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Abstract

Protein families might evolve paralogous functions on their common tertiary scaffold in two ways. First, the locations of
functionally-important sites might be ‘‘hard-wired’’ into the structure, with novel functions evolved by altering the amino
acid (e.g. Ala vs Ser) at these positions. Alternatively, the tertiary scaffold might be adaptable, accommodating a unique set
of functionally important sites for each paralogous function. To discriminate between these possibilities, we compared the
set of functionally important sites in the six largest paralogous subfamilies of the LacI/GalR transcription repressor family.
LacI/GalR paralogs share a common tertiary structure, but have low sequence identity (#30%), and regulate a variety of
metabolic processes. Functionally important positions were identified by conservation and co-evolutionary sequence
analyses. Results showed that conserved positions use a mixture of the ‘‘hard-wired’’ and ‘‘accommodating’’ scaffold
frameworks, but that the co-evolution networks were highly dissimilar between any pair of subfamilies. Therefore, the
tertiary structure can accommodate multiple networks of functionally important positions. This possibility should be
included when designing and interpreting sequence analyses of other protein families. Software implementing
conservation and co-evolution analyses is available at https://sourceforge.net/projects/coevolutils/.
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Introduction

The study of protein evolution has been energized by the

genomic revolution, which greatly expanded the numbers of

sequences that associate into various protein families. Within

families, proteins have similar tertiary structures and functional

similarities, which can occur with as low as 15% sequence identity.

Clusters of higher sequence identity delimit protein subfamilies,

which usually exhibit even greater structural/functional similarity.

In fact, homologs within a subfamily can be orthologous to each

other; that is, they perform the same functional role in different

organisms. Between subfamilies, the functional relationship can be

paralogous; that is, members of different subfamilies perform

distinct activities. For example, paralogous repressor proteins may

control different genes within the same organism.

For a given tertiary scaffold, the evolution of paralogous and

orthologous functions might be accomplished by two routes: First,

the scaffold might be ‘‘hard-wired’’ with key functional locations;

changing the amino acids at these positions would alter function.

Second, the scaffold might be adaptive: the locations of key

functional positions could move on an ‘‘accommodating’’ tertiary

structure. (In intrinsically disordered regions of proteins, functional

variation can also arise from the acquisition of novel structure or

from rapid evolution [1].) We have explored these two possibilities

using subfamilies in the LacI/GalR transcription regulators as a

model system. The LacI/GalR family is experimentally well-

characterized for both wild-type (reviewed in [2,3]) and synthetic

homologs [4–6] and is often used to develop and evaluate

bioinformatics methods [7–15]. Here, our strategy was to (i) use

evolutionary information to identify functionally important posi-

tions that occur within LacI/GalR subfamilies and then (ii)

compare the locations of these positions between paralogous

subfamilies.

The LacI/GalR family contains .2000 homologs that cluster

by sequence identity into 45 subfamilies [14] (and unpublished

data). All characterized family members bind operator DNA sites

to regulate gene transcription; many are allosterically modulated

by binding small molecules. Representatives from a variety of

subfamilies regulate different aspects of bacterial metabolism

[2,14,16]. Fourteen known E. coli paralogs fall into different

subfamilies, whereas two E. coli isorepressors (GalR and GalS) [17]

fall into a fifteenth subfamily [14]. Representative crystal

structures from 17 subfamilies show similar tertiary structures

(Figure 1) [2,18–32]. For example, structure alignments of the E.

coli paralogs LacI and PurR shows a 1.75 Å RMSD, despite 26%

sequence identity [18,21,33]. These two proteins respectively bind

the lacO and pur operators [2,3,34–36], and are respectively

regulated by binding allolactose and purines [3,37–39]. Thus, the

LacI/GalR sequence clusters appear to correspond to groups of

orthologs, with each subfamily paralogous to the others.

Phylogenetic analysis suggests that the LacI/GalR subfamilies

diverged after a single event, in which a periplasmic binding

protein acquired a DNA-binding domain and the ability to form

homodimer [40]. Here, we used the 6 largest subfamilies – CcpA,

GalRS, GntR, PurR, RbsR-A, and TreR – (Table 1 and Figure 2a)

to compare and contrast the amino acid positions on the common

tertiary structure that are under evolutionary constraint. (E. coli
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Figure 1. Representative structure of a LacI/GalR protein. The homodimeric functional units of LacI/GalR repressors comprise an N-terminal
DNA binding domain connected to a C-terminal regulatory domain by an 18-amino acid linker. The regulatory domain is further subdivided into N-
and C-subdomains. The core function of LacI/GalR proteins is to control gene expression in response to the presence of various allosteric effectors. In
most LacI/GalR proteins, these effectors (green, spacefilled) bind at the cleft between the N- and C-regulatory subdomains which triggers a
conformational change that substantially alters DNA binding. This causes induction (diminished DNA binding) for most members of the LacI/GalR
family. For PurR and CcpA, endogenous effector binding enhances DNA binding (Table 1). Further, CcpA is primarily allosterically regulated by a
protein-protein interaction with HPr-Ser46-P, with only a secondary, ‘fine-tuning’ role for small-molecule effectors [87]. The structure shown here is
the E. coli lactose repressor (PDB: 1efa) [18]. Some members of the family also have known accessory functions, such as the ability to undergo
tetramerization to accomplish DNA looping; LacI accomplishes this by an C-terminal helical tetramization domain (not shown), while GalR
tetramerizes along the surface of the regulatory C-subdomain [63].
doi:10.1371/journal.pone.0084398.g001

Table 1. Key parameters for the LacI/GalR subfamilies.

