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Abstract

Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species
such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier
Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they
can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A
and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology.
Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins
and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus
resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1),
which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in
producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid,
purpuride and ZG–1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of
Talaromyces atroroseus is CBS 133442
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Introduction

Monascus species are known to produce six major
azaphilone pigments being the yellow monascin and
ankaflavin; the orange monascorubrin and rubropunctatin and
the red monascorubramine and rubropunctamine, in addition to
more than 20 related pigments [1,2]. Another azaphilone series
of yellow pigments is even more widespread in Talaromyces,
i.e. the mitorubrins [3–5]. The red pigment producer Monascus
purpureus has been used primarily in Southern China, Japan
and Southeast Asia for making red rice wine, red soybean
cheese and Anka (red rice) [6]. A problem is that some
samples of Monascus–fermented rice have been found to
contain the mycotoxin citrinin [7], but also that Monascus
isolates also often produce mevinolin, a drug that is also
unwanted in foods [2]. The production of such mycotoxins and
drugs limits the use of Monascus for industrial purposes, but
since citrinin has not been found in any Talaromyces species,
the latter may be a good alternative for red pigment production.

Studies have shown that polyketide azaphilone Monascus red
pigments and/or their amino acid derivatives are naturally
produced by Talaromyces aculeatus, T. pinophilus, T.
purpurogenus and T. funiculosus [8,9]. Talaromyces
amestolkiae, T. ruber and T. stollii also produce azaphilone
polyketides, as recently described by Yilmaz et al. [10], but in
those three species the pigment are not diffusing into the
growth medium. Talaromyces amestolkiae and T. stollii were
isolated from immuno-compromised patients and are potential
human pathogens, while T. purpurogenus produces
mycotoxins such as rubratoxins A and B, rugulovasins, and
luteoskyrin [10]. These factors limit the use of these species for
biotechnological production of azaphilone pigments.

In the current study we describe a new Talaromyces species,
T. atroroseus, which secretes large amounts of Monascus red
pigments, without the production of any known mycotoxins.
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Materials and Methods

Strains
Cultures were obtained from the CBS-KNAW Fungal

Biodiversity Centre culture collection, Utrecht, the Netherlands.
Fresh isolates deposited in the working collection of the
Department of Applied and Industrial Mycology (DTO) housed
at CBS, and strains from the IBT collection at DTU Systems
Biology in Kongens Lyngby, Denmark were also included in
this study. Strains are listed in Table 1. KAS strain numbers are
from the fungal collection of Keith A. Seifert, Ottawa, Canada.

Morphological analysis
Macroscopic characters were studied on agar media

Czapek-Dox yeast autolysate agar (CYA), CYA supplemented
with 5 % NaCl (CYAS), yeast extract sucrose agar (YES),
creatine sucrose agar (CREA), dichloran 18 % glycerol agar
(DG18), oatmeal agar (OA) and malt extract agar (Oxoid)
(MEA). The isolates were also tested on CYA at 37 °C and on
Blakeslee malt extract agar (MEA2). All media were prepared
as described by Samson et al. [11]. The strains were
inoculated in three points onto media in 90-mm Petri dishes
and incubated for 7 d at 25 °C in darkness. After incubation,
the colony diameters on the various agar media were
measured. Colonies were photographed with a Canon EOS
400D. Species were characterized microscopically by
preparing slides from MEA. Lactic acid was used as mounting
fluid. Specimens were examined using a Zeiss AxioSkop2 plus
microscope.

DNA extraction, PCR amplification and sequencing
Strains were grown for 7 to 14 d on MEA prior to DNA

extraction. DNA was extracted using the UltracleanTM Microbial
DNA isolation Kit (MoBio, Solana Beach, U.S.A.). The
extracted DNA was stored at -20 °C. The ITS regions, regions
of the β-tubulin and RPB1 genes were amplified and
sequenced according to methods previously described [12–15].

Data analysis
Sequence contigs were assembled using Seqman from

DNAStar Inc. Newly generated ITS, β-tubulin and RPB1
sequences were included in a data set obtained from the
Samson et al. [15] study. Data sets were aligned using Muscle
software within MEGA5 [16]. Neighbour–joining analysis on the
individual data sets was performed in MEGA5 and confidence
in nodes determined using bootstrap analysis with 1000
replicates. Talaromyces galapagensis (CBS 751.74T) was
selected as a suitable out-group in all the phylogenies. The
newly generated sequences were deposited in GenBank
(accession numbers, see Table 1 and Figures 1–3).

