 2 (also see Movie S1). The similarity between D. melanogaster

and M. abdita development allows a direct comparison between

developmental stages, as discussed below and shown in Figure 3.

Here we provide an overview over all stages of development.

Early development (cleavage and blastoderm stages 1–6 up to

gastrulation), extraembryonic tissue formation and retraction

(stages 8–15), and pole cell formation (at stage 3), are described

in more detail in separate sections below. All times are displayed as

hrs:min unless otherwise indicated. To assist identification of

stages under different growth conditions (e.g. oil/dry) and at

different temperatures, we also supply timing as percentage of total

embryonic development (% TED). Raw data for each event

including the number of embryos examined (n) and standard

deviations (SDs) are supplied in File S1. In general, SDs are below

5 min before serosal migration begins during stage 8. After this,

there is a trend towards increasing SDs over time: 16 min for the

start of serosal migration, 23 min for the start of dorsal closure,

41 min for serosal rupture, 58 min for the start of stage 16, 1:42

for the start of stage 17 and 3:26 for hatching.

Stage 1. 0:00–0:20 (duration: 0:20, 1.2% TED). Newly laid

eggs are approximately 536631 mm long and 223622 mm wide

(n = 164, measured with FlyGUI [29]). This stage begins at egg

laying, and lasts until the end of the first two cleavage divisions, at

the beginning of cleavage cycle 3 (C3). Experimental constraints—

Figure 1. The life cycle of M. abdita. Embryonic development is
covered in detail in the main text of the paper. After hatching, M. abdita
goes through three larval instars before forming a pupa. The whole life
cycle takes 18–20 days to complete.
doi:10.1371/journal.pone.0084421.g001

M. abdita Staging Scheme
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including the time required for egg laying, dechorionation, and

mounting—restricted our earliest observation point to partway

through C2. Since all cleavage cycles up to C12 are of a very

similar duration (approximately 10 min), we infer stage 1 to last for

at least 20 min. All ‘times after egg laying (AEL)’ below include a

correction based on this estimate (see File S1 for raw timing data,

and exact time adjustment values). In D. melanogaster, stage 1 occurs

over a 25 min period (1.4% TED; see [27] for references to

Bownes’ stages during D. melanogaster development).

Stage 2. 0:20–1:10 (duration: 0:50, 3% TED). Cleavage

cycles C3 to C8 take place. During this time, an empty space

appears between the vitelline membrane and the egg cytoplasm at

the posterior pole. We were unable to accurately time the

retraction from the posterior pole but observe its disappearance

along with the formation of the pole cells at stage 3 (see below). In

D. melanogaster, stage 2 occurs from 0:25–1:05 and takes 0:40 (3%

TED) during which egg cytoplasm can be seen retracting from the

vitelline envelope at both poles; filling of the space at the posterior

pole occurs at stage 3.

Stage 3. 1:10–1:33 (duration: 0:23, 1.4% TED). Stage 3

includes cleavage cycle C9 and the beginning of C10. At this stage,

nuclei divide and migrate outwards, and the pole buds form

(Figure 2, stage 3, white arrow). Stage 3 ends with the arrival of

nuclei at the periphery of the embryo. During this time, an empty

space appears between the vitelline envelope and the egg

cytoplasm at the anterior pole at around 1:13 and persists until

stage 4 (1:38). In D. melanogaster, this stage occurs from 1:05–1:20

and lasts for 0:15 (1% TED). During this stage, the empty space at

the posterior of the embryo disappears in both species.

Stage 4. 1:33–2:30 (duration: 0:57, 3.4% TED). At the onset

of this stage, the nuclei have reached the periphery and form the

syncytial blastoderm. Metaphase (or pseudo-cleavage) furrows

form around each nuclei before the breakdown of the nuclear

envelope during cleavage cycles C10–13 (see also below). Stage 4

Figure 2. Embryonic staging and developmental events in M. abdita. Embryos are shown as lateral views: anterior is to the left, dorsal is up.
Stage numbers (roughly corresponding to Bownes’ stages in D. melanogaster [27]) are shown in red at the top left, and time after egg laying (AEL) in
hrs:min in white at the bottom left corner of each panel. White arrows and bars indicate morphological landmarks. See main text for a detailed
description, and Figure 3 for comparative timing of stages with reference to D. melanogaster.
doi:10.1371/journal.pone.0084421.g002

M. abdita Staging Scheme
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terminates at the beginning of cleavage cycle C14. In D.

melanogaster, the syncytial blastoderm stage occurs from 1:20–2:10

and lasts for 0:50 (3.5% TED).

Stage 5. 2:30–3:28 (duration: 0:58, 4% TED). Similar to

previous blastoderm cycles, cellular membranes begin to form at

cleavage cycle C14, and progressively grow to engulf the

elongating blastoderm nuclei forming the cellular blastoderm.