Subfamily Num. Sequences Internal identity Regulatory function Allosteric effector(s) Allosteric effect

GntR [90,91] 159 39–99% Gluconate utilization Gluconate, Gluconate-6-P Induction

TreR [92] 115 35–99% Trehalose utilization Trehalose-6-P, Trehalose Induction, Anti-
induction

CcpA [87,93–96] 211 39–99% Gram (+) carbon
metabolism

HPr-Ser46-P, Crh-Ser46-P, Glucose 6-P,
Fructose-1,6-P, NADP

Co-repression

GalRS [17,97] 230 44–99% Galactose utilization Galactose, Fucose Induction

» GalR 74 62–99%

» GalS 81 57–99%

PurR [98–100] 160 36–99% Purine metabolism Guanine, Hypoxanthine Co-repression

RbsR-A [101–103] 180 40–99% Ribose metabolism D-Ribose Induction

doi:10.1371/journal.pone.0084398.t001
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LacI, the oldest member of this family and commonly-used to

provide a reference numbering system, had fewer than 100

sequences in its subfamily and therefore was not included in the

present analysis.) One signal for evolutionary constraint was

sequence conservation. A second signal was co-evolution, which

can be detected when pairs of amino acid positions vary together

during evolution. That is, if one position in a co-evolving pair is

mutated, its partner usually has a corresponding secondary

mutation. Importantly, the second mutation is not random; pairs

of amino acids preferentially occur together during evolution. Co-

evolving positions have been proposed to be involved in structural

contact [41–46], allosteric communication [47–49], conforma-

tional change [50] and thermodynamic coupling [51,52].

A variety of algorithms have been developed to detect co-

evolution [43,44,47,51,53–56]. Each method uses a multiple

sequence alignment (MSA) to calculate scores that describe the

strength of evolutionary constraint between each pair of amino

acid positions. However, different algorithms rank different pairs

as the most strongly co-evolving [54], with no single algorithm

clearly more ‘‘correct’’ than others. Thus, for this work, we used

five common methods – ZNMI, OMES, McBASC, ELSC and

SCA – that employ divergent strategies to detect evolutionary

constraints. ZNMI uses information theory [53]; OMES calculates

a goodness-of-fit-like statistical parameter [47,54]; McBASC

detects coordinated changes in amino acid similarity [44,55,56];

and ELSC [43] and SCA [51] use a statistical perturbation

approach. As expected, when the LacI/GalR subfamilies were

analyzed, each co-evolution algorithm returned different outputs.

Nevertheless, when results were compared between subfamilies, all

algorithms supported the same conclusions. Thus, unless a specific

algorithm is named, results were pertinent to all five of the co-

evolution analyses.

Results

Subfamily-specific Conservation is Widespread among
the LacI/GalR Subfamilies

Within a protein family or subfamily, conserved positions are

identified based on their low sequence entropies [57]. In this work,

we first assessed whether the locations of conserved positions were

constant between the six paralogous subfamilies. Along diverging

lineages, varied conservation has been referred to as ‘‘heterotachy’’

or ‘‘class I functional divergence’’ [58–61]. To that end, we

calculated the sequence entropy for each position within a

subfamily and projected the values onto a reference sequence.

The reference sequences for the six subfamilies were then aligned

and the locations of conserved positions within each subfamily were

compared. (Figure 3; note that sequence alignments were

benchmarked against structural alignments for the available

crystal structures of CcpA, PurR, and TreR, see Methods). Results

revealed locations of both similarity and dissimilarity. About 19%

of all positions (63 of ,332) were conserved among at least four of

the six subfamilies (Figure 3, magenta). Many of these positions

localized to the core of the DNA binding and regulatory

subdomains and to binding surfaces of the LacI/GalR tertiary

structure. The common locations of the conserved positions are

consistent with a ‘‘hard-wired’’ component of the tertiary scaffold.

In contrast, 72 positions were conserved in only one of the six

subfamilies (Figure 3, green). On average, each subfamily had 12

uniquely-conserved positions, which must be crucial for function

of the specific subfamily. The number of uniquely-conserved

positions varied considerably among subfamilies. RbsR-A and

PurR had the fewest number of uniquely conserved positions,

which might be a result of their greater sequence relatedness to

each other (Figure 2). CcpA and GalRS both had many uniquely-

conserved positions, probably as a result of the need to conserve

their unique protein-protein interaction surfaces. Notably, none of

these positions would be identified by analyses that identify

Figure 2. LacI/GalR subfamily sequence clustering. All-vs-all sequence identity heatmaps [14] are shown for (a) the CcpA, GalRS, GntR, PurR,
RbsR-A, and TreR subfamilies, and (b) the GalRS subfamily. The X and Y axes correspond to representative homologs drawn from the indicated
subfamilies. Sequence identity is shown according to the color scale at the bottom of each panel. Note that the heatmap color gradient differs
between panels (a) and (b). The sequences in panel (a) cluster into six sequence identity groups (orange boxes) with clear discontinuities between
them. Sequence identity between most of the Escherichia coli paralogs was #30%, although the RbsR-A and PurR subfamilies had a higher sequence
identity relationship (45% between E. coli paralogs), and their threshold was less distinct; to aid visual inspection, the boundaries are shown with
dotted black lines. (b) The GalRS subfamily contains 5 subclusters. The two E. Coli isorepressors, GalR and GalS fall into two of these.
doi:10.1371/journal.pone.0084398.g002
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evolutionary patterns that persist across the entire LacI/GalR

family.

One limitation of this analysis is that increasing the number of

subfamilies could reveal that ‘‘uniquely’’ conserved sites are

common to additional subfamilies. However, the fact that each of

the 6 subfamilies frequently failed to conserve positions that were

conserved in other subfamilies suggested that various features of

the tertiary structure are either redundant or adaptive. Further,

the differences were reflected in the conservation of the whole

family: Surprisingly, only three positions were conserved among

the whole family (Figure 3, asterisks); only 8 positions were

conserved in a major functionally-important subgroup that

comprises 22 of the 34 subfamilies originally described, including

5 of the 6 in this study (Figure 3, * and {) [14]. These low numbers

are consistent with widespread, subfamily-specific conservation.

Subfamily-specific conservation is expected if paralogous

repressors independently evolved additional protein-protein inter-

actions. Indeed, for the CcpA and GalRS subfamilies, known

protein binding sites were highlighted. For the CcpA subfamily,

many of the subfamily-specific sites clustered near or in the

interface between CcpA regulatory N-subdomain and HPr-Ser46-

P [62] (Figure 4, top left; a similar strategy was used to initially

identify the CcpA-HPr binding interface [62]). For the GalRS

subfamily, the unique tetramerization interface in the regulatory

C-subdomain was highlighted by a cluster of subfamily-specific

conserved positions [63,64] (Figure 4, top right). In contrast, the

other four subfamilies lack known hetero-protein partners or

homo-tetramerization, and subfamily-specific conserved positions

were scattered at various locations on the tertiary structure.

(Figure 4) This result can be interpreted in at least three ways: (1)

other protein-protein interactions do not exist, (2) protein-protein

contacts do not require surface conservation, or (3) multiple

subfamilies use the same positions for protein-protein interactions.

In the absence of additional protein-protein interactions, we

hypothesize that the disparate locations of the conserved positions

reflects the different ways the LacI/GalR tertiary structure

maintains the common functions of DNA binding, ligand binding,

allosteric response and/or homodimerization.

Co-evolutionary Networks differ between LacI/GalR
Subfamilies

Co-evolution analyses quantify the evolutionary constraint

between every pair of non-conserved amino acids. (By definition,

conserved positions cannot co-evolve). High scores indicate

strongly correlated mutations, whereas low scores indicate little

(or no) co-evolution. To analyze the data, the scores can be

organized into an all-vs-all (adjacency) matrix of non-conserved

MSA positions. The matrix data are often represented with heat

maps, but data can also be treated as networks and analyzed with

graph theory. Co-evolution networks (‘‘graphs’’) are constructed

by connecting protein positions (‘‘nodes’’ or ‘‘vertices’’) with edges

that are weighted by the strength of their co-evolution scores. The

resultant networks can be compared between subfamilies by either

(a) calculating the number of preserved edges between the two

networks or (b) comparing the set of nodes that are associated with

high-scoring edges.

In either format, ‘‘important’’ co-evolving pairs are often

designated by imposing some threshold on the data (e.g. the top

N% of scores). However, threshold choice is arbitrary; the data

seldom (if ever) contain an obvious break between ‘‘important’’

and ‘‘non-important’’ scores. To avoid this problem, we explored

how varying the threshold impacted the number of common edges

or nodes between any two pairs of subfamilies in the LacI/GalR

family. To that end, we iteratively compared the coevolution

networks as the threshold varied across the entire range of co-

evolution scores (from the top 1% of scores to 100% of scores). For

each threshold value, we quantified the similarity of the set of

significant edges or nodes by calculating the Jaccard index [65]

(‘‘J’’). These plots were also compared against models for ‘‘perfect

agreement’’ and ‘‘random chance’’.

We first compared the similarity of high scoring edges for each

pair of LacI/GalR subfamilies (Figure 5a and Figures S2–S6 in

Data S1). For any given co-evolution algorithm, Jaccard similarity

indices for the LacI/GalR subfamilies were much more similar to

the random model (solid black line; 95% confidence intervals

shown in red) than to the agreement model (dotted black line).

Importantly, this observation held for all threshold values. In

comparison, analyses of one subfamily with alternative algorithms

yielded considerably higher agreement (Figure 5c). Therefore,

although the similarity of edges is statistically distinguishable from

what would be expected from random chance alone, the co-

evolution network of each subfamily was highly dissimilar from

those of other subfamilies. One exception was found in the

comparison of the PurR and RbsR-A subfamilies, which showed

slightly more agreement than other subfamily pairs (Figures S2–S6

in Data S1). This result likely reflects their higher sequence

similarity (45% between the E. coli paralogs) as compared to other

subfamily pairs (,17–31%) (Figure 2a). Nevertheless, the RbsR-A

and PurR results still fit much more closely to the random model

than to the agreement model.

To illustrate the divergent co-evolution networks obtained for

each subfamily, we mapped the 50 highest scoring edges onto

representative tertiary structures (Figure 6 and Figures S7–S11 in

Data S2). Most strongly co-evolving pairs of positions were distant

in tertiary structure. Indeed, analysis of all edges revealed virtually

no correlation between co-evolution score and proximity in 3D

space (Figure 7 and Figures S12–S17 in Data S3). These results are

consistent with recent experimental reports of epistasis (non-

additivity) between positions that are spatially distant on the LacI

structure [66].

Similar analyses were also performed to compare strongly co-

evolving nodes. The amino acid positions (nodes) were rank-

ordered by their strongest edge values and Jaccard analyses were

performed for all possible threshold values for all pairwise

comparisons of the LacI/GalR subfamilies. As with edge-based

analyses, nodal comparisons were much closer to the random

model than to the agreement model (Figure 5b and Figures S18–

S22 in Data S4). Indeed, comparing the nodal Jaccard indices to

Figure 3. Comparison of conserved sites among subfamilies. The alignment comprising reference sequences for each of the subfamilies was
color coded to show sites of conservation. The linker sequence (black bar) is highlighted to show the separation of the N-terminal DNA binding
domain from the C-terminal regulatory domain. Colored cells denote that a position is conserved within a given, individual subfamily (,5% sequence
variability, consistent with our definition of conservation during co-evolution analysis, see Methods); white cells denote non-conserved positions
within a subfamily or gaps in the reference sequence. The amino acid shown within each conserved cell is the consensus amino acid. Positions that
are conserved in only one of the six subfamilies are highlighted in green, while those conserved in multiple subfamilies (two or more) are highlighted
in magenta. In an alignment of representative sequences drawn from 34 LacI/GalR subfamilies [14], only three positions (asterisks; 10, 19 and 21)
were conserved (as defined by 5% sequence variability). Only 5 additional positions were conserved (daggers; 16, 47, 49, 53 and 56) among more
closely-related subfamilies that contain a functionally-important ‘‘YxPxxxAxxL’’ (YPAL) motif in the linker region [14].
doi:10.1371/journal.pone.0084398.g003
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the 95% confidence region of the random model reveals that the

similarity of most subfamily pairs is essentially indistinguishable from

the random model for virtually all threshold values. As was the

case in edgewise analysis, the RbsR-A and PurR subfamilies

showed slightly more similarity than random chance, but the

comparison was still far from the agreement model.

