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Abstract

An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase
cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated
by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to
the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-
density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of
microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high
cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE,
and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased
VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol
compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon
these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine
for TICE.
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Introduction

Atherosclerotic coronary vascular disease (ASCVD) remains the

number one killer of Americans [1]. There is a strong positive

relationship between low-density lipoprotein cholesterol concen-

tration (LDLc) and ASCVD risk. One way to reduce LDLc, the

primary risk factor of ASCVD, is to increase cholesterol excretion

from the body [2]. Biliary cholesterol secretion is the primary

mechanism by which excess cholesterol is moved into the lumen of

the small intestine and subsequently excreted from the body [3].

However, our group and others have found that cholesterol

excretion can also be facilitated by a non-biliary pathway known

as transintestinal cholesterol efflux (TICE) [4,5]. TICE appears to

involve the movement of cholesterol through the plasma to the

basolateral surface of the enterocytes. The cholesterol is then

internalized, trafficked across the cell, and secreted into the lumen

of the small intestine [4]. Under normal conditions in mice, TICE

has been reported to contribute 20–50% of the cholesterol found

in feces [6–8]. TICE has also been observed in humans but its

quantitative contribution to fecal cholesterol excretion has not

been established [9]. Activation of the nuclear hormone receptors

liver X receptor (LXR) and peroxisome proliferator-activated

receptor delta (PPARd) with agonists has been shown to stimulate

TICE in mice by ,100% [6,10]. In addition, when biliary

cholesterol secretion is absent or dramatically reduced in mice and

humans, normal cholesterol excretion can be maintained by TICE

[7,11–13]. For example, mice deficient in ABCB4 (ABCB42/2)

and mice with transgenic expression of Niemann-Pick C1-Like 1

in hepatocytes (L1Tg) have a ,90% decrease in biliary cholesterol

but normal fecal neutral sterol excretion presumably due to

increased TICE [7,8,13–15]. It has also been shown that TICE

can be pharmacologically stimulated with LXR agonist in

ABCB42/2 and L1Tg mice [7,13,14].

Lipoproteins must be involved in the trafficking of cholesterol to

the enterocytes for TICE. Because of its importance in hepato-

biliary cholesterol excretion [3], HDL is the lipoprotein class that
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most logically would support TICE. However, intestinal uptake of

radiolabeled cholesteryl ether from HDL is unchanged in

ABCB42/2 mice, is increased in mice deficient in the HDL

receptor scavenger receptor B-I (SR-BI), and is decreased in mice

treated with LXR agonist [14]. In addition, TICE as measured by

intestinal perfusion is increased in SR-BI deficient mice and

unchanged in ATP binding cassette transporter A1 (ABCA1)

deficient mice and mice deficient in both ABCA1 and SR-BI,

which have extremely low levels of circulating HDL [12,16]. Most

recently, it was demonstrated that TICE does not depend on

HDL-dependent delivery of plasma cholesterol to the intestine

[16].

Based upon the evidence that HDL is not directly involved in

TICE [7,14,17], we hypothesized that liver-derived, apolipopro-

tein B (apoB)-containing lipoproteins are delivering cholesterol to

the small intestine for TICE. In the current study, we tested this

hypothesis by selectively reducing the hepatic expression of

microsomal triglyceride transfer protein (MTP), which is required

for the assembly and secretion of apoB-containing very low density

lipoproteins (VLDL) [18]. We found that inhibition of hepatic

VLDL secretion reduced fecal neutral sterol excretion by .50% in

L1Tg mice, a mouse model where TICE predominates. These

studies suggest that an apoB-containing lipoprotein is responsible

for moving cholesterol from the liver to the small intestine for

TICE. We believe that our current findings will facilitate the

discovery of other components of the TICE pathway and will open

new avenues for the development of therapies that increase

cholesterol excretion, lower LDLc, and reduce the incidence of

ASCVD.