Nuclear morphology changes from circular to elongated (see

below). Stage 5 ends just before the onset of gastrulation, and is

marked by the wavy appearance of the ventral blastoderm cells

(seen as uneven apical and basal surfaces), and the slight dorsal

movement of the pole cells. In D. melanogaster, this stage occurs

from 2:10–2:50 and lasts for 0:40 (3% TED).

Figure 3. Comparative timing of developmental stages in M. abdita and D. melanogaster. The duration of each stage is shown for M. abdita
and D. melanogaster in alternating black and blue bars. The time scale is divided into blocks of 1 hr on the far left hand side. A brief description of
each stage is given on the right. Landmarks of extraembryonic tissue formation and retractions are indicated to the left of the M. abdita time scale.
doi:10.1371/journal.pone.0084421.g003

M. abdita Staging Scheme
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Stage 6. 3:28–3:46 (duration: 0:18, 1% TED). Early gastru-

lation events occur: the ventral and cephalic furrows form

(Figure 2, stage 6, white arrows), and the pole cells continue to

shift dorsally. Stage 6 ends when the cell plate carrying the pole

cells reaches a horizontal position (parallel to the A–P axis). In D.

melanogaster, this stage occurs from 2:50–3:00 and lasts for 0:10 (1%

TED).

Stage 7. 3:46–3:51 (duration: 0:05, 0.3% TED). This stage

begins with the pole cell plate in a horizontal position. The plate

continues to tilt, forming a pocket (the amnioproctodeal invagi-

nation; Figure 2, stage 7, white arrow). The beginning of cephalad

(headwards) movement of this invagination marks the end of stage

7. The dorsal folds and amnioproctodeal invagination are less

conspicuous in our M. abdita movies than in D. melanogaster

although the posterior transverse furrow is clearly visible in fixed

embryos counterstained with DAPI (see also below). In D.

melanogaster, this stage occurs from 3:00–3:10 and lasts for 0:10

(1% TED).

Stage 8. 3:51–5:29 (duration: 1:38, 6% TED). This stage

starts with the cephalad movement of the amnioproctodeal

invagination, marking the onset of the rapid phase of germband

extension. The germband reaches approximately 50% A–P

position (Figure 2, stage 8, white arrow; 0% A–P position is at

the anterior pole), and the amnioserosal lip forms (also see below).

Originating from this lip, the serosa migrates to eventually engulf

the entire embryo (at stage 11). Stage 8 ends with the transient

appearance of mesodermal segmentation. In D. melanogaster, this

stage occurs from 3:10–3:40 and lasts for 0:30 (2% TED). During

this time, the germband reaches beyond 40% A–P position. On

the other hand, no serosal migration occurs, since extraembryonic

tissues are reduced to a dorsal amnioserosa in D. melanogaster,

which does not evaginate or migrate.

Stage 9. 5:29–6:16 (duration: 0:47, 3% TED). The germband

continues to extend albeit at a slower rate (slow phase of germband

extension), and the serosa continues to migrate ventrally. Stage 9

ends with the formation of the stomodeal invagination (seen more

clearly in Figure 2, stage 10, ventral-anterior white arrow). In D.

melanogaster, this stage occurs from 3:40–4:20 and lasts for 0:40 (3%

TED).

Stage 10. 6:16–6:49 (duration: 0:33, 2% TED) During this

stage, the stomodeum continues to form and the germband

reaches its maximum extent, around 30% A–P position (Figure 2,

stage 10, dorsal white arrow; compare to germband position at

stage 8, indicated by a white bar). Stage 10 ends with the

appearance of parasegmental furrows. During this time, the serosa

fuses ventrally at a posterior position (6:51). In D. melanogaster, this

stage occurs from 4:20–5:20 and lasts for 1:00 (4% TED), during

which the germband reaches its maximum extent at 25% A–P

position.

Stage 11. 6:49–8:09 (duration: 1:13, 4% TED). Stage 11

begins with the appearance of parasegmental furrows, and ends

with the beginning of germband retraction. During this time the

serosa fuses forming a complete extraembryonic layer around the

embryo. The serosa remains intact for around 7 hrs until finally

breaking during stage 15. In D. melanogaster, this stage occurs from

5:20–7:20 and lasts for 2:00 (8% TED).

Stage 12. 8:09–11:00 (duration: 2:51, 10% TED). During this

stage, the germband retracts. Stage 12 ends with the completion of

this process. In D. melanogaster, this stage occurs from 7:20–9:20

and lasts for 2:00 (8% TED).

