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Abstract

Background and Aim: A close relationship between phosphoglycerate kinase 1 (PGK1) and the CXCR4/SDF1 axis
(chemokine receptor 4/stromal cell derived factor 1) has been shown for several cancers. However, the role of PGK1 has not
been investigated for neuroblastoma, and PGK1 might be a therapeutic target for this tumor entity. The aim of the current
study was to evaluate the role of PGK1 expression in neuroblastoma patients, to determine the impact of PGK1 expression
levels on survival, and to correlate PGK1 expression with CXCR4 expression and bone marrow dissemination.

Materials and Methods: Samples from 22 patients with neuroblastoma that were surgically treated at the University
Medical Center Hamburg-Eppendorf were evaluated for expression of PGK1 and CXCR4 using immunohistochemistry.
Results were correlated with clinical parameters, metastases and outcome of patients. Immunocytochemistry, proliferation
and expression analysis of CXCR4 and PGK1 were performed in neuroblastoma cell lines.

Results: PGK1 is expressed in neuroblastoma cells. PGK1 expression is significantly positively correlated with CXCR4
expression and tumor dissemination to the bone marrow. Moreover the expression of PGK1 is significantly associated with a
negative impact on survival in patients with neuroblastoma. PGK1 is downregulated by inhibition of CXCR4 in
neuroblastoma cells.

Conclusion: PGK1 appears to play an important role for neuroblastoma, predicting survival and tumor dissemination.
Further in vivo studies outstanding, it is a candidate target for novel therapeutic strategies.
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Introduction

Neuroblastoma arises from sympathetic neuroblast cells derived

from the neural crest and is the most frequent solid tumour in

childhood outside the central nervous system [1,2]. The tumor can

combine characteristics of its originating cells, with extensive

heterogeneity, pluripotential differentiation and migratory abili-

ties, leading to wide range of clinical presentation from sponta-

neous regression to fatal progression and dissemination to

privileged sites [3,4]. The outcome strongly correlates with clinical

factors (e.g. age, stage and chromosomal aberrations), but the

overall survival of patients suffering from this tumour entity is good

[5]. The prognosis of high-risk neuroblastoma with disseminated

disease (International Neuroblastoma Staging System stage IV) is

still poor [5–11].

Besides lymph node involvement, metastastic dissemination in

advanced stages of highly malignant neuroblastoma occurs most

frequently to bone marrow, bone, liver, and skin [6–12].

Metastastic homing involving the tumor cells as well as the target

tissue still remains an unsolved and intriguing question [13,14].

It has been proposed that the chemokine receptor CXCR4 is

involved in the mechanisms by which neuroblastoma cells

metastasize to specific sites [15,16]. A higher expression of

CXCR4 was found in primary neuroblastoma from patients with

high-stage disease and in patients with bone marrow metastases.

Clinical outcome in patients with high level expression of CXCR4

is significantly worse than in patients with low CXCR4 tumor

expression [17]. It was suggested that neuroblastoma cell homing

to the bone marrow is influenced by the various interactions of the

chemokine receptor CXCR4 and its ligand, the stromal cell-

derived factor-1 (SDF1) [18–23].

It has been shown, that during angiogenesis SDF1 signalling

reduces the expression and secretion of phosphoglycerate kinase 1

(PGK1) [24,25]. PGK1 is an ATP-generating glycolytic enzyme

that forms part of the glycolytic pathway [26] and is regulated by

hypoxia-inducible factor-1a (HIF-1a) [27]. Extracellular PGK1

facilitates the cleavage of plasminogen generating the vascular
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inhibitor angiostatin [28–30], which is known as an important

regulator of an ‘‘angiogenic switch’’ [25]. This determines a close

relationship between the regulation of the CