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Abstract

Introduction: Human herpesvirus 6 (HHV-6) is a ubiquitous pathogen infecting nearly 100% of the human population. Of
these individuals, between 0.2% and 1% of them carry chromosomally-integrated HHV-6 (ciHHV-6). The biological
consequences of chromosomal integration by HHV-6 remain unknown.

Objective: To determine and compare the frequency of ciHHV-6 in children with acute lymphoblastic leukemia to healthy
blood donors.

Methodology: A total of 293 DNA samples from children with pre-B (n = 255), pre-pre-B (n = 4), pre-T (n = 26) and
undetermined (n = 8) leukemia were analyzed for ciHHV-6 by quantitative TaqMan PCR (QPCR) using HHV-6 specific primers
and probe. As control, DNA samples from 288 healthy individuals were used. Primers and probe specific to the cellular
GAPDH gene were used to estimate integrity and DNA content.

Results: Out of 293 DNA samples from the leukemic cohort, 287 contained amplifiable DNA. Of these, only 1 (0.35%)
contained ciHHV-6. Variant typing indicates that the ci-HHV-6 corresponds to variant A. None of the 288 DNA samples from
healthy individuals contained ciHHV-6.

Conclusion: The frequency of ciHHV-6 in children with acute lymphoblastic leukemia is similar (p = 0.5) to that of healthy
individuals. These results suggest that acute lymphoblastic leukemia does not originate as a consequence to integration of
HHV-6 within the chromosomes.
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Introduction

Human herpesvirus-6A (HHV-6A) and HHV-6B are two

closely related but distinct viruses belonging to beta-herpesvirus

subfamily [1,2]. HHV-6B is a highly prevalent virus and the

etiologic agent of roseola infantum, also known as the sixth rash-

causing childhood disease [3]. HHV-6B is also a source of concern

in hematopoietic transplant recipients where viral reactivations are

linked with a variety of medical conditions ranging from mild to

life threatening. While HHV-6B is present in nearly 100% of the

world’s population, HHV-6A appears to be less frequent in Japan,

North America, and Europe. Interestingly, HHV-6A is the

predominant variant associated with viremic infant-infections in

sub-Saharan Africa [4].

HHV-6 infection generally follows the classical herpesvirus

replicative cycle with the release of infectious virions and

destruction of the infected cells. For reasons that are unclear,

HHV-6 can also integrate the host DNA leading to an ‘‘unclassic’’

form of latency. Work by Arbuckle et al teaches us that in vitro

infection can lead to HHV-6 chromosomal integration (ciHHV-6)

with a possibility to reactivate and produce infectious HHV-6 [5].

The first in vivo reports of ciHHV-6 date to the early to mid-1990s,

when Luppi et al. detected the presence of a partial and possibly

full-length integrated HHV-6 genome in the DNA of freshly

isolated peripheral blood mononuclear cells (PBMC) [6–8]. In

subjects with ciHHV-6, the integrated virus is present at 1 copy/

cell suggesting hereditary transmission [9]. Reports estimate that

HHV-6 is integrated in the telomeres of approximately 0.2–1% of

individuals from Europe, USA and Japan [6,9–13]. By extrapo-

lation, this means that nearly 70 million individuals carry a 170

kilobase insertion (HHV-6 genome size) within their telomeric

region. Data so far indicate that HHV-6 genome integration can

occur in different chromosomes but invariably takes place in the

sub-telomeric or telomeric regions. It is now well established that

the self-renewal potential of cells is directly proportional to

telomere lengths and telomerase activity [14,15]. The loss of
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telomere function can cause cell cycle arrest and apoptosis.

Inversely, the loss of telomere function can also lead to genetic

instability and cancer progression. It is also known that loss of

telomere functions preferentially occurs on the shortest telo-

meres[16]. When the number of telomeric repeated sequence

(TRS) falls below 13, chromosomal instability is observed [17].

Several diseases are linked with telomere dysfunctions and/or

telomerase mutations such as hematopoietic dysfunction, pulmo-

nary fibrosis, liver disease, degenerative diseases and cancer [18–

29]. Alterations within telomeric regions are therefore a likely

cause for cellular dysfunctions linked to diseases but many of the

factors affecting telomeres integrity remain to be identified. The

HHV-6 integration mechanisms and the biological/medical

consequences resulting from this telomeric alteration remain

largely unknown but interestingly, ciHHV-6 is 2.36more frequent

(p,0.001) in diseased (various diseases) individuals relative to

healthy ones [30]. Interestingly, integration of Marek’s disease

virus (an alpha-herpesvirus of chicken) into the telomeres is linked

with the development of T cell lymphoma [31,32]. In this study,

we wanted to determine and compare the frequency of ciHHV-6

in children with acute lymphoblastic leukemias (ALL) to healthy

blood donors in order to determine whether ciHHV-6 represents a

risk factor for such blood malignancies.

Materials and Methods

DNA Samples
Our cohort consisted of 293 childhood ALL patients and 288

healthy controls. Study subjects were all French-Canadians of

European descent from the established Quebec Childhood ALL

(QcALL) cohort [33]. Incident cases were diagnosed in the

Division of Hematology-Oncology at the Sainte-Justine University

Health Center (SJUHC), Montreal, Canada, between October

1985 and November 2006. Healthy controls consisted of a group

of French-Canadian newborns and adults recruited at the SJUHC.

The CHU Sainte-Justine Institutional Review Board approved the

research protocol, and written informed consent was obtained

from all participating individuals and/or their parents. Tables 1

and 2 list the characteristics of each group.

Real-Time Quantitative PCR (QPCR)
QPCR analyses were performed on a Rotor-Gene Q (Qiagen)

with the Rotor-Gene Multiplex PCR Kit (Qiagen) for GAPDH

and U65-U66 detection [34]. The following primer pairs have

been used: GAPDH gene forward primer, 59-CGAGATCCCTC-

CAAAATCAA-39; GAPDH gene reverse primer, 59-TTCA-

CACCCATGACGAACAT-39; GAPDH gene probe, 59-hexa-

chloro-6-carboxyfluorescein-TGGAGAAGGCTGGGGCTCAT-

black-hole-quencher-1-39; U65-U66 gene forward primer, 59-

GACAATCACATGCCTGGATAATG-39; U65-U66 gene re-

verse primer for HHV-6A/B, 59-TGTAAGCGTGTGGTAATG-

GACTAA-39 ; U65-U66 gene reverse primer specific for HHV-

6A, 59-TGGTAATGGACTAATTGTGTGTTGTTTTA-39;

U65-U66 gene reverse primer specific for HHV-6B, 59-

TGGTAATGGACTAAGTGTGCGTTATTTTC-3 ; U65-U66

gene probe, 59-6-carboxyfluorescein-AGCAGCTGGC-

GAAAAGTGCTGTGC-black-hole-quencher-1-39.

Table 1. Characteristics of control subjects analyzed for
ciHHV-6.

Healthy subject Characteristics Number (%)

Total number of subjects 288

Gender

Male 147 (51.0)

Female 141 (49.0)

Age (years)

Mean 25.2

Median 28.7

Standard deviation 5.8 (0 to 69.75)

doi:10.1371/journal.pone.0084322.t001

Table 2. Characteristics of leukemic subjects analyzed for
ciHHV-6.

Leukemic Patient Characteristics Number (%)

Total number of subjects 293

Gender

Male 166 (56,7)

Female 127 (43,3)

Age (years)

Mean 6,0

Median 4,5

Standard deviation 1.5 (0.4 to 17.9)

Immunophenotype

Pre-B 255 (87.0)

Pre-pre B 4 (1.4)

Pre-T 26 (8.9)

N/D 8 (2.7)

Age group (years)

# 1 5 (1.7)

1-10 230 (78.5)

.10 52 (17.7)

N/D 6 (2.1)

Hyperdiploidy

Positive 98 (33.4)

Negative 173 (59.0)

N/D 22 (7.6)

Chromosomal translocations

Absence of translocation 140 (47.8)

t(12;21) 40 (13.7)

Other 27 (9.2)

N/D 86 (29.3)

Normal ploidy and absence of 79 (27.0)

chromosomal translocations

doi:10.1371/journal.pone.0084322.t002
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Statistical analysis. To frequency of ciHHV-6 in healthy and

leukemic patients was compared using the Fisher’s exact test.

Results and Discussion

Detection and identification of individuals carrying ciHHV-6 is

relatively simple. Since these individuals carry at least one copy of

HHV-6 genome per cell, there is more than a thousand-fold

difference in the number of HHV-6 DNA copies/mg of DNA

between ciHHV-6 individuals and those that harbor latent

episomal (non-integrated) HHV-6 [35]. In fact, the mean number

of HHV-6 copies/mg of cellular DNA in individuals with ciHHV-6

is approximately 106 while those with post-natal HHV-6

acquisition are in the range of 103 copies/mg of cellular DNA

[10,35,36]. Using leukocytes or any other source of cellular DNA

and quantitative polymerase chain reaction (QPCR) assay, it is

therefore very easy to identify and distinguish ciHHV-6 from non

ciHHV-6. We use a published and validated TaqMan-based

procedure [37] to detect HHV-6A and HHV-6B This assay can

be easily modified to discriminate HHV-6A from HHV-6B [38].

Lastly, as part of a multicenter study conducted across the world,

we have reported that this PCR assay is a sensitive and reliable

method to detect and quantitate HHV-6 [34].