To illustrate the subfamily-specific positions on representative

structures, we determined a ‘‘consensus’’ set of highly co-evolving

positions using data from all of the co-evolution algorithms

(Table 2 and Figure 8; see Methods). As expected from Jaccard

analyses, most of the top co-evolving positions were unique to each

subfamily; no top nodes were identified in more than three

Figure 4. Structural context of subfamily-specific conserved sites. Subfamily-specific conserved positions are shown in green and space-
filling on their respective crystallographic or modeled structures. The DNA operator (yellow) is shown bound to CcpA and PurR; an allosteric effector
is shown bound to PurR (purple spacefilling); phosphorylated HPr (purple ribbon) is shown bound to CcpA. Allosteric effector binding in the cleft
between N- and C-regulatory subdomains is common to all six subfamilies, while HPr-Ser46-P interacts only with CcpA. Molecular graphics were
created in UCSF Chimera 1.6.2 [33].
doi:10.1371/journal.pone.0084398.g004
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subfamilies (Table 2, bold). Among the 50 highly co-evolving

positions across the six subfamilies, only two were identified in

three subfamilies (to enable comparisons, the LacI numbering

system is used): position 163 in GalRS, GntR and TreR and

position 222 in GntR, PurR and RbsR-A. Position 222 is located

at the inter-monomer dimerization interface, but to our knowl-

edge, the functional and structural roles of position 163 have not

been tested in the relevant subfamilies. However, position 163 was

implicated by targeted molecular dynamics as a key residue

involved in the allosteric transition of LacI [67].

Surprisingly few of the other 48 top co-evolving positions have

been subjected to mutagenesis in the relevant subfamily. To assess

their biological significance, we therefore turned to structural

analyses, reasoning that positions involved in protein-protein,

protein-DNA, or protein-ligand interactions should be critical for

LacI/GalR function. Of the 50 top co-evolving positions identified

across the six subfamilies, 23 (46%) were located in structurally-

important locations: Twelve were located at the dimeric interface,

five were in contact with DNA, five were in contact with the

allosteric effector and one of the CcpA positions was located at the

HPr-Ser46-P binding site. Thus, the common tertiary structure

appears to utilize different locations to facilitate the core repressor

functions of homodimerization, ligand binding, and allosteric

signaling.

Taken together, these results strongly suggest that the co-

evolutionary networks are biologically important but highly

dissimilar between subfamilies. This result is not dependent on

the details of any one co-evolution algorithm: all five methods

revealed the same features.

GalR and GalS Isorepressors have Divergent Co-evolution
Networks

In the prior descriptions of the LacI/GalR sequences [14], we

noted deeper levels of sequence clustering within each subfamily

(Figure 2b). Given the subfamily-specific evolutionary patterns, we

were curious whether subclusters that occur within one subfamily

showed similar or divergent evolutionary patterns. The GalRS

Figure 5. Jaccard analyses. The Jaccard index comparing the set of N most highly-scoring edges (panel a) or nodes (panel b) between PurR and
CcpA is shown as a function of threshold N (blue lines). The example shown is for ELSC; all other algorithms and comparisons to all other subfamilies
are in Figures S2–S6 in Data S1 and Figures S18–S22 in Data S4. For reference, plots show the Jaccard indices expected for (i) random overlap (solid
black line) 695% confidence intervals (red region) and (ii) perfect agreement (dotted black line); at large N, the line for ‘‘perfect agreement’’ falls
below 1 because the PurR and CcpA MSAs do not have identical lengths and the number of conserved positions differ. Comparsion of the PurR and
CcpA subfamilies reveals little similarity, though more than expected by chance alone. For comparison, significant similarity was seen for the nodes
(c) and edges (d) when results from two algorithms (ELSC and OMES) were compared for one subfamily (PurR). Similar plots and conclusions were
obtained when McBASC, OMES, SCA and ZNMI were used to compare all pairs of subfamilies.
doi:10.1371/journal.pone.0084398.g005
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Figure 6. Top co-evolving edges for each subfamily. The 50 highest scoring edges for each of the six subfamilies’ ELSC networks (CcpA, a;
GalRS, b; GntR, c; PurR, d; RbsR-A, e; TreR; f) were mapped onto the backbone trace of the full-length crystal (Ccpa, PurR) or ITASSER model structures
(GalRS, GntR, RbsR-A, TreR). Edges are drawn only once on each structure: between the position in the left monomer and its closest partner on either
the left or right monomer (not both). The pattern of spatial connectivity differed greatly among subfamilies. Molecular graphics were created using
PovRay 3.7 (Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia; http://www.povray.org) and custom software.
doi:10.1371/journal.pone.0084398.g006
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subfamily has five subclusters, and the E. coli GalR and GalS iso-

repressors fall into two of them. GalR and GalS are encoded by

separate genes at distinct loci, yet both regulate the gal operon by

binding to the same DNA operator and respond to the same

allosteric effector [17]. E. coli GalR and GalS show 54% sequence

identity to each other, which is significantly larger than between

most subfamilies (generally ,40%).

We first determined that several conserved positions in the

GalR and GalS subclusters were found at the positions that were

conserved or co-evolving in the larger GalRS subfamily. About

40% of positions (148 of 346) are conserved in both the GalR and

GalS subclusters. An additional 90 positions (26%) were conserved

in only one of the two subclusters. Of the ten most strongly co-

evolving positions for the GalRS subfamily, eight were conserved

in both subsets, whereas two (position 42 and 307) were conserved

only in GalR. Thus, strongly co-evolving positions in the entire

GalRS (Figure 9, green cells on top line) subfamily are those at

which different types of amino acids are required in each of the

isorepressors.

Nevertheless, co-evolution analyses for the separate GalR and

GalS subclusters again showed divergent networks. Jaccard index

analyses of both key edges and nodes in the co-evolution networks

were dissimilar for the GalR and GalS subclusters (Figures S23–

S25 in Data S5). Therefore, even when further constrained to

perform the same DNA binding function under the same allosteric

regulation, iso-repressors are not required to have similar

evolutionary constraints at non-conserved positions. As a caveat

for this particular example, we note that GalR tetramerization and

DNA looping might have a role in chromosomal organization [68]

that has not been documented for GalS; this could be the source

for some of the altered evolutionary pressure.