Materials and Methods

Mice
Male transgenic mice expressing human NPC1L1 in hepato-

cytes (L1Tg) [15] and wild type littermate controls on a C57BL/

6N background were maintained on standard rodent chow. At 6

weeks of age, the mice were switched to a semisynthetic low-fat,

high-cholesterol diet (10% of energy as palm-enriched fat, 0.2%

cholesterol w/w) and were IP injected biweekly with 25 mg/kg of

either non-targeting antisense oligonucleotide (Control ASO-ISIS

353512 (59-TCCCATTTCAGGAGACCTGG-39) [19] or ASO

directed against murine MTP (MTP ASO-ISIS 144477 (59-

CCCAGCACCTGGTTTGCCGT-39) as previously described

[20]. After 6 weeks of treatment, mice were fasted for 4 hrs and

anesthetized with ketamine/xylazine (120/20 mg/kg IM). Bile

was collected from the gallbladder, and blood was collected by

heart puncture for plasma isolation. Following a whole body flush

with saline, liver and small intestine were collected and snap frozen

in liquid nitrogen. All mice were maintained in an American

Association for Accreditation of Laboratory Animal Care-

approved animal facility under protocols approved by the

institutional animal care and use committee at Wake Forest

University School of Medicine.

Immunoblotting of Tissue Proteins and Lipoprotein
Apolipoproteins

Pieces of liver and proximal small intestine (,100 mg) were

homogenized on ice in 25 mM Tris HCL pH 7.4, 300 mM NaCl

and 1% Triton X-100 in the presence of protease inhibitor cocktail

(Sigma). The tissue homogenate was centrifuged twice at 10,000 x

g for 10 min and protein concentration of the supernatant was

measured by Lowry assay [21]. Plasma pooled from 4–5 animals

per group was separated by FPLC [22] and fractions correspond-

ing to VLDL, LDL, transitional lipoprotein, and HDL were

collected. After mixing with 5X SDS sample buffer, the tissue

supernatant (10 mg protein/lane) and lipoprotein fractions were

separated on Novex NuPAGE 4–12% Bis-Tris Midi Gels

(Invitrogen). The proteins were transferred to nitrocellulose

membranes, which were subsequently blocked with 5% (w/v)

non-fat dried milk dissolved in wash buffer. The membranes were

incubated with one or more of the following antibodies: mouse

monoclonal to mouse MTP (BD Transduction Laboratories),

rabbit monoclonal to LDL receptor (Abcam), rabbit polyclonal to

ABCA1 (provided by Dr. John Parks, Wake Forest University

School of Medicine), mouse monoclonal to b-actin (Sigma), goat

polyclonal to human apoB (Academy Biomedical), rabbit poly-

clonal to rat apoE (provided by Dr. Joachim Herz, UT

Southwestern Medical Center). After washing, the blots were

probed with secondary antibodies against rabbit, goat, or mouse

IgG conjugated to horseradish peroxidase (Sigma). Detected

proteins were visualized with ECL reagent (PerkinElmer) and

exposure to Blue X-Ray Film (Phenix).

Quantitative Real-Time PCR (qPCR)
RNA extraction and qPCR was conducted as previously

described on individual tissue samples (n = 5 per group) [23].

Cyclophilin was used as an internal control and mRNA expression

levels were calculated based on the DD-CT method. Messenger

RNA levels for each gene represent the amount relative to that of

WT mice treated with control ASO, which was arbitrarily

standardized to 1. Primer sequences used for qPCR are available

on request.

Plasma Concentration and Distribution of Cholesterol
Plasma total cholesterol concentration and lipoprotein choles-

terol distributions were determined as described [22].

In Vivo Determination of VLDL Lipid and ApoB Secretion
Rates

After six weeks of high-cholesterol diet feeding and ASO

treatment, mice (n = 5 per treatment group) were fasted for 4 hrs,

anesthetized with isoflurane (4% induction & 2-3% maintenance,

inhalation), and injected retro-orbitally with 1) [35S]Met/Cys

(7 mCi/g body weight) to radiolabel newly synthesize apoB and 2)

tyloxapol (500 mg/kg; Sigma) to block lipolysis [24]. At 0, 0.5, 1,

2, and 3 hrs after injection, 50 ml of blood was collected from

anesthetized mice by retro-orbital bleeding. Plasma was harvested

from the blood samples and used to quantify TG and total

cholesterol (TC) mass by enzymatic assay. TG and TC secretion

rates were derived from the slope of the line of best fit of time versus

plasma TG and TC for each individual animal using GraphPad

Prism 5. Hepatic secretion of newly synthesized apoB was

measured in plasma from the 3 hr time point as described

previously [25].