Stage 13. 11:00–12:26 (duration: 1:26, 5.2% TED). Stage 13

lasts from the completion of germband retraction until the onset of

head involution. During this time, the dorsal opening of the

embryo remains covered by the amnion, and the serosa envelopes

the entire embryo. Dorsal closure starts at the same time as the

lengthening of the gut. In D. melanogaster, this stage occurs from

9:20–10:20 and lasts for 1:00 (4% TED), during which the dorsal

egg surface remains open and the dorsal hole is covered by the

amnioserosa.

Stage 14. 12:29–13:40 (duration: 1:14, 4.5% TED). Stage 14

starts at the beginning of head involution, and ends with closure of

the midgut. The head continues to involute beyond the end of this

stage, and this process completes only by the time the serosa

ruptures at stage 15. In D. melanogaster, stage 14 occurs from 10:20–

11:20 and lasts for 1:00 (4% TED).

Stage 15. 13:40–17:00 (duration: 3:20, 12% TED). Stage 15

starts at the closure of the midgut, and covers the completion of

dorsal closure and dorsal epidermal segmentation. This stage ends

when intersegmental grooves can be distinguished at mid-dorsal

levels. During this time, the serosa ruptures at a ventro-posterior

position (13:49). During its retraction, the serosa first rounds the

posterior pole before rounding the anterior pole, to be contracted

into the dorsal hole 40 min after rupturing (see also below). Dorsal

closure completes and dorsal epidermal segmentation is visible.

Also during this stage, the ventral nerve cord (VNC) starts to

shorten, the gut constricts, and muscle contractions begin. In D.

melanogaster, this stage occurs from 11:20–13:00 and lasts for 1:40

(7% TED), but shortening of the VNC does not begin until stage

16.

Stage 16. 17:00–17:42 (duration: 0:42, 3% TED). Stage 16

begins with the appearance of the lateral intersegmental grooves,

and ends then the dorsal ridge has completely overgrown the tip of

the clypeolabrum (completion of head involution). The VNC

continues to shorten; completion of this movement is not clearly

detectable and probably continues into stage 17. In D. melanogaster,

this stage occurs from 13:00–16:00 and lasts for 3:00 (13% TED).

Stage 17. 18:23–30:02 (duration: 9:54, 36% TED). During

this stage, the retraction of the VNC is likely to continue and reach

completion. The trachea fill with air at around 22 hrs AEL. The

first instar larva hatches at around 27.5 hrs AEL. In D. melanogaster,

this stage occurs from 16:00–24:00 and lasts for 8:00 hrs (33%

TED).

Detailed staging of early embryogenesis in M. abdita
M. abdita has 14 cleavage cycles. As is the case for D.

melanogaster, a lot of research on M. abdita has focused on the

earliest stages of embryogenesis [18–22]. For this reason, we have

examined the two initial phases of development in more detail: the

cleavage and the blastoderm stage, both occurring before the onset

of gastrulation. Live imaging enables us to count cleavage divisions

backwards from gastrulation. Each division can be detected by the

disappearance of nuclear envelopes, and their subsequent reap-

pearance at the beginning of the interphase of each cycle. Our

movies only capture 12 cleavage divisions (see Movie S1 and

Movie S2). However, it is known that 13 nuclear divisions occur

before gastrulation in D. melanogaster [27,30]. This suggests that we

may be missing the first cleavage cycle from our analysis, due to

the delay caused by preparing and mounting embryos for live

imaging (see above).

To investigate this—and to confirm our results using an

independent approach—we counterstained the nuclei of formal-

dehyde- or heat-fixed embryos using DAPI (Figure 4). We then

imaged and counted nuclei number, comparing our counts to the

number expected from the division of a single starting nucleus

(Table 1 and File S2). We can clearly identify embryos with a

number of nuclei similar to the expected value up to cleavage cycle

C8 (2n, where n is the number of preceding cleavage divisions).

After this stage, nuclei begin to reach the periphery, and can no

M. abdita Staging Scheme
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longer be captured in the same plane of focus. Despite this, it is still

possible to group embryos into discrete classes with characteristic

nuclear numbers representing different cleavage cycles. As nuclei

arrive at the surface of the embryo (the yolk-free periplasm) at the

beginning of the blastoderm stage, approximately half the

expected number is visible in lateral views with a superficial plane

of focus (in C10 and C11). This ratio decreases further in C12,

which is probably due to our counting method as nuclei

increasingly overlap around the periphery of the embryo. Embryos

at C12, C13, and C14 can still be clearly distinguished but it

becomes somewhat challenging to establish the precise number of

nuclei due to dense nuclear packaging. To check our ability to

distinguish these embryos we quantified the nuclear density in

these embryos. We scaled each embryo to 600625 mm and

counted the number of full nuclei falling into a 4564 mm square

placed in the middle of the embryo. Our counts clearly show

nuclear density increasing with each cycle (see density counts in

Table 1) and confirm our ability to distinguish between these

stages by eye. Taken together, our evidence indicates that M. abdita

has 13 cleavage divisions, and thus 14 cleavage cycles, just like D.

melanogaster.