Discussion

To investigate alternative mechanisms of protein evolution, we

have compared the subfamily-specific conservation patterns and

co-evolutionary networks among several LacI/GalR subfamilies.

One evolutionary possibility is that the location of key non-

conserved positions is ‘‘hard-wired’’ into their common tertiary

structure. If so, then a single set of conserved and highly co-

evolving positions should be preserved amongst different subfam-

ilies and adaptation would be accomplished by varying the amino

acid at those sites. On the other hand, the tertiary scaffold might

accommodate multiple conservation patterns and co-evolution

networks. In this case, adaptation could be accomplished by

varying both the choice of amino acid and the loci at which

variation occurs. Our results showed that evolution utilized both

the ‘‘hard-wired structure’’ and the ‘‘accommodating scaffold’’

framework for subfamily-specific conservation in the LacI/GalR

proteins (Figures 3 and 4). In contrast, the accommodating scaffold

framework was overwhelmingly utilized for subfamily-specific co-

evolution networks (Figures 5, 6, 8 and 9).

Figure 7. 3D structural contacts do not correlate with co-evolution scores. The poor correlation between inter-atomic distance and (Z-
normalized) co-evolution score is shown for one example subfamily/algorithm pair (PurR/ELSC). Points are plotted with 15% opacity to aid visual
inspection. Highly co-evolving pairs of positions are often spatially distant (upper dotted-line box), rather than proximal (lower dotted-line box).
Other subfamily/algorithm pairs show a similar absence of correlation (Figures S12–S17 in Data S3).
doi:10.1371/journal.pone.0084398.g007
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Table 2. Structural features associated with top co-evolving positions.

Top 10 co-evolving node in…

LacI # Domain* CcpA GalRS GntR PurR RbsR-A TreR Structural Contact

7 D X DNA

25 D X DNA

31 D X DNA

32 D X

34 D X DNA

42 D X X

51 L X Dimer interface

54 L X X DNA

66 R X

68 R X

79 R X Ligand

84 R X Dimer interface

95 R X X Dimer interface

97 R X Dimer interface

99 R X

113 R X Dimer interface

114 R X

115 R X Dimer interface

117 R X Dimer interface

125 R X Ligand

127 R X

143 R X

147 R X

154 R X

158 R X

163 R X X X

168 R X

171 R X X

191 R X Ligand

207 R X

214 R X X

218 R X

222 R X X X Dimer interface

224 R X

225 R X

228 R X

239 R X

246 R X Ligand

249 R X

254 R X

255 R X X Dimer interface

256 R X

274 R X Ligand

275 R X

276 R X

277 R X Dimer interface

283 R X Dimer interface

285 R X Dimer interface
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A question of both theoretical and practical interest is: By what

mechanism do alternative co-evolution networks arise? Phyloge-

netic analyses of the LacI/GalR family showed that the DNA

binding domain fused with the regulatory domain only once,

before the ‘‘divergence of the major lineages of eubacteria’’ [40]

(2500–4000 million years [69]). Thus, new repressor variations

must have resulted from functional divergence from a single

repressor. In such cases, a common assumption is that the

subsequent proteins evolved from a state of ancestral low-

specificity to modern high-specificity [70,71]. If this is the case,

then the ancestral LacI/GalR repressor could have served as a

blank template. Varied selection pressures would then result in the

development of alternative co-evolution networks.

However, some protein families do not appear to fit this model;

for example, the ancestral steroid receptor had ligand specificity

similar to that of modern-day estrogen receptors [72]. Addition-

ally, a small number of large-effect mutations were sufficient to

significantly shift the ancestral protein’s specificity profile [73].

Thus, an alternative possibility for the LacI/GalR subfamilies is

that they rapidly diverged (i.e., using only a few mutations) from a

high-specificity ancestral repressor. Unfortunately, the ancestral

LacI/GalR protein cannot be resurrected because this family has

been diverging for billions of years and the phylogenetic tree lacks

intermediate sequence information.

Nevertheless, there is no a priori reason to believe that the

network of co-evolving sites in the LacI/GalR progenitors must be

reflected in present-day subfamiles. Indeed, if ancestral recon-

struction could be accomplished, it might generate sequences that

recapitulate specificity but lack optimization. The latter might

require optimization of the subfamily-specific co-evolution net-

work. For example, although the resurrected ancestral steroid

receptor specifically binds to estrogen, affinity is 2500x-fold lower

than its modern counterpart [72]. This reduction in specificity

could be either (a) a true feature of the ancestral receptor, or (b) an

artifact of reconstruction that did not account for an accommo-

dating tertiary scaffold featuring alternative, functionally impor-

tant sites. To incorporate the ‘‘accommodating scaffold’’ model

into analyses, highly co-evolving sites in the immediate down-

stream lineages of an ancestral protein should be considered as

potentially important, especially when validating the statistical

support [74] for the choice of amino acid in the reconstructed

sequence.

Our results also have implications for interpreting other

sequence analyses of modern proteins. In addition to co-evolution,

dozens of algorithms have been developed to predict functionally-

important sites from protein MSAs (e.g. [9,15,75–79] among

others). Predictions are (i) highly dependent on the sequences used

to construct the MSA and (ii) limited to patterns that persist

throughout the entire dataset. Our data suggests that some sites

may be functionally-important in only a small number of

subfamilies (or, indeed, a single subfamily or subcluster)

(Figures 3 and 4). These positions would not be detected by

algorithms that look for patterns that persist across the entire

family (e.g. Figure 3, asterisk and daggers).

To make best use of existing tools, both the whole family and

individual subfamilies (if a sufficient number of sequences are

available) should be analyzed separately. This type of ‘‘multi-level’’

MSA analysis identified additional functionally-important sites in

the psychoactive bioamine G protein-coupled receptors [80] and

should be widely employed. Finally, analyses of mixed ortholog-

paralog MSAs should not assume that the functional roles of non-

conserved positions are consistent across subfamilies, which is

especially important when mutational results are extrapolated

from one homolog to another.