Liver and Gallbladder Lipid Measurements
Lipid concentrations in liver and gallbladder bile were

determined as described previously [15].

Analysis of fecal neutral sterol excretion
After 6 weeks of treatment, fecal neutral sterol excretion was

measured as described previously [23].

Statistical Analysis
Data are expressed as the mean 6 standard error of the mean

(SEM), and were analyzed using multivariate analysis of variance

(ANOVA) followed by Student’s t tests for post hoc analysis.

Reducing Hepatic MTP Blunts Cholesterol Excretion
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Differences were considered significant at p,0.05. All analyses

were performed using JMP version 5.0.12 (SAS Institute; Cary,

NC) software unless otherwise specified.

Results

MTP ASO treatment reduces hepatic MTP expression and
function

Male L1Tg and WT littermate controls mice were fed a low-fat,

high-cholesterol diet and treated with either a non-targeting

antisense oligonucleotide (control ASO) or an ASO targeting MTP

(MTP ASO). Because ASOs are cleared more efficiently by the

liver compared to the small intestine [26], we anticipated that

knockdown of MTP expression would be significantly greater in

liver versus small intestine, which requires MTP for assembly and

secretion of chylomicrons [18]. After six weeks of treatment,

hepatic MTP mRNA expression was reduced by ,90% in both

WT and L1Tg mice treated with MTP ASO compared to control

ASO (Figure 1A). Hepatic MTP protein expression was reduced

.75% with MTP ASO in both genotypes (Figure 1B). As

expected, intestinal MTP mRNA (Figure 1C) and protein

(Figure 1D) were minimally affected with MTP ASO treatment.

Since MTP is required for efficient efflux of hepatic lipids on

apoB-containing lipoproteins, liver lipid accumulation was dra-

matically increased in mice treated with MTP ASO. Compared to

WT mice treated with control ASO, WT and L1Tg mice treated

with MTP ASO had a 330% and 420% increase, respectively, in

hepatic cholesteryl ester (CE) (Figure 2A). MTP ASO treatment

significantly increased hepatic free cholesterol (FC) content by

31% in L1Tg but not WT mice (Figure 2B). Liver triglyceride

(TG) concentration was raised by 460% and 820% in WT and

L1Tg mice respectively with hepatic MTP knockdown (MTPHKD)

(Figure 2C). Hepatic phospholipid (PL) content was similar

amongst treatment groups (Figure 2D).

Hepatic MTP knockdown reduces fecal cholesterol
excretion in L1Tg mice

Due to the increased cholesterol accumulation in liver

(Figure 2A-B), MTPHKD was expected to cause a compensatory

elevation in biliary cholesterol concentration. Consistent with our

previous work [13,15], biliary cholesterol was reduced by 68% in

L1Tg versus WT mice treated with control ASO. However, MTP

ASO treatment did not increase biliary cholesterol in either WT or

L1Tg mice (Figure 3A). The liver can also convert excess

Figure 1. Hepatic and intestinal MTP expression following MTP ASO treatment. Liver and small intestine were collected from L1Tg and WT
mice following 6 weeks of treatment with control ASO or MTP ASO. Quantitation of MTP mRNA in liver (A) and proximal small intestine (C) was
conducted by real-time PCR using individual RNA samples (n = 5 per treatment group). Western blot analysis of MTP and b-actin in liver (B) and
proximal small intestine (D). Data in graphs represent the means 6 SEM, and means not sharing a common superscript differ significantly (p,0.05).
doi:10.1371/journal.pone.0084418.g001

Reducing Hepatic MTP Blunts Cholesterol Excretion
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cholesterol to bile acids, but MTPHKD had no effect on bile acid

concentration in gallbladder bile (Figure 3B). The level of biliary

phospholipids was also similar amongst the treatment groups

(Figure 3C).

Despite the dramatic reduction in biliary cholesterol concen-

tration (Figure 3A), control ASO-treated L1Tg mice compared to

WT mice had normal fecal cholesterol excretion (Figure 3D),

which has been attributed to increased TICE in L1Tg mice [13].