Extrolites
Cultures grown on CYA and YES for 7 d at 25 °C were used

for extrolite extractions. Extracts were analysed by HPLC using
alkylphenone retention indices and diode array UV–VIS
detection as described by 17–19, using three 6 mm agar plugs.
Standards of extrolites from the collection at DTU Systems

Table 1. Strains used in this study of Talaromyces
atroroseus and related species.

CBS No. Other Collection No. Species Information and Origin

206.89
IFO 6580, IBT 3960;
DTO 41F4

T. albobiverticillius Unknown, Japan

238.95
IBT 11181, CBS
123796

T. atroroseus
Red sweet bell pepper,
Kgs. Lyngby, Denmark

234.60 DTO 37A4 T. atroroseus Unknown, Germany

257.37 DTO 37A3 T. atroroseus
Ex air in nitrite factory,
Germany

313.63 DTO 41G2 T. albobiverticillius
Vitis vinifera fruit, South
Africa

364.48
ATCC 9777, IMI
040037, NRRL 1061,

T. atroroseus
Unknown, Darien,
Manchuria, China

 
QM 6760, DTO
178A3, IBT 4458, IBT
11180

  

391.96 DTO 41G8 T. atroroseus Unknown, Tanzania

113139
IBT 3967, NRRL
1147, DTO 177I2

T. atroroseus Unknown, USA

113167 DTO 39I2, DTO 39I3 T. albobiverticillius Unknown, unknown

113168
IBT 31347, DTO
39H9, DTO 177I9

T. albobiverticillius
Sputum of patient, male,
Copenhagen,

   Denmark

113153
IBT 3458, NRRL
1136, DTO 37A7

T. atroroseus
Ex mixed culture,
Arlington Farm, Virginia

   USA
124294 IBT 23082 T. atroroseus Tropical rainforest, Peru

133440
BCRC 34774, DTO
166E5, IBT 31667

Type of T.

albobiverticillius

Decaying leaves of a
broad–leaved tree,
Taiwan

133441
BCRC 34775, DTO
166E6, IBT 31668

T. albobiverticillius

Decaying leaves of a
broad–leaved tree.
Taiwan

133442
KAS 3778, DTO
178A4, IBT 32470

Type of T.

atroroseus
House dust, South Africa

133443
IBT 29388, DTO
189D4

T. atroroseus
Contamination in petri
dish, Lyngby, Denmark

133444
IMI 163167, IBT
23702, DTO 189C2

T. albobiverticillius Punica granata, unknown

133447 DTO 81I2 T. atroroseus
Swab sample from
cheese warehouse,

   the Netherlands
133448 DTO 157G5 T. albobiverticillius Pomegranate, Turkey

133449
IBT 29464, DTO
189D5

T. atroroseus
Mouse dung, Høve
Strand, Denmark

133450
FRR 75, IBT 4454,
DTO 188I9

T. atroroseus
Soil Murrumbidgee
irrigation Area,

   
New South Wales,
Australia

133452
NRRL 2120, IBT
3547, DTO 193H9

T. albobiverticillius Cotton duck, Panama

113154
R.B., IMI 090178,
NRRL 1214, IBT
3645,

T. atroroseus
”Parasite” in Aspergillus

niger culture,
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Biology (Denmark) were used to compare the extrolites from
the species under study [18].

The extrolite extractions from T. atroroseus CBS 133450,
CBS 113154 and CBS 123796 were also analysed by ultra
high performance liquid chromatography high-resolution mass
spectrometry (UHPLC-HRMS). Liquid chromatography was
performed on an Agilent 1290 Infinity LC system with a DAD-
detector coupled to an Agilent 6550 iFunnel Q-TOF with an
electrospray ionization source. The separation was performed
on a 2.1 x 250 mm, 2.7 μm Poroshell 120 Phenyl-Hexyl column
(Agilent) at 60 °C with a water-acetonitrile gradient (both with
20 mM formic acid) going from 10 % (vol/vol) to 100 %
acetonitrile in 15 min followed by 2.5 min with 100 %
acetonitrile and then returning to the start conditions for 2.5 min
for equilibration before next sample. All time the flow rate was
kept at 0.35 mL/min. HRMS was performed in ESI+ and
extrolites were identified with targeted search on accurate
mass of [M+H]+ and [M+Na]+ using Agilent MassHunter
Qualitative Analysis B.06.00 software and a database of
potential extrolites in T. atroroseus with support from UV-VIS
spectra. The list of compounds searched for including the
extrolite standards can be found in Table S1.

Nomenclature

1. The electronic version of this article in Portable Document
Format (PDF) in a work with an ISSN or ISBN will represent a
published work according to the International Code of
Nomenclature of algae, fungi, and plants, and hence the new
names contained in the electronic publication of a PLOS ONE
article are effectively published under that Code from the
electronic edition alone, so there is no longer any need to
provide printed copies. In addition, new names contained in
this work have been submitted to MycoBank from where they
will be made available to the Global Name Index. The unique
MycoBank number can be resolved and the associated
information viewed through any standard web browser by
appending the MycoBank number contained in this publication
to the prefix http://www.mycobank.org/MB. The online version
of this work is archived and available from the following digital
repositories. PubMed Central, LOCKSS.

Table 1 (continued).

CBS No. Other Collection No. Species Information and Origin

 
IBT 4428, CBS
127571

 
Kansas City, Missouri,
USA

 
TA85S-28-H2,
AZ ,IAM 15392, JCM
23216, IBT 32650

T. atroroseus Soil, Thailand

 IBT 20955 T. atroroseus
Air root in white
mangrove,

   
Can de Aruca, Paria Bay,
Venezuela

 IBT 4466 T. albobiverticillius
Punica granata, imported
to Denmark

doi: 10.1371/journal.pone.0084102.t001

2. Repository of Talaromyces atroroseus Yilmaz, Frisvad,
Houbraken & Samson 2013 sp. nov. [urn:lsid:mycobank.org:
804901]

Results and Discussion

The relationship between the Talaromyces atroroseus sp.
nov. and its close relatives were studied using multigene
phylogenies, bason on ITS, RPB1 and β-tubulin sequences.
The aligned datasets were 482, 888 and 374 bp long,
respectively. The new species resolved in a clade together with
other red pigment producing species such as T.
albobiverticillius, and T. minioluteus. Talaromyces
purpurogenus resolved in a distantly related clade (Figures 1–
3). Within the red pigment producing clade, T. atroroseus
resolved in a distinct clade separate from all the other species
in all three phylogenies, confirming its unique nature.

Historically red pigment production caused a lot of confusion
and resulted in numerous misidentifications in literature. This is
especially true for Talaromyces purpurogenus, T. ruber,
Penicillium sanguineum and P. crateriforme. Penicillium
purpurogenum and P. rubrum were described by Stoll [20]. In
their monograph Raper and Thom [21] also described P.
purpurogenum and P. rubrum. No type material was available
for P. rubrum therefore Raper and Thom [21] used two strains
to describe P. rubrum, NRRL 1062 (= CBS 370.48) and NRRL
2120 (= CBS 133452). Pitt [22] synonymized P. rubrum, P.
crateriforme and P. sanguineum with P. purpurogenum. The
issues in the T. purpurogenus complex were clarified by Yilmaz
et al. [10] who synonymized Penicillium crateriforme and P.
sanguineum with T. purpurogenus and they described T. ruber
as a distinct species. NRRL 1062 remained as T. ruber but
NRRL 2120 (= CBS 133452) is a different species than T.
ruber. Our results showed that NRRL 2120 is T.
albobiverticillius. Raper and Thom [21] based the Penicillium
purpurogenum description on NRRL 1061 (= CBS 364.48).
However our results show that NRRL 1061 is a typical T.
atroroseus strain.