Length and subdivision of blastoderm cycles. Our work

on the quantification and mathematical modelling of segmentation

gene expression (see, for example, [31–41]) requires careful

measurements of blastoderm cycle length and a more fine-grained

subdivision of cleavage cycle C14A (the portion of C14 before the

onset of gastrulation), which lasts significantly longer than the

preceding cycles. Previous work in D. melanogaster divided C14A

into 8 time classes [38,39]. Here we choose an analogous approach

for M. abdita in order to be able to homologise time classes

between species.

We measured the timing and duration of blastoderm cycles

C10–14A using DIC live imaging as described above (see Movie

S2). The resulting time line is displayed in Figure 5. In D.

Figure 4. Cleavage cycles of M. abdita. Fluorescence images of embryos with DAPI-counterstained nuclei are shown as lateral views. Anterior is to
the left. C1–14 indicates cleavage cycle number. The focus is on the sagittal plane for embryos at cleavage stage (C1–C9), and at the surface of the
embryo at blastoderm stage (C10–14). As in D. melanogaster, nuclei begin to move towards the periphery from C7 onwards. Corresponding
embryonic stages (see Figures 2 and 3) are indicated on grey background.
doi:10.1371/journal.pone.0084421.g004

M. abdita Staging Scheme
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melanogaster, C10 to C14 last for 9, 10, 12, 21, and 65 min

respectively [30,42]. In M. abdita the corresponding times are 13,

11, 14, 23, and 58 min.

In addition to measuring cleavage cycle timing and duration, we

characterised membrane morphology and nuclear shape in images

captured from DIC movies. Single time points during interphase

were chosen for cycles C10–13. For the subdivision of C14A into

time classes T1–8, we used images captured at eight evenly spaced

time points during that cycle.

From C10 to C13, nucleus number and density in the periplasm

increases, but nuclear shape remains in approximately the same

rounded state (Figure 6). Metaphase (or pseudo-cleavage) furrows

can be distinguished during each of these cycles as in D. melanogaster

(Figure 6; see also [43,44]). During cleavage cycle C14A, nuclei

change shape and a definitive wave of membrane invagination

progresses as cellularisation occurs (Figure 7). At time class 1 (T1),

nuclei are still round (as in previous cycles) and no membrane is

visible. By T2, nuclei have become oval-shaped and the front of

the invaginating membranes has already extended to cover

approximately 25% of each nucleus’ length. At T3, the nuclei

have obtained a short, almost rectangular shape that continues to

elongate during the subsequent time classes (compare the original

size displayed as a grey reference nucleus with each of the

subsequent stages in the schematic drawings in Figure 7).

Invaginating membranes cover 25–50% of nuclear length at T3,

approximately 50% at T4, 50–60% at T5, 60–80% at T6, 80–

100% at T7, and 100% or more at T8. T8 ends with the onset of

gastrulation.

Staging gene expression: even-skipped in the

blastoderm. To illustrate the utility of our staging system, we

stained and carried out a detailed analysis of the blastoderm-stage

expression of the M. abdita pair-rule gene even-skipped (eve) at

high temporal resolution. In the D. melanogaster blastoderm, eve

shows a very dynamic expression pattern, and can itself be used as

marker for the precise staging of embryos [37,38,40,41].

For each time class between C12 and C14A-T8 in M. abdita, we

captured brightfield and DIC images of whole embryos stained by

in situ hybridisation against eve mRNA (Figure 8), a fluorescent

image of the DAPI counterstain, and a higher-magnification DIC

image showing details of dorsal membrane morphology (as

described in [29]. Time classification was carried out according

to nuclear count, shape, and membrane morphology as described

in the previous section.

We first detect M. abdita eve expression during C12 in a broad

expression domain showing relatively strong expression from 25%

to 50%, and weaker expression as far back as 80% A–P position.

At C13, expression has increased in the posterior (60 to 90% A–P

position), and has intensified into a stripe-like domain from

approximately 25 to 35% A–P position. At T1 and T2, eve stripes 1

and 5 intensify. During T2, weak expression of stripes 2–4

becomes detectable, together with a broad diffuse posterior

domain past stripe 5 at 70 to 85% A–P position. Stripe 2 remains

joined to stripe 1, and full separation of these stripes only occurs at

T4. At T3, stripe 2 and 3 gain in intensity, while stripe 4 and the

broader posterior domain remain relatively weaker. A broad

domain covering stripes 6 and 7 can be discerned in the posterior

region. By T4, stripe 4 has increased its intensity, while the

posterior domain has begun to resolve into stripes 6 and 7. By T5,

all seven eve stripes have formed and are clearly separated. From

T5 to T8, stripes sharpen, becoming progressively narrower.