Fecal cholesterol excretion was unchanged in WT mice with

MTPHKD (Figure 3D). However, L1Tg mice treated with MTP

ASO versus control ASO displayed a significant 53% reduction in

fecal cholesterol loss (Figure 3D). These data indicate that

inhibition of MTP-dependent hepatic lipid secretion on apoB-

containing lipoproteins reduces TICE in L1Tg mice.

Hepatic MTP knockdown decreases but does not
eliminate hepatic secretion of apoB-containing
lipoproteins

Since MTP ASO treatment reduced but did not abolish

cholesterol excretion in L1Tg mice, the hepatic secretion of lipid

and apoB was assessed in mice injected with tyloxapol and

[35S]Met/Cys [24]. MTPHKD in WT and L1Tg mice caused the

hepatic secretion rate of TG (Figure 4A,B) to be decreased by

$60% and total cholesterol (TC) (Figure 4C,D) to be reduced by

.50%. MTP ASO versus control ASO treatment caused hepatic

secretion of newly synthesized apoB100 to be significantly reduced

in L1Tg mice and to trend towards a decrease in WT mice

(Figure 4E). In contrast, hepatic apoB48 secretion was unchanged

with MTPHKD in WT and L1Tg mice (Figure 4E).

Hepatic MTP knockdown reduces plasma VLDL but not
LDL

To further evaluate the impact of hepatic MTP knockdown on

apoB-containing lipoprotein levels, plasma lipoprotein cholesterol

and apolipoprotein distribution was measured. Consistent with our

previous study [15], plasma TC (Figure 5A) and HDL cholesterol

(HDLc) (Figure 5E) were significantly increased in L1Tg versus

WT mice treated with control ASO. In addition, control ASO-

treated L1Tg mice had significantly more cholesterol associated

with transition lipoproteins (TL) (Figure 5D), which were

previously characterized as large, apoE-rich HDL [15]. As

expected, MTPHKD tended to reduce and significantly reduced

VLDL cholesterol (VLDLc) in WT and L1Tg mice, respectively

(Figure 5B). However, with MTP ASO treatment, LDL cholesterol

was significantly increased in WT mice and was unchanged in

L1Tg mice (Figure 5C), and TL cholesterol was significantly

elevated in both genotypes (Figure 5D). MTPHKD caused a

significant reduction in HDLc in L1Tg mice but no change in

HDLc in WT mice (Figure 5E). Consistent with the reduction in

VLDLc, apoB100, apoB48 and apoE were reduced in VLDL from

WT and L1Tg mice treated with MTP ASO (Figure 5H). In

contrast, MTPHKD did not affect apoB100, apoB48, and apoE

levels in LDL (Figure 5I), and increased apoB48 in TL (Figure 5J).

Hepatic MTP knockdown decreases LDL receptor in liver
In spite of the significant reduction in hepatic lipid secretion on

apoB-containing lipoproteins (Figure 4), the plasma concentration

of cholesterol and apoB associated with LDL was either increased

or unchanged in WT and L1Tg mice with MTPHKD

Figure 2. Liver lipid levels in mice with hepatic MTP knockdown. After 6 weeks of control ASO or MTP ASO treatment, fasting liver samples
were collected and analyzed for the concentrations of cholesteryl ester (A), free cholesterol (B), triglyceride (C) and phospholipid (D). All hepatic lipid
values were normalized to the protein content of the extracted tissue, and represent the means 6 SEM (9–10 mice per treatment group). Means not
sharing a common superscript differ significantly (p,0.05).
doi:10.1371/journal.pone.0084418.g002

Reducing Hepatic MTP Blunts Cholesterol Excretion
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(Figure 5C,5I). This finding was partially explained by the

continued secretion of apoB in the face of MTPHKD (Figure 4E).

In addition, because of the significant increase in liver cholesterol

caused by MTP ASO treatment (Figure 2A,B), it was hypothesized

that hepatic LDL receptor (LDLR) was downregulated conse-

quently resulting in reduced LDL clearance. Immunoblot analysis

of liver verified that LDLR was reduced in both WT and L1Tg

mice with MTPHKD (Figure 6A). Since HDLc was significantly

reduced in MTP ASO-treated L1Tg, hepatic ATP-binding

cassette transporter (ABCA1) expression was also measured.

However, there was no significant difference in liver ABCA1

protein amongst the different treatment groups (Figure 6B).