Both Talaromyces purpurogenus and T. atroroseus are
common in soil, indoor environments, and fruits. Talaromyces
atroroseus resembles T. purpurogenus and T. albobiverticillius
in producing red diffusible pigments, but differs from the latter
two species by the production of glauconic acid, purpuride and
ZG–1494α (Table 2 and Figure 4) and by the dull to dark green
thick walled ellipsoidal conidia produced. Barton et al. [26,27]
and Barton and Sutherland [28] reported glauconic acid from P.
purpurogenum IMI 090178, which in the present study has
been re-identified as T. atroroseus, while ZG–1494α was
reported from P. rubrum CBS 238.95 [36], which is also a
typical T. atroroseus. Talaromyces atroroseus, T.
purpurogenus and T. albobiverticillius differ from T. ruber, T.
amestolkiae and T. stollii by their production of red diffusible
pigment. In Table 3 many red pigment producers identified as
Penicillium species are listed, that may either be T.
purpurogenus, T. ruber, T. albobiverticillius or T. atroroseus.
The strains listed in Table 3 were not available for us, so their
exact identity cannot be verified.

Talaromyces atroroseus, New Red Species
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Figure 1.  Maximum likelihood tree comparing the ITS gene region of Talaromyces species closely related to T.
atroroseus.  Talaromyces galapagensis and T. purpurogenus were used as outgroup. Support in nodes is indicated above thick
branches and is represented by bootstrap values higher than 70%. GenBank accession numbers are given between brackets, (T =
ex-type). Red coloured names indicate T. atroroseus strains.
doi: 10.1371/journal.pone.0084102.g001
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Figure 2.  Maximum likelihood tree comparing the β–tubulin gene region of Talaromyces species closely related to T.
atroroseus.  Talaromyces galapagensis and T. purpurogenus were used as outgroup. Support in nodes is indicated above thick
branches and is represented by bootstrap values higher than 70%. GenBank accession numbers are given between brackets, (T =
ex-type). Red coloured names indicate T. atroroseus strains.
doi: 10.1371/journal.pone.0084102.g002
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Figure 3.  Maximum likelihood tree comparing the RPB1 gene region of Talaromyces species closely related to T.
atroroseus.  Talaromyces galapagensis and T. purpurogenus were used as outgroup. Support in nodes is indicated above thick
branches and is represented by bootstrap values higher than 70%. GenBank accession numbers are given between brackets, (T =
ex-type). Red coloured names indicate T. atroroseus strains.
doi: 10.1371/journal.pone.0084102.g003
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Many Talaromyces species produce striking diffusing red
pigments, especially T. purpurogenus, T. atroroseus, T.
albobiverticillius, T. minioluteus, and T. marneffei. These red
pigments are typically composed of the azaphilone pigments
(Figure 5) monascorubrin, rubropunctatin, threonine derivative
of rubropunctatin, monascorubramine, PP-R (= 7–(2–
hydroxyethyl)-monascorubramine), rubropunctamine, N-
glutarylrubropunctamine, and PP–V [8,9,43,44,61]. The same
family of azaphilones are also known from red rice, where
different species of Monascus have grown [1,2]. These red
pigments are of interest for the industry as they are stable and
non-toxic and can be used as food colorants [62]. The

azaphilone pigments can react with amino acids, hence their
name, and give intense dark red colours. In addition some of
these species produce yellow azaphilone pigments, such as
monascin, ankaflavin, monascusone A and B, xanthomonascin
A, and another series of yellow mitrorubrin azaphilones:
mitorubrin, mitorubrinol, mitorubrinol acetate, mitorubrinic acid,
and many other related compounds [5]. Many of these
pigments have been reported from or found in T. atroroseus in
this study (Table 2 and Table 4). The potential for pigment
production has in this study only been investigated in small
scale on solid media; however, T. atroroseus also produce
pigments in liquid cultures under the right conditions [8,46]. The

Table 2. Reported extrolite production by strains verified as Talaromyces atroroseus during this study.

Extrolite Reported producer Culture collection numbers Reference

Glaucanic acid, Glauconic acid
Penicillium “R. B.”, P.

purpurogenum
R.B. = IMI 090178 = NRRL 1214 = CBS 113154 = IBT 3645 = IBT 4428 [23–30]

N-glutarylmonascorubramine, N-
glutarylrubropunctamine

P. purpurogenum IBT 11181 = CBS 238.95 = CBS 123796 [9]

N-glutarylmonascorubramine P. purpurogenum R.B. = IMI 090178 = NRRL 1214 = CBS 113154 = IBT 3645 = IBT 4428 [9]