A third outcome of our study is the observation that ? for all 6

subfamilies ? the strongest co-evolution occurs between spatially

distinct positions (Figures 6 and 7). Prior analyses of other proteins

have suggested that co-evolution predicts spatial proximity [41–

46]. However, some of the prior studies were performed with

proteins much smaller than the LacI/GalR proteins, which by

itself increases the chance of identifying close neighbors. Instead,

our results are consistent with (i) other studies that have shown that

the accuracy for predicting spatial contacts is ,30% [46] and (ii)

long-range experimental epistasis recently reported for LacI,

which shares a common tertiary scaffold with the proteins of this

study [66]. The sparse spatial distributions of highly co-evolving

positions might arise if these positions influence protein dynamics,

altering the distribution of conformations sampled by the

transcription regulators.In summary, multiple co-evolutionary

networks are supported by the common tertiary scaffold of the

LacI/GalR proteins, and individual subfamilies show different

conservation patterns. These observations support the idea of an

adaptive scaffold that can evolve on top of the ‘‘hard-wired’’

structural and functional framework that is present in for the

whole family. Future computational analyses should be improved

by accounting for the functionally-important, non-conserved

positions that are unique to each subfamily.

Methods

Subfamily Selection and Expansion
We previously reported that a set of 1344 LacI/GalR homologs

clusters into at least 34 subfamilies [14]. Several new structures

reported as part of the Protein Structure Initiative [22–32]

nucleated an additional 11 subfamilies (unpublished data). Each

subfamily has high internal sequence identity (.40%) but there is

low sequence identity between subfamilies (typically ,30%)

(Figure 2) [14] Of these, we chose the six largest subfamilies for

co-evolution analysis: CcpA, GalRS, GntR, PurR, RbsR-A, and

TreR (Table 1; note that all are part of the published data set).

Each subfamily was expanded to include sequences that were

added to the RefSeq database since the initial compilation of the

LacI/GalR dataset in May 2009 [14] to the cutoff date for this

study, May 2011.

Table 2. Cont.

Top 10 co-evolving node in…

LacI # Domain* CcpA GalRS GntR PurR RbsR-A TreR Structural Contact

303 R X HPr Binding Site

307 R X

*Domains: D, DNA binding domain; L, Linker; R, Regulatory domain.
doi:10.1371/journal.pone.0084398.t002
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Figure 8. Top co-evolving positions for each subfamily. Positions (nodes) were scored by the weight of their largest edge in each of the 5 co-
evolution networks (ELSC, OMES, McBASC, ZNMI, SCA). These scores were Z-normalized and averaged across the algorithms. Positions were ranked by
their average Z-score and the top 10 positions (purple spacefilling) were plotted onto full-length crystal structures (CcpA, PurR) or ITASSER models
(GalRS, GntR, RbsR-A, TreR). The DNA operator (yellow) is shown bound to CcpA and PurR; an allosteric effector is shown bound to PurR (green
spacefilling); phosphorylated HPr (green ribbon) is shown bound to CcpA. Allosteric effector binding in the cleft between N- and C-regulatory
subdomains is common to all six subfamilies, while HPr-Ser46-P interacts only with CcpA. Note that the locations of highly co-evolving sites were not
consistent among subfamilies. Molecular graphics were created in UCSF Chimera 1.6.2 [33].
doi:10.1371/journal.pone.0084398.g008
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New sequences were retrieved using representative sequences

for each subfamily as a seed sequences in a BLAST [81] search of

RefSeq [82]. To verify newly retrieved sequences, we used

MUSCLE [83] to add the new sequences to existing MSAs of

LacI/GalR family members and verified that the sequence most

closely matched the relevant subfamily [14]. Once the final

sequences were identified, MUSCLE was used to construct final

alignments for each subfamily. Although the MSA for the

complete LacI/GalR family required manual editing bench-

marked against structure-based alignments [14], the subfamily

MSAs could be appropriately constructed with MUSCLE because

of the high internal sequence identities. Final subfamily alignments

were manually inspected to verify their reasonability. These

alignments are available upon request. Maximum likelihood

phylogenetic trees were calculated with RAxML 7.0.3 using the

default parameters and the PROTGAMMABLOSUM62 substi-

tution model [84].

One criterion for reliable MSA analyses is that very closely

related sequences (such as one branch of a phylogenetic tree) are

not over-represented. To show the phylogenetic distribution of

each subfamily, we constructed maximum-likelihood phylogenetic

trees (Figure S1 in Data S1). The resulting trees have a stellate

appearance, indicating that divergent lineages are sampled and

that no single protein sequence or bacterial species was over-

represented. A second criterion for reliable MSA analyses is that

the sequence set is large enough to avoid statistical errors that arise

from low sampling rates. We analyzed the reproducibility of our

results to verify that: (a) a sufficient number of sequences were

present in each subfamily to prevent sampling bias and (b) any

alignment error in individual sequences did not influence the co-

evolution analyses; details of these analyses are listed below.

Designation and Alignment of Reference Sequences
Reference sequences were designated for the GalRS, GntR,

PurR, RbsR-A, and TreR subfamilies by identifying the homolog

Figure 9. Conserved and co-evolving positions in GalRS. Conserved positions (magenta cells) in the entire GalRS subfamily (top line), the GalR
subset (middle line), or GalS subset (bottom line) are shown on the alignment. The amino acid shown in conserved cells is the most common amino
acid in the respective subfamily. The top 10 co-evolving positions for the GalRS subfamily and each subset are shown in green.
doi:10.1371/journal.pone.0084398.g009
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from E. coli str. K-12 substr. MG1655, as annotated by RefSeq

Release 47 (May 07, 2011) [82]. E. coli does not contain an

ortholog of CcpA, so the homolog from Bacillus subtilis subsp. subtilis

str. 168 was designated as the reference sequence. In order to map

amino acid positions to the LacI reference numbering system, the

sequence for E. coli str. K-12 substr. MG1655 LacI was included in

the reference set.

Reference sequences were initially aligned using Promals3D,-

which yields higher quality alignments of distantly related

sequences than other tools [85]. The alignment of reference

sequences was benchmarked against available crystal structures

(PDB: 1efa:A, 1wet:A, 1byk:A, 1rzr:A and our previous alignment

[14]); the reference alignment was manually optimized in light of

available data [18–21]. This alignment is available in Table S2 in

Data S5. The average length of the reference sequences was 332

residues. The longest reference sequence contained 343 residues

(CcpA), while the shortest contained 315 residues (TreR). The

reference alignment contained 354 columns.

Co-evolution Analysis
Co-evolution analyses were performed using the implementa-

tion of ELSC [43], OMES [47,54] McBASC [44,55,56] and SCA

[51] algorithms available from Fodor et al. [43,54] To reconcile

differences in output format and to improve speed, we re-

implemented ZNMI in C# and validated this version against the

Python-based implementation described by Brown and Brown

[53]. For validation, the RbsR-A subfamily was used as a test

dataset. This re-implementation of ZNMI, and other software

(Figures S26–S27 and Table S1 in Data S5), is available at

https://sourceforge.net/projects/coevolutils/.

Details of the ELSC, OMES, and ZNMI algorithms were

excellently reviewed by Brown and Brown [53]. As previously

described [14], we modified the Fodor et al.’s source code to

remove filtration of 90% identical sequences from McBASC. For

each subfamily, ensembles comprising 100 different subsets of the

alignment with 90% or 50% of the available sequences were

constructed by random sub-sampling. The co-evolution algorithms

were applied to each sub-alignment and the score for each pair of

position was averaged across each ensemble to produce a final

score. Positions that included more than 50% gaps, following [54],

or less than 5% sequence variability (which was imposed as a

minimum value on column-wise sequence entropy [53], namely –

[.05 ln(.05) +.95 ln(.95)] < 0.1985), were excluded from further

analyses. Positional entropy was calculated for each sequence

using the equation.

{
X

filn f i½ � ð1Þ

where fi is the frequency for each of the i’th type of amino acid

(Ala, Ile, Leu, etc.), including gaps as a ‘‘21st amino acid’’. The

exception was the ZNMI algorithm, which internally calculates

positional entropy ignores all gaps, a convention we retained for

compatibility with the original implementation of the algorithm.

Additionally, Brown and Brown’s ZNMI algorithm excludes all

positions with .10% gaps, a convention we also retained for

compatibility with their implementation. Pairwise co-evolution

scores were mapped onto the reference sequence for each

subfamily to facilitate comparison between subfamilies using the

reference alignment and to allow mapping to the LacI numbering

system, which is commonly used for the LacI/GalR family.

To validate the MSAs for co-evolution analyses, we used a

modified version of the subsample-and-reanalyze cross-validation

strategy [50,53]. For each LacI/GalR subfamily, two ensembles of

100 subalignments were created. One ensemble comprised

subalignments that randomly selected 90% of the sequences; the

second ensemble comprised subalignments that randomly selected

50% of the sequences. Analyses were carried out for each

subalignment in the ensemble, and the 100 scores were averaged

to generate a final score. This strategy reduced the influence of

alignment errors that might arise from any one (or small group of)

sequence(s). In virtually all cases, the average co-evolution score of

the 90% ensemble exhibited extremely strong correlations with the

average score for the 50% ensemble (median Pearson correlation

coefficient (R) = 0.996), which demonstrated that: (a) any align-

ment error in individual sequences did not substantially influence

the generated scores and (b) a sufficient number of sequences were

present in each subfamily to prevent sampling bias. Consequently,

all analyses were carried out using only the results from analysis of

the 90% ensemble. The lowest correlations were observed in the

GalR- and GalS-only subsets when analyzed with McBASC.

However, GalR- and GalS-only McBASC scores still exhibited

strong correlations between the 90% and 50% ensembles (Pearson

R = 0.928 and 0.876, respectively). The GalR and GalS

alignments contain the fewest number of sequences of any

alignment used in this study, and thus are most vulnerable to

finite sampling effects.

To calculate the ‘‘consensus set’’ of high scoring nodes for each

subfamily, we first assigned each position a score equal to the

maximum weight of its edges. A ‘‘consensus’’ score was then

assigned to each position by averaging the maximum-edge scores

produced by each of the algorithms. Before averaging, the

maximum-edge scores were Z-normalized (i.e. made to have equal

mean and variance) to ensure that no one algorithm dominated

the consensus score by virtue of assigning a larger range of raw

scores.

Molecular Modeling and Structural Analysis
The LacI/GalR proteins are homodimers, with each monomer

comprising a DNA binding domain linked to a large regulatory

domain [18,20,21]. The DNA binding domains have higher

sequence identity across the whole family, whereas the regulatory

domains show more divergence [14,16]. Of the subfamilies in this

study, full-length crystal structures were available for the CcpA

(PDB: 1rzr) [20] and PurR (PDB: 1wet) [21] subfamilies. A

regulatory-domain structure was available for the TreR subfamily

(PDB: 1byk) [19]. We created full-length structural models for the

GntR, RbsR-A, TreR, and GalRS subfamilies using I-TASSER

[86] with default parameters; note that neither DNA nor allosteric

ligands were present in the modeling process. As a test of the I-

TASSER models, the crystal structure of the TreR regulatory

domain [19] was aligned with the model. The comparison had an

RMSD of 2.055 Å for the alpha carbons, with a few deviations

observed in loops between secondary structure elements. Thus, the

homology model is adequate for visualization purposes.

For structural analyses, contacts between co-evolving positions

with DNA and across the dimeric interface were defined if they

were present in any of the all-atom representations of the full-

length crystal structures (PDB: 1efa, LacI; 1rzr, CcpA; 1wet, PurR)

or the TreR regulatory domain-only structure (PDB: 1byk) [18–

21]. Contacts at the effector binding site were defined if they were

present in any crystallographic structures with effectors bound

(PDB: 1efa, LacI; 1byk, TreR; 1wet, PurR; 2nzv, CcpA)

[18,19,21,87]. Atomic contacts were defined on the basis of

inter-atomic distance, using the same criteria as the default

parameters of Resmap [88]. DNA-protein and protein-protein

contacts were obtained from Resmap analyses. Contacts between

the proteins and their allosteric effector ligands were obtained by
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custom software implementing the Resmap contact criteria, in

order to specify new hetero-atomic contacts. In this case, this

Resmap configuration file was modified to include the atomic

classes (hydrophilic, acceptor, donor, hydrophobic, aromatic,

neutral, neutral-donor, neutral-acceptor) of the ligand heteroatoms

after parsing their assignments from results from the Ligand-

Protein Contacts and Contacts of Structural Units (LPC/CSU)

analyses [89].