Discussion

We hypothesized that hepatic apoB-containing lipoproteins

were involved in delivering cholesterol to the small intestine for

TICE. We tested this hypothesis by reducing hepatic MTP

expression in WT mice and L1Tg mice, which primarily excrete

cholesterol via TICE. MTP ASO treatment reduced hepatic MTP

protein expression by .75% (Figure 1), increased hepatic neutral

lipid content by .300% (Figure 2), and decreased VLDL TC and

TG secretion by .50% (Figure 4). Although biliary cholesterol

concentration was not altered, fecal cholesterol excretion was

reduced by ,50% in L1Tg treated with MTP ASO (Figure 3).

From these results, we conclude that MTP-dependent lipidation of

hepatic apoB-containing lipoproteins is necessary for proper

maintenance of TICE. Moreover, our data are the first to indicate

that VLDL or a catabolic product such as LDL is responsible for

delivering cholesterol thorough the plasma to the small intestine

for TICE.

When treated with MTP ASO, WT and L1Tg mice displayed

similar reductions in secretion of cholesterol and TG on apoB-

containing lipoproteins (Figure 4). However, MTPHKD decreased

fecal cholesterol excretion in L1Tg but not WT mice (Figure 3).

The inability of MTP ASO treatment to reduce fecal cholesterol

excretion in WT mice could be due to the hepatobiliary pathway

being intact. Under normal conditions in mice, ,70% of

cholesterol excreted in feces is derived from the bile [6–8]. Thus,

in WT mice with MTPHKD, liver cholesterol normally destined for

TICE could have been rerouted into the bile. Alternatively,

because apoB-containing lipoprotein secretion was not completely

abolished, TICE could have been only partially inactivated in the

WT mice with MTPHKD thus resulting in a reduction in TICE-

derived cholesterol excretion that was below our level of detection.

Our conclusion that hepatic apoB-containing lipoproteins

support the TICE pathway is consistent with the recent results

reported by Le May et al [27]. Using intestinal explants from

LDLR deficient mice, it was found that LDL-derived TICE was

decreased by 58%. In contrast, PCSK9 deficient mice, which

displayed ,300% increase in intestinal LDLR, had a ,60%

increase in LDL-derived TICE. These data indicate that the

LDLR feeds cholesterol into TICE by internalizing apoB-

containing lipoproteins at the basolateral surface of enterocytes

and are in concordance with our observation of an ,50%

decrease in TICE when hepatic VLDL secretion was disrupted.

Figure 3. Biliary lipid levels and fecal cholesterol excretion in mice with hepatic MTP knockdown. After 6 weeks of control ASO or MTP
ASO treatment, gallbladder bile was collected and analyzed for the concentration of cholesterol (A), bile acids (B), and phospholipids (C). For 3 days
prior to euthanasia, feces were quantitatively collected for analysis of fecal cholesterol excretion (D). Data represent the means 6 SEM (n = 7–10 per
treatment group), and means not sharing a common superscript differ significantly (p,0.05).
doi:10.1371/journal.pone.0084418.g003
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PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84418



We believe that TICE was decreased in L1Tg mice with hepatic

MTP knockdown due to reduced secretion of cholesterol on apoB-

containing lipoproteins. However, MTPHKD in L1Tg mice also

resulted in a significant drop in plasma HDL cholesterol

(Figure 5E) thus raising the possibility that the reduction in

HDL was responsible for the diminution in TICE. Although HDL

is believed to play a major role in hepatobiliary reverse cholesterol

transport, data from our lab and those of others indicates that

Figure 4. Hepatic secretion of lipid and apoB with MTP knockdown. Following 6 weeks of treatment with control ASO or MTP ASO, L1Tg and
WT mice were fasted for 4 hrs and then injected retro-orbitally with tyloxapol (500 mg/kg) and [35S]Met/Cys. Blood samples were periodically
collected and the plasma was analyzed for TG (A) and TC (C) concentration. The hepatic secretion rates of TG (B) and TC (D) were determined by linear
regression analysis. Secretion of newly synthesized apoB100 and apoB48 (E) was measured by autoradiography of radiolabeled apoB that had been
immunoprecipitated from plasma collected 3 hrs post-tyloxapol injection. The autoradiography data in panel E show samples that were separated on
one gel and were exposed for the same time to the same piece of X ray film. Data represent the means 6 SEM (n = 5 per treatment group), and
means not sharing a common superscript differ significantly (p,0.05).
doi:10.1371/journal.pone.0084418.g004