Monascorubramine, PP-R P. purpurogenum
IBT 11180 = CBS 364.48 = ATCC 9777 = IMI 040037 = NRRL 1061 = QM
6760 = IBT 4458

[9]

PP-V, PP-R, PP-O, PP-Y P. sp. TA85S-28-H2 = AZ = IAM 15392 = JCM 23216 = IBT 32650 [43–47]
Purpuride P. purpurogenum CBS 257.37 [31]
Purpurogenone, Deoxypurpurogenone P. purpurogenum CBS 257.37 [32–35]
ZG-1494α P. rubrum IBT 11181 = CBS 238.95 = CBS 123796 [36]

Strain numbers in bold are the strain numbers used in the references.
doi: 10.1371/journal.pone.0084102.t002

Figure 4.  Structures of some of the most characteristic compounds produced by Talaromyces atroroseus.  All six
compounds were detected in this study.
doi: 10.1371/journal.pone.0084102.g004
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potential for up scaling the production of red pigments needs to
be investigated thoroughly.

Even though sequence variations were observed for
Talaromyces albobiverticillius strains, morphologically they
were similar. Two strains used for the original description of T.
albobiverticillius were received from Dr. Sung-Yuan Hsieh [63].
These included the type strain CBS 133440T and CBS 133441.
These strains were isolated from soil in Taiwan and produce
white conidial masses and intense soluble red pigment on
various media (Figure 6). However, other freshly isolated T.
albobiverticillius strains produce densely sporulating colonies
and do not show any stability for red pigment production. Some
of the Talaromyces albobiverticillius strains did not produce any
soluble pigment such as CBS 133444 and CBS 133448.
Strains that did produce red pigments include CBS 113168,
and CBS 133452. On MEA only the degraded or mutated

Table 3. Reported extrolite production from strains
potentially belonging to Talaromyces atroroseus, but not
examined during this study.

Extrolite Reported producer

Strain identifier /
Culture collection
number Reference

2,6,7-trihydroxy-3-
methyl-naphthalene-1,4-
dione

Penicillium

purpurogenum
JS03-21* [37]

BE-25327 P. purpurogenum
F25327 = FERM
P-12345

[38]

Dhilirolide A, B, C, D P. purpurogenum IMI 357108 [39]
Glauconic acid P. glaucum -* [40]

Gluconic acid
P. purpurogenum var.
rubrisclerotium (= T.

pinophilus)

No. 2670 = NRRL
1064 = CBS
270.35 = ATCC
4713 = ATCC
52224 = NRRL
1142 = IBT 4302

[41]

(-)-Mitorubrin, P. purpurogenum JS03-21* [37]
Monascus red pigment P. sp. HKUCC 8070 [42]
Orsellinic acid P. purpurogenum JS03-21* [37]

Purpactin A, B, C P. purpurogenum
FO-608 = FERM
P-10776

[48,49]

Purpurester A, B P. purpurogenum JS03-21* [37]
Purpurquinones A, B, C P. purpurogenum JS03-21* [37]
Red W59 (C30H34O9N3) P. purpurogenum -* [50]
Red pigment P. purpurogenum GH2* [51–53]
Red pigment P. purpurogenum SX01* [54]
Red pigments P. purpurogenum DPUA 1275 [56,57]
Red pigments P. purpurogenum -* [58,59]
Red pigments P. sp. -* [60]
SL 3238 (C27H41NO7) P. purpurogenum NRRL 3364 [55]
TAN-931 P. purpurogenum JS03-21* [37]

Based on the reported morphology and extrolites the strains in the table are by the
authors’ judgement belonging to Talaromyces atroroseus or a closely related
species.
* Strain not deposited in any accessible culture collection
doi: 10.1371/journal.pone.0084102.t003

strains of T. albobiverticillius, such as CBS 133440T and CBS
313.63 produced red pigments. Micromorphologically all T.
albobiverticillius strains produce long stipes (up to 380 µm)
(Figure 5). Two strains of T. albobiverticillius (CBS 133440T

and CBS 133441) have globose to subglobose, smooth
conidia; however, the remaining strains produce ellipsoid to
fusiform smooth conidia (Figure 5).

Even though two clades were observed in the phylogenies
there are no concordance between observed clades and
morphological characters as discussed above. As such, they
are considered here as representing one species. Raper and
Thom [21] mentioned a number of colour mutations they
observed in strains of P. citrinum and P. chrysogenum. They
stated that colour mutations are encountered as the most
common and conspicuous types of mutations, especially
considering mature conidia. Mutations can often be observed
when a strain loses its green pigment in its conidia, resulting in
a white or tanned colour. Colour mutants are regularly
encountered among the strains which were exposed to artificial
stimulations such as ultra-violet, X-ray radiations and neutron
bombardment [21].

Talaromyces atroroseus is considered as the optimal
producer of industrially important yellow and red soluble
pigments. Another option as a suitable producer of red soluble
azaphilone pigments is T. albobiverticillius. However T.
albobiverticillius produces soluble red pigment only in some
strains. We speculate that the mitorubrins produced by
Talaromyces atroroseus are of the (-)-form, as they have been
shown to be that for the closely related Talaromyces
purpurogenus (at that time identified as Penicillium rubrum)
[64,65]. However, Natsume et al. [66] and Suzuki et al. [67]
found both (+) and (-)-forms in the genus Talaromyces, while
mitorubrins in Hypoxylon and other related genera are of the
(+)-form [68–70]. Although T. purpurogenus is another good
producer of diffusible red azaphilone pigments, this species
also produce a series of mycotoxins, such as rubratoxin A and
B and luteoskyrin in addition to extrolites that may be toxic if
injected intraperitoneally (spiculisporic acid) [71] or in the veins
of cats (rugulovasine A and B) [72,73]. Talaromyces
purpurogenus can thus not be recommended for industrial
production for red pigments.

Talaromyces atroroseus Yilmaz, Frisvad, Houbraken &
Samson sp. nov. Figure 6.

Mycobank MB804901 [urn:lsid:mycobank.org: 804901]
Holotype: CBS 133442 in Centraalbureau voor

Schimmelcultures is designated as the holotype of
Talaromyces atroroseus. It was isolated from indoor house
dust, Stellenbosch, South Africa by C. Visagie in 2010.

Cultures ex type: CBS 133442 = IBT 32470 = DTO 178A4 =
KAS 3778

Etymology: Named after the dark rosy diffusing azaphilone
pigment mixture produced.

Diagnosis: Dark green ellipsoidal rough-walled conidia and
a dark red diffusing pigment, strains of the species produce the
unique combination of secondary metabolites: glauconic acid,
ZG–1494α, purpuride, red Monascus pigments, mitorubrins,
and purpactins in fresh isolates.

Talaromyces atroroseus, New Red Species
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CYA 25 °C 7d: Colonies are 30–40 mm in diameter, low,
plane; margins narrow (1–2 mm), entire, low; mycelia white;
texture velvety; sporulation dense, conidia en masse dark to
dull green; exudate absent; soluble pigment red; reverse
coloration dark cherry red.

MEA 25 °C 7d: Colonies 35–40 mm in diameter, low, plane,
having a pinkish colour because of exudates diffusing into
mycelia; margins narrow (1–2 mm), entire, low; mycelia white;
texture velvety overlaying floccose; sporulation moderately
dense, conidia en masse bluish green; exudate red droplets
especially close to margin; soluble pigment absent, after
prolonged incubation red pigments produced; reverse
coloration dark red.

YES 25 °C 7d: Colonies are 33–45 mm in diameter, raised at
centre, sulcate; margins wide (2–3 mm), entire, low; mycelia
white; texture velvety; sporulation dense, conidia en masse
dark to dull green; exudates small red droplets; soluble pigment
red in some isolates; reverse coloration brownish red.

CYAS 25 °C 7d: Commonly no growth, some strains up to 5
mm in colony diameter.

CREA 25 °C 7d: Colonies 9–13 mm in diameter, weak acid
production close to colony periphery, some strains acid absent;
reverse dark red.

OA 25 °C 7d: Colonies 30–35 mm in diameter, low, plane;
margins wide (2–3 mm), entire, low; white mycelia; texture
velvety; sporulation dense; conidia en masse dull to dark
green, almost appears blackish green; exudates absent;
soluble pigment absent; reverse coloration commonly greenish
yellow to green, red in some isolates.