Posterior stripes 5–7 can be seen to shift to the anterior. Such

dynamic anterior shifts of posterior eve stripes are also observed in

D. melanogaster [38].

Extraembryonic tissues in M. abdita
Another aspect of M. abdita embryogenesis that has been

carefully investigated is the formation and development of the

extraembryonic tissues (the amnion and the serosa; [24–26]. One

of the reasons for this is that it is one of the most divergent

morphological traits involved in the early development of

dipterans, and its evolution is closely linked to that of axis

formation and early embryonic patterning [45]. While D.

melanogaster and other schizophoran flies exhibit a much reduced

dorsal amnioserosa, other dipteran species, such as M. abdita, have

Table 1. Observed number of nuclei in M. abdita.

Cleavage Cycle Expected # of Nuclei M. abdita Nucleus Count

C1 1 160 (n = 9)

C2 2 260 (n = 11)

C3 4 460.3 (n = 19)

C4 8 860.5 (n = 8)

C5 16 1661.6 (n = 12)

C6 32 3263 (n = 8)

C7 64 68618 (n = 5)

C8 128 11068.2 (n = 9)

C9 256 (nuclei almost at periphery) 165641 (n = 7)

C10 512 263641 (n = 6)

C11 1024 480647 (n = 5)

C12 2048 ,750 (n = 1) Density: 13 nuclei 61.8 (n = 7)

C13 4096 ,1200 (n = 1) Density: 22 nuclei 62.1 (n = 8)

C14 8192 .1400 (n = 1) Density: 32 nuclei 61.8 (n = 7)

Number counts based on DAPI-stained embryos (Figure 4 and File S2) are compared to those expected considering preceding mitotic divisions. Note that expected
numbers are overestimates from C9 onward, as nuclei migrate out of the plane of focus and some remain behind in the yolk (also outside the focal plane). C14 embryos
have nuclei, which are too densely packed to be reliably counted. Density refers to the number of full nuclei falling into a 45645 mm square placed in the middle of a
scaled embryo (see text for details).
doi:10.1371/journal.pone.0084421.t001
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more fully developed and separated amniotic and serosal tissues

[25,46].

In what follows, we characterise morphological aspects of the

formation and development of extraembryonic tissues in M. abdita.

This process takes place between stage 8, towards the end of the

rapid phase of germband extension, and stage 15, when the serosa

breaks (see Figure 9). The first morphological sign of the presence

of extraembryonic tissues is the formation of the amnioserosal lip

at the posterior end of the extending germband around 4 hrs

10 min AEL (Figure 9A, black arrow). Serosal migration starts

soon after. Although this is not detectable in our movies, the serosa

must detach from the underlying head epithelium, before

migrating to the front, rounding the anterior pole (Figure 9B–

D). The serosa also extends posteriorly, and ultimately fuses in a

ventro-posterior position (Figure 9C–E). This process takes around

2 hrs 9 min. During this time, the germband has reached its

maximum extent. The amnion stays confined to the region of the

dorsal opening of the embryo (see [25]).

The serosa covers the embryo through germband retraction and

the early stages of dorsal closure and head involution (Figure 9F).

Then it abruptly ruptures in a ventro-posterior position, 2 hrs 25

after the onset of dorsal closure, 1 hr 23 min after the onset of

head involution and around 9 hrs after starting its migration

(Figure 9F, white arrow). Rupturing of the serosa may be due to

forces exerted by the progressing process of dorsal closure. As a

consequence, serosal tissue is rapidly retracted towards the dorsal

opening, taking only about 10 min to round the posterior

(Figure 9G–H), and about 19 min to round the anterior pole

(Figure 9G–I). Contraction ends 40 min after rupturing as dorsal

closure continues (Figure 9J–L). Both amnion and serosal tissues

are reabsorbed into the dorsal opening at this stage while dorsal

closure takes another 2 hrs 20 min to complete. Due to limitations

in DIC optics it is not clear whether the retracted extraembryonic

tissues form a dorsal organ such as the one observed in D.

melanogaster.

Germ line development: formation of the pole cells
The germline of D. melanogaster differentiates from the somatic

lineage early in development. This process can be observed at the

morphological level as the formation of posterior pole buds at

stage 3 [27]. The pole buds divide once during this stage, and once

more at stage 4, before pinching off to form 12–14 pole cells. A

second division in stage 4 results in 34–37 pole cells.

Germ cells are targeted in the process of making transgenic flies.

Therefore, precise knowledge of their formation and location in

M. abdita is likely to be of use when attempting transgenesis. We

identified pole buds and pole cells by morphology, and via the

highly conserved germline marker protein Vasa. We first detect

Vasa protein at C3 (stage 2) at the posterior pole of the embryo,

before the formation of the pole buds (Figure 10A). Posterior Vasa

expression is maintained through C5, and becomes localised to the

pole buds as they emerge during stage 3, and to the pole cells as

they pinch off at stage 4 (Figure 10B–D). A scanning electron

micrograph (SEM) of a C10 embryo shows the presence of bulges

at the posterior of the embryo representing the pole cells

(Figure 10C’, and magnified inset C’’). During gastrulation and

germband extension, Vasa continues to mark the pole cells as they

start their movement inside the embryo at stages 6 to 8

(Figure 10E–F). Both the expression of Vasa and the location

and movement of the germ line are identical to D. melanogaster [47–

49].

Conclusion

In this paper, we provide a detailed and systematic character-

isation of the life cycle and embryonic development of the scuttle

fly M. abdita, while the accompanying study by Jiménez-Guri et al.

[9] does the same for the moth midge C. albipunctata. These two

papers provide a valuable resource and reference for the growing

community of fly geneticists and evolutionary developmental

biologists studying non-drosphilid dipteran species.

In particular, we propose an embryonic staging scheme

(Figures 2 and 3), which is homologous to the one already

established for D. melanogaster [27]. In addition, we investigate a

number of developmental processes in more detail. We have

determined the number of cleavage divisions before the onset of

gastrulation (Figure 4), have measured the exact length of cleavage

cycles (Figure 5), and establish morphological markers for the

precise staging of embryos at the blastoderm stage (Figures 6 and

7). We illustrate the use of this staging scheme by describing the

dynamics of eve expression at high temporal resolution (Figure 8).

In addition, we describe the morphology and dynamics of

extraembryonic tissue formation and retraction (Figure 9). Finally,

Figure 5. Comparison of the length of blastoderm cycles in D.
melanogaster and M. abdita. The duration of each division cycle is
shown for both species with alternating black and blue bars. The onset
of each cycle corresponds to the reappearance of nuclear envelopes in
DIC movies. The time scale on the left is divided into blocks of 10 min as
a reference. Start time (in hrs:min after egg laying, AEL) along with
duration (in min) are shown for cleavage cycles C10–14. For D.
melanogaster, time for the start of C10 is taken from [24], and times for
the duration of the blastoderm cycles from [27]. Corresponding
embryonic stages (see Figures 2 and 3) are indicated on grey
background.
doi:10.1371/journal.pone.0084421.g005

M. abdita Staging Scheme

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e84421



we examined germ line development by describing the formation

of pole buds and pole cells during early development (Figure 10).

Our study shows that embryogenesis and life cycle character-

istics (such as the number of larval instars) are highly conserved

across cyclorrhaphan flies. Despite the large evolutionary distance

between them, embryogenesis of M. abdita and D. melanogaster are

extremely similar, both with regard to timing and morphological

characteristics. The most obvious difference in M. abdita compared

to D. melanogaster consists of the formation and retraction of fully

formed extraembryonic tissues (see also [24–26]).

Materials and Methods

Fly culture and embryo collection
M. abdita embryos were collected after 5–10 min laying time,

and dechorionated as described in [50,51]. To image the embryos

we brushed the dechorionated embryos onto a microscopy slide

and covered them with a drop of 10S voltalef oil ensuring that the

embryos did not dry out. Live imaging typically started 10–20 min

after egg laying.

Life cycle imaging
Adult and larval stage images for Figure 1 were captured using a

Leica EC3 camera mounted on a dissecting stereoscope. A light

diffuser consisting of a cylinder of white paper was used to spread

light from the light source evenly over a sample mounted on a

glass needle. Multiple z-stacks of each sample were taken and in-

focus regions patched together using Photoshop.

Embryo imaging
Embryo images for Figures 4, 8, and 10 were taken using a

Leica DM6000B upright compound microscope using a 106
objective. Pictures for DAPI counterstaining, in situ hybridisation,

and antibody staining experiments were acquired and processed as

described in [34].

Time-lapse imaging
Slides were placed on a temperature-controlled platform at

25uC. Embryos were imaged with a Leica DM6000B upright

compound microscope using 206, 406, or 636 objectives, and

time intervals between image acquisitions ranging from every 10 s

to every 1 min. Specifications of optics, magnification, camera,

time interval, and embryo orientation for each time-lapse are

provided in File S1. Movies were processed using ImageJ (http://

rsbweb.nih.gov/ij).

Nuclear staining
DAPI counterstains were performed as follows: fixed, methanol-

dehydrated embryos [50,51] were rehydrated into PBT and

incubated with PBT/DAPI (0.3 mM DAPI) for 10 min. Embryos

were washed 36 in PBT for 1 min, followed by longer washes of

3610 min in PBT. Stained embryos were mounted and stored in

70% glycerol/PBS.