Reducing Hepatic MTP Blunts Cholesterol Excretion
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HDL does not directly participate in TICE. Intestinal uptake of

HDL CE was similar in WT and ABCB42/2 mice, which

predominantly excrete cholesterol via the TICE pathway [14]. In

addition, LXR agonist treatment, which raises TICE ,2-fold [6],

reduced HDL [3H]-cholesteryl ether accumulation in the intestine

of both WT and ABCB42/2 mice [14]. Because of an inability to

form nascent HDL, ABCA1 deficient mice (ABCA12/2) have

very low levels of plasma HDL. Nevertheless, Plosch and

Figure 5. Plasma lipoprotein cholesterol and apoliporotein distribution following MTP knockdown. After treatment for 6 weeks with
control ASO or MTP ASO, fasting plasma was collected from WT and L1Tg mice and analyzed for total cholesterol (A) and lipoprotein cholesterol
distribution, which were used to calculate the cholesterol concentration in VLDL (B), LDL (C), transition lipoprotein [TL] (D) and HDL (E). Data
represent the means 6 SEM (n = 9–10 mice per treatment group), and means not sharing a common superscript differ significantly (p,0.05). An
equal volume of pooled plasma from 4–5 mice per treatment group was separated by FPLC (F & G) and fractions containing VLDL (H), LDL (I), and TL
(J) were collected. Following SDS-PAGE, the lipoprotein fractions were immunoblotted to determine the content of apoB and apoE.
doi:10.1371/journal.pone.0084418.g005
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colleagues reported that LXR agonist treatment raised fecal

neutral sterol excretion to the same extent in ABCA1 deficient

mice and WT littermate controls [17]. Moreover, it has been

recently shown that TICE as measured by intestinal perfusion was

similar in WT and ABCA12/2 mice [16]. Scavenger receptor B-I

(SR-BI) mediates the selective uptake of cholesterol from HDL and

is expressed in the intestine [28]. Yet mice with SR-BI deficiency

(SR-BI2/2) have been shown to have either increased [12] or

unaltered TICE [16] as measured by intestinal perfusion.

Intestinal uptake of [3H]-cholesteryl ether from HDL was

surprisingly increased in SR-BI2/2 mice and was reduced when

these mice were treated with LXR agonist [14]. In addition, a

recent study by our group showed that overexpression of SR-BI in

the intestine of WT and L1Tg mice had no effect on fecal neutral

sterol excretion [29]. ApoE-rich HDL accumulate in the plasma of

L1Tg suggesting that these lipoproteins could be involved in TICE

[15]. However, our unpublished analysis of L1Tg mice lacking

apoE indicates that the absence of apoE-rich HDL has no impact

on fecal neutral sterol excretion and presumably TICE. Based

upon the published data and our findings reported in this work, we

believe that hepatic apoB-containing lipoproteins and not HDL

are primarily responsible for feeding cholesterol into the TICE

pathway.

Based upon the data presented in the current work, we propose

the following mechanism for TICE in L1Tg mice. Cholesterol

deposited into the liver by HDL or LDL is trafficked to the

basolateral membrane of hepatocytes and pumped into the bile

through the action of ATP binding cassette transporters G5 and

G8 (ABCG5/G8). NPC1L1 draws the cholesterol out of the bile

and similar to the small intestine directs the cholesterol to MTP

and acyl-CoA cholesterol acyltransferase 2 (ACAT2) that package

the cholesterol into apoB-containing lipoproteins such as VLDL.

The VLDL or a catabolic product such as LDL is trafficked to the

small intestine. Following internalization by the LDLR or another

cell surface receptor, the cholesterol is moved across the

enterocytes and is effluxed into the intestinal lumen via

ABCG5/G8. Obviously, many of the steps in our hypothetical

model of TICE need to be verified by additional studies. However,

our finding that hepatic apoB-containing lipoproteins feed

cholesterol into TICE should facilitate the discovery of the

proteins that target VLDL or LDL to enterocytes and the

intestinal receptors that internalize these lipoproteins.
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