Network Construction and Comparison
Co-evolution networks were constructed as an undirected,

weighted graph with nodes denoting positions and edges weighted

according to the co-evolution score assigned to pairs of positions.

Data were further analyzed using SciDAVis (http://scidavis.

sourceforge.net/), Prism 5.04 (GraphPad Software Inc., La Jolla,

CA), Network Workbench (http://nwb.cns.iu.edu/), and custom

software implemented in C#, Python and Bash (Figures S26–S27

and Table S1 in Data S5). Several scientific python libraries were

used, including NetworkX, SciPy and NumPy. The Jaccard index

(J) for similarity of sets [65], A and B, containing N elements of

which k elements occur as members of both sets was calculated

using the formula:

J(N,A,B,k)~
DA\BD
DA|BD

~
k

2N{k
ð2Þ

The null-model probability distribution of obtaining k shared

elements by randomly drawing N elements from each of two sets,

A and B, with |A>B| = h can be exactly calculated, but is

computationally expensive when comparing sets containing a large

number of elements. Therefore, we approximated the mean and

standard deviation of the null-model distribution by sampling

J(N,A,B,k) across 1000 shufflings of the rank-ordered lists of high

scoring nodes/edges. The 95% confidence interval of the random

model was calculated by multiplying the standard deviation of this

sampling by 1.96.

Supporting Information

Data S1 Phylogenetic trees and edgewise Jaccard
analyses. Figure S1. Phylogenetic trees of the six subfamilies.

Maximum likelihood trees for each of the six subfamilies were

calculated with RAxML 7.0.3 using the default parameters and

the PROTGAMMABLOSUM62 substitution model. Trees uni-

versally have a stellate appearance indicating the subfamilies

include sequences from a variety of microbial lineages. Figures S2–

S6. Edgewise Jaccard analyses for all pairs of subfamiles. The

Jaccard index for the set of N most highly-scoring pairs of positions

(edges), using each algorithm (figures), between all pairs of the six

subfamilies (panels) is shown as a function of N (a-e, blue lines).

The expected Jaccard index under the random model (black line,

solid), 95% confidence interval of the expected index (red region),

and maximum possible Jaccard index (black line, dotted) are

shown.

(PDF)

Data S2 Co-evolving edges mapped to structure. Figures

S7–S11. Structurally-mapped co-evolution networks. The 50

highest scoring edges for each of the six subfamilies’ networks is

shown mapped onto the backbone trace of the full-length crystal

(Ccpa, PurR) or ITASSER model structures (GalRS, GntR,

RbsR-A, TreR). Alternative figures represent alternative co-

evolution algorithms. High-scoring co-evolving edges are drawn

only once on the structure: between the residue in the left

monomer and its partner in either the left or right monomer (not

both), so as to minimizes the inter-atomic distance spanned by the

edge. The pattern of spatial connectivity is not consistent across

subfamilies (see Results, Jaccard analysis). Molecular graphics were

created using PovRay 3.7 (Persistence of Vision Pty. Ltd.,

Williamstown, Victoria, Australia; http://www.povray.org) and

custom software.

(PDF)

Data S3 3D structural proximity vs score. Figures S12–

S17. Lack of 3D structural proximity. The lack of correlation

between inter-atomic distance and co-evolution score is shown for

each algorithm (panels), applied to each subfamily (figures). Points

are plotted with 15% opacity to aid in visualization. Strength of

co-evolution score does not correlate with inter-atomic distance.

The marginal distributions (counts) of inter-atomic distances (right)

and co-evolution scores (top) are displayed as histograms.

(PDF)

Data S4 Nodal Jaccard analyses. Figures S18–S22. Nodal

Jaccard analyses for all pairs of subfamilies. The Jaccard index for

the set of N most highly-scoring positions (nodes), using each

algorithm (figures), between all pairs of the six subfamilies (panels)

is shown as a function of N (a-e, blue lines). The expected Jaccard

index under the random model (black line, solid), 95% confidence

interval of the expected index (red region), and maximum possible

Jaccard index (black line, dotted) are shown.

(PDF)

Data S5 GalR versus GalS and software pipeline. Figure

S23. The GalR and GalS isorepressors: edgewise Jaccard analysis.

The similarity of the set of N most highly co-evolving edges in the

GalR and GalS isorepressors, as a function of the threshold (N) is

shown (blue line). Comparison to the expected and 95%

confidence interval of the random overlap model (black line and

red region) and the perfect agreement model (black dotted line) are

shown. Subpanels delineate comparisons made using different co-

evolution analysis algorithms (ELSC, OMES, McBASC, SCA and

ZNMI). Figure S24. The GalR and GalS isorepressors: nodal

Jaccard analysis. The similarity of the set of N most highly co-

evolving nodes in the GalR and GalS isorepressors, as a function

of the threshold (N) is shown (blue line). Comparison to the

expected and 95% confidence interval of the random overlap

model (black line and red region) and the perfect agreement model

(black dotted line) are shown. Subpanels delineate comparisons

made using different co-evolution analysis algorithms (ELSC,

OMES, McBASC, SCA and ZNMI). Figure S25. The GalR and

GalS isorepressors: Highly co-evolving positions mapped to the

structure. The 10 most strongly co-evolving positions in the GalR

(spacefilled green) and GalS (spacefilled magenta) isorepressors are

shown on the ITASSER model structure for GalR. Molecular

graphics were created with UCSF Chimera. Figure S26.

Analytical workflow, overview. Figure S27. Analytical workflow,

ensemble-based co-evolution analysis. Table S1. Description of

available programs. Table S2. Reference sequence alignment.

(PDF)
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