In Situ Hybridisation
In situ hybridisation was carried out as described in [34]

Antibody Staining
Immunostainings were performed using an antibody against

Vasa protein (kindly provided by P. Lasko) at 1:250 dilution. Fixed

embryos, stored in methanol (see previous section), were

rehydrated for 5 min in PBT/Methanol (1/1) and washed in

PBT (261 min, 1620 min) at room temperature (as were all

subsequent stages unless indicated). Blocking was carried out with

2630 min washes in PBT with Western Blocking Reagent (PBTB)

(Roche). Incubation with primary antibody was in PBTB for 3 hrs.

Figure 6. M. abdita early blastoderm cycles (C10–13). Captured images from live DIC movies. Images show lateral views, anterior is to the left,
dorsal is up. Times in min after egg laying (AEL). Schematic overlays show vitelline membrane (thick black line), nuclei (red circle) and metaphase
(pseudo-cleavage) furrow front (thin black line).
doi:10.1371/journal.pone.0084421.g006
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Figure 7. Cellularisation and time classification scheme for M. abdita during cleavage cycle 14A. Images captured from time-lapse movies
showing the membrane morphology at mid-dorsal positions are shown on the left-hand side for time classes T1–T8 and for gastrulation. Starting
times after egg laying for each time class are shown in the bottom left of each image in hrs:min(:sec). Schematic overlays show vitelline membrane
(thick black line), nuclei (red circle, oval or rectangle), and invaginating membrane front (thin black line). Grey nuclei indicate the size of the nuclei at
T3 for reference. Descriptions of features used to distinguish each stage are provided on the right (see text for details).
doi:10.1371/journal.pone.0084421.g007
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36 PBT washes were performed followed by a final overnight

wash in PBT at 4uC. Blocking for the secondary antibody was

performed as described previously. Incubation with secondary

antibody (goat anti-rabbit, 1:3000; Jackson ImmunoResearch

Laboratories, Inc.) was carried out in PBTB for 1 hr. Washes were

36 in PBT and 4615 min in PBT. Pre-stain washes were

265 min in AP Buffer (100 mM NaCl, 50 mM MgCl2, 100 mM

Tris PH 9.5, 0.1% Tween). Staining was performed in AP Buffer

with 1 ml/ml NBT and BCIP (Roche). After staining, embryos

were washed in PBT, followed by DAPI staining and mounting as

described above.

Figure 8. M. abdita eve mRNA expression staged using nuclei number, nuclear density, and membrane morphology. Our staging
method first distinguishes cleavage cycles based on the number or density of nuclei observed. Dorsal membrane morphology is then used to check
the assignment of embryos to cleavage cycles C10–14 based on the size and spacing of the nuclei (see Figure 6). Embryos assigned to cleavage cycle
C14A are further classified into time classes T1–8 based on membrane morphology (see Figure 7). Using this method, we provide a detailed time-
series for expression of the pair-rule gene even-skipped (eve) during the blastoderm stage. Lateral views are shown: enzymatic in situ hybridisation
stains to the left, and DAPI-counterstain in the middle. The right-hand column shows details of dorsal membrane/nuclear morphology (sagittal
views). See text for details.
doi:10.1371/journal.pone.0084421.g008

Figure 9. Extension and retraction of the serosa in M. abdita. Time is shown in hrs:min after egg laying (AEL) for each image. The serosa is
highlighted in yellow. The black arrow in (A) indicates the amniosersal lip, the white arrow in (G) the position where the serosa ruptures.
Corresponding embryonic stages (see Figures 2 and 3) are indicated on grey background. See text for details.
doi:10.1371/journal.pone.0084421.g009
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Scanning Electron Microscopy
Scanning electron micrographs were taken with a Zeiss DSM

940A scanning electron microscope at the Unitat de Microscopia

Electronica (Campus Casanova) of the University of Barcelona.

Samples were processed as follows: samples were fixed using 2.5%

glutaraldehyde in 0.1 M cacodylate buffer overnight at 4uC,

followed by 3610 min washes at 4uC in 0.1 M cacodylate buffer.

Post-fixation was carried out in 1% osmium tetroxide in 0.1 M

cacodylate buffer for 2 h at 4uC followed by 3610 min washes at

4uC in milliQ water. Embryos were put through an ethanol

dilution series of 25, 50 and 70%, each for 10 min at 4uC, then

3610 min additional washes in 90, 96 and 100% ethanol at 4uC.

Embryos were critical-point-dried using a VGMicrotech CPD

7501 system, and gold coating was carried out using a Fisons

Instrument FC510 Sputtering System.