DG18 25 °C 7d: Colonies 27–30 mm in diameter, low, plane;
margins wide (2 mm), entire, low; mycelia white; texture
velvety, floccose mycelia present at centre; sporulation dense,
conidia en masse greyish green, at margins bluish green;
exudates absent; soluble pigment absent; reverse colour is
beige.

Conidiophores mostly biverticillate, subterminal branches
produced, have a greenish to brownish pigmentation; Stipes
smooth walled, 90–150 × 2.5–3 µm; Branches 2–3 when
present, 15–50 × 2–3 µm; Metulae in verticils of 3 to 5 per
stipe, 8–15 × 3.0–4.0 µm; Phialides acerose, 3 to 6 per metula,

Figure 5.  Strains of Talaromyces albobiverticillius on MEA, CYA, DG18, OA and CREA.  Colony obverse and reverse is
shown for the first four media and obverse for CREA.
doi: 10.1371/journal.pone.0084102.g005
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Table 4. Extrolites of Talaromyces atroroseus and T.
albobiverticillius as examined by HPLC-DAD and/or
UHPLC- HRMS and comparison to standards on the media
CYA and YES.

Species

Culture
collection
number Extrolites* found

T. atroroseus CBS 133450a glauconic acidb, monascorubrinb, PP-Rb,
purpurideb, purpuroquinone Ab, ZG-1494αb

 CBS 113154a

glauconic acid, N-
glutarylmonascorubramineb, monascorubrinb,
PP-Ob, PP-Rb, purpurideb, purpuroquinone
Ab, ZG-1494αb

 CBS 123796a

FK17-P2b2b, glauconic acid, N-
glutarylmonascorubramineb, mitorubrin,
mitorubrinol, monascorubrinb, PP-Ob, PP-Rb,
purpurideb, purpuroquinone Ab,
purpurogenone, ZG-1494αb

 CBS 257.37
monascorubramine, purpuride, several
Monascus-red pigments

 CBS 234.60
glauconic acid, monascorubramine,
purpuride, ZG-1494α

 CBS 391.96
glauconic acid, monascorubramine,
purpuride, ZG-1494α

 CBS 364.48
glauconic acid, monascorubramine, PP-R,
purpuride, rubropunctatin, ZG-1494α

 CBS 133447 Glauconic acid, purpuride

 CBS 133442
Glauconic acid, monascorubramin, purpuride,
rubropunctatin

 CBS 113153
glauconic acid, mitorubrin,
monascorubramine, monascorubrin,
purpuride

 CBS 113139 monascin, monascorubramine

 IBT 3933
glauconic acid, mitorubrin, monascorubramin,
a purpactin

 IBT 20955
glauconic acid, monascorubramine,
monascorubrin, purpuride, ZG-1494α

 IBT 23082 PP-R (only tested for Monascus pigments)
 CBS 133443 glauconic acid, monascorubramine, purpuride
 CBS 133449 glauconic acid, monascorubrin, purpuride

 JCM 23216
Glauconic acid, monascorubramine,
purpuride

T. albobiverticillius CBS 113168
mitorubrin, mitorubrinic acid,
monascorubramine, PP-R, rubropunctatin,
vermicellin

 CBS 313.63
mitorubrin, monascorubramin,
monascorubrin, rubropunctatin

 IBT 4466
mitorubrinic acid, monascorubramine, a
purpactin

 CBS 113167
mitorubrin, mitorubrinic acid, monascorubrin,
a purpactin

 CBS 133444 mitorubrin, mitorubrinic acid, mitorubrinol

 CBS 133452
mitorubrin, mitorubrinic acid,
monascorubramine, rubropunctatin

 CBS 133441
mitorubrin, mitorubrinic acid, monascin,
monascorubramin, rubropunctatin, vermicellin

9.5–12.5 × 2.5–3 µm; Conidia rough walled, ellipsoidal, 2–3.5 ×
1.5–2.5 µm.

Talaromyces albobiverticillius (H.–M. Hsieh, Y.–M. Ju &
S.–Y. Hsieh) Samson, Yilmaz, Frisvad & Seifert, Studies in
Mycology 70: 174, 2011. MycoBank MB560683 (Figure 7)

Type. BCRC 34774
CYA 25 °C 7d: Colonies 15–20 mm in diameter, low,

crateriform, in some isolates sulcate; margins narrow (1–2
mm), entire, low; mycelia white and yellow; texture floccose to
velvety; sporulation sparse, in some isolates moderately dense;
conidia en masse when sparse white, otherwise greyish green;
exudates red small droplets; soluble pigmentation red; reverse
coloration dark cherry red.