Using these tools, we have screened 581 DNA samples from

children with ALL and healthy donors of French-Canadian origin

by QPCR using specific primers for HHV-6 U65-U66 gene and

GAPDH, as a housekeeping gene. GAPDH amplification was used

to assess the quality of the DNA samples and used for

normalization. The demographics and characteristics of the

control and leukemic subjects are presented in tables 1 and 2,

respectively. The age difference between the leukemic subjects

(median 4.5 years) and the control subjects (28.1 years) is not an

issue considering that ciHHV-6 is inherited [9]. As presented in

table 3, all healthy subjects were negative (,10 copies/50 ng of

DNA) for the presence of HHV-6 DNA. In our assay, which has a

limit of detection of 10 HHV-6 DNA copies, we used 50 ng of

genomic DNA meaning that we could only detect subjects with

$200 copies of HHV-6/mg of DNA. The fact that all healthy

subjects were negative for HHV-6 DNA in therefore not

unexpected considering thelow incidence (10-15%) and low viral

loads (median of 62 HHV-6 copies/mg of genomic DNA) reported

[39]

In contrast to healthy individuals, DNA samples taken at time of

diagnostic from 11 leukemic patients (10 pre-B and 1 pre-T) were

positive for HHV-6 DNA (table 3). We determined the HHV-6

copy number in the leukemic patients using a standard curve

generated with a plasmid carrying a portion of the U65-U66 gene

[37]. We also analyzed all patients using our standard curve for

GAPDH, made with a plasmid carrying GAPDH gene. All the

data were normalized using the GAPDH copy number. The

HHV-6 copy number/mg in ten of these patients varied between

90 and 2410 copies/mg of DNA (median = 320) (table 4). We

analyzed the HHV-6 positive patients with primer pairs that

discriminate between HHV-6A and HHV-6B. Eight carried

HHV-6B and 1 HHV-6A (one could not be not determined).

The detection of low HHV-6 viral loads in a small proportion of

ALL patients has been observed previously [40,41]. Of these 11

samples, one (P451) had a HHV-6 copy number consistent with

ciHHV-6. Relative to a gene such as GAPDH that is present in

two copies in a diploid genome, ciHHV-6 is present at one copy

per cell, unless both parents carry ciHHV-6, a rather rare

occurrence [9]. As presented under table 4, P451 had 511 650

HHV-6A DNA copies per mg of DNA. As positive control, we

used DNA from a subject with confirmed ciHHV-6 [5].

The frequency of ciHHV-6 varies between 0.2-3% depending of

the geographic area, the sample sized analyzed and disease

conditions (reviewed in [30]). However, when only considering

studies with sampling size above 500 subjects, the incidence of

ciHHV-6 in healthy individuals from the US or the UK is

approximately 1%. HHV-6B represents the integrated virus in two

thirds of ciHHV-6 cases [42]. In our cohort, out of 575 individuals

tested, 1 ciHHV-6+ individual (0,17%) was detected. The

frequency of ciHHV-6 in the Province of Quebec (Canada)

therefore appears lower that that observed in US and UK.

Furthermore, the one ciHHV-6+ sample detected corresponds to

HHV-6A. How can these differences be explained? Our sampling

size is certainly one limiting factor preventing us from ascertain

with confidence whether the incidence of ciHHV-6 is truly

different for the US of the UK. Statistical analysis indicates that

the incidence of ciHHV-6 in Quebec does not differ (p = 0.13)

from that reported by Hall et al [43]. By expanding the number of

subjects, a more precise estimate on the incidence of ciHHV-6

within the population of Quebec would be obtained.

Of interest, the French-Canadian population is considered

genetically more homogeneous than other population of European

descent due to a limited number of settlers (e.g. founder effect)

combined with a large demographic expansion[44]. At present,

the Quebec population comprises 7.8 million residents, of which

,80% are French Canadians. The apparent lower frequency of

ciHHV-6+ individuals in the province of Quebec could be

consequent to initial lower incidence of ciHHV-6 within the

settlers.

Conclusion

The frequency of ciHHV-6 in children with acute lymphoblastic

leukemia is similar (p = 0.5) to that of healthy individuals. Our

results are in accordance with those of Hubacek et al that reported

on the frequency of ciHHV-6 in children with acute lymphoblastic

Table 3. QPCR results.

Healthy Subjects Number (%)

Total number of subjects 288

QPCR

HHV-6 positive 0 (0)

HHV-6 negative 288 (100)

GAPDH positive 288 (100)

GAPDH negative 0 (0)

Leukemic Patients

Total number of subjects 293

QPCR

HHV-6 positive 11 (3.8)

HHV-6 negative 276 (96.2)

GAPDH positive 287 (97.9)

GAPDH negative 6 (2.1)*

*All GAPDH-negatives were also HHV-6-negative.
doi:10.1371/journal.pone.0084322.t003
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or myeloid leukemia from the Czech republic [40]. These results

suggest that childhood ALL does not originate as a consequence to

integration of HHV-6 within the chromosomes.
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