Supporting Information

File S1 Timing of developmental events from individual
time-lapse movies in M. abdita. Stages and developmental

events are shown in columns A and B. Time-lapse (TL) movie IDs

are listed along the top, along with averages of timing of events

across embryos/movies in minutes, and hours:minutes (hh:mm).

Also listed are the number of embryos n underlying the calculation

of average times for each event, stage duration (in min and in

hh:mm) and standard deviation (STDEV, in min) for each event.

% of developmetal time is also shown for each stage. Row 2

indicates the time adjustment made to each event to cancel out

variations in starting time; 10 min were added for each

unrecorded cleavage cycle (i.e. in TL29, C4 starts at 8 min 30 s

in the raw data, therefore the start of the movie is C3 + 2 min 30 s;

by adding 2.5 min we arrive at the start of C3, by adding 10 min

at the start of C2, and by adding another 10 min at the start of C1;

hence, to normalise this movie, we add 2.5+10+10 = 22.5 min).

Rows 3–5 detail the optics (206, 406 or 646), camera (Leica

DFC420 or DFC360FX), and the embryo view (full, dorsal,

ventral or posterior). Row 6 gives the time interval between

capturing successive images. Alternating white and grey rows mark

stages.

(XLS)

File S2 Nuclei number and density counts for pre-
gastrulation embryos of M. abdita. Nuclear counts (orange

table) are shown below expected numbers for each cleavage cycle

(C1 to C14). Nuclear density counts (red table) are shown for

cleavage cycles C12–C14. Nuclear density was assessed by scaling

each embryo to 6006250 mm and counting the number of full

nuclei falling into a 4564 mm square placed in the middle of the

embryo.

(XLS)

Movie S1 Time-lapse movie covering the entire embry-
onic development of M. abdita. Time-lapse movie of a M.

abdita embryo taken using a 206 objective and DIC optics under

10S voltalef oil. Lateral view: anterior is to the left, dorsal is up.

This movie corresponds to TL29 in File S1.

(MOV)

Movie S2 Time-lapse movie covering the blastoderm
stage of M. abdita. Time-lapse movie of a M. abdita embryo

taken using a 206objective and DIC optics under 10S voltalef oil.

Lateral view: anterior is to the left, dorsal is up. This movie

corresponds to TL26 in File S1.

(MOV)
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Solon, and Juan José Fraire Zamora for discussions and advice on head

involution and dorsal closure, and the formation of the extraembryonic

Figure 10. Pole cell formation in M. abdita. (A–D, E, F) Embryos stained with antibodies against Vasa protein at cleavage cycles C3, C5, C10, C14A
(stages 1–5), as well as stage 6 and stage 8. Lateral views, anterior is to the left, dorsal is up. Arrow in (F) indicates the position of the pole cells after
their inwards migration. (C’) scanning electron micrograph (SEM) of C10 embryo; close-up in (C’’) shows pole cells.
doi:10.1371/journal.pone.0084421.g010

M. abdita Staging Scheme

PLOS ONE | www.plosone.org 13 January 2014 | Volume 9 | Issue 1 | e84421



tissues. We further thank Steffen Lemke for helpful advice on the

presentation of the manuscript. We would also like to thank Paul Lasko for

providing the Vasa antibody, Damjan Cicin-Sain for extracting the length

and width of the embryos, Moraea Phillips and Mariana Lopez for help

with determining the life cycle of the fly, and the Unitat de Microscopia

Electronica (Campus Casanova) of the University of Barcelona for the use

of their SEM facility.

Author Contributions

Conceived and designed the experiments: KRW EJG JJ. Performed the

experiments: KRW EJG BGM. Analyzed the data: KRW EJG.

Contributed reagents/materials/analysis tools: KRW EJG. Wrote the

paper: KRW EJG JJ.

References

1. Abzhanov A, Extavour CG, Groover A, Hodges SA, Hoekstra HE, et al. (2008)

Are we there yet? Tracking the development of new model systems. Trends
Genet 24: 353–60.

2. Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat
Rev Genet 8: 311–9.

3. Sommer RJ (2009) The future of evo-devo: model systems and evolutionary
theory. Nat Rev Genet 10: 416–22.

4. Stanley MSM, Grundmann AW (1970) The embryonic development of

Tribolium confusum. Ann Entomol Soc Am 63: 1248–56.
5. Handel K, Grünfelder CG, Roth S, Sander K (2000) Tribolium embryogenesis:

a SEM study of cell shapes and movements from blastoderm to serosal closure.
Dev Genes Evol 210: 167–79.

6. Handel K, Basal A, Fan X, Roth S (2005) Tribolium castaneum twist:

gastrulation and mesoderm formation in a short-germ beetle. Dev Genes Evol
215: 13–31.

7. van der Zee M, Berns N, Roth S (2005) Distinct functions of the Tribolium
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