MEA 25 °C 7d: Colonies 24–28 mm in diameter, low,
crateriform, in some isolates sulcate; margins wide (2–3 mm),
entire, low; mycelia white and yellow; texture velvety with
overlaying floccose in the centre; sporulation sparse, in some
isolates moderately dense; conidia en masse when sparse
white, otherwise greyish green; exudates clear and red
droplets; soluble red pigment absent; reverse coloration dark
red.

YES 25 °C 7d: Colonies 23–25 mm in diameter, raised at
centre, sulcate; margins wide (2–3 mm), entire, low; mycelia
white and yellow; texture velvety; sporulation sparse, in some
isolates moderately dense; conidia en masse when sparse
white, otherwise greyish green; exudates small orange to red
droplets; soluble pigment red in some strains; reverse
coloration red to pale brown.

CYAS 25 °C 7d: No growth.
CREA 25 °C 7d: Colonies 4–8 mm in diameter, no acid

produced.
OA 25 °C 7d: Colonies 25–28 mm in diameter, low, plane;

margins wide (3–4 mm), entire, low; mycelia white; texture
velvety; sporulation sparse to moderately dense; conidia en
masse when sparse white, otherwise greyish green; exudates
absent; soluble pigment absent; reverse coloration red in the
centre and the rest greenish yellow to green.

DG18 25 °C 7d: Colonies 15–35 mm in diameter, low, plane;
margins narrow (1–2 mm), entire, low; mycelia white; texture
velvety; sporulation sparse; sparse to moderately dense;
conidia en masse when sparse white, otherwise greyish green;
exudates clear to red droplets; soluble pigment red in some
isolates absent; reverse coloration brownish red, in some
isolates beige.

Conidiophores strictly biverticillate, subterminal branches
absent; stipes smooth walled, 200–380 × 2.5–3.5 µm; metulae
in verticals of 3–6, 8–12 × 1.5–4.5 μm; phialides acerose, 3–7
per metula, 8–13.5 × 2–3 μm; conidia smooth to finely

Table 4 (continued).

a Strains examined by both HPLC-DAD and UHPLC- -HRMS
b Extrolites identified by UHPLC- -HRMS
* The extrolites only identified by HPLC-DAD might in some cases not be the
actual metabolite but a derivative with the same chromophore and retention on the
column
doi: 10.1371/journal.pone.0084102.t004
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Figure 6.  Morphological features of Talaromyces atroroseus sp. nov. CBS 133442.  a: Colonies incubated on CYA, CYA
reverse, MEA, MEA reverse, YES, YES reverse, CREA and OA from left to right b: Colony texture on MEA, c–g: Conidiophores
produced on MEA; h: Conidia. (– Scale Bar in c = 50 µm, in g = 10 µm and applies to d–h).
doi: 10.1371/journal.pone.0084102.g006
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Figure 7.  Morphological features of Talaromyces albobiverticillius CBS 133440. : Colonies incubated on CYA, CYA
reverse, MEA, MEA reverse, YES, YES reverse, CREA and OA from left to right b: Colony texture on MEA, c–f:
Conidiophores produced on MEA; g: Conidia.  ( – Scale Bar in c = 50 µm, in f = 10 µm and applies to d–g).
doi: 10.1371/journal.pone.0084102.g007
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roughened, spheroid to subglobose, in some isolates fusiform,
2–3.5 (4) × 1.5–2.5 μm.

Conclusion

Talaromyces atroroseus is a new species that produce large
amounts of red pigments that can be potentially used for
colouring foods, as it does not produce any known mycotoxins.
Certain strains of T. albobiverticillius may also be used for
these purposes.

Supporting Information

Table S1.  Table S1 contains the extrolites searched for by
ultra high performance-liquid chromatography-diode array
detection-high resolution mass spectrometric detection
(UHPLC-DAD-HRMS) the fungal extracts analysed. The
table also includes data on the available standards used in the
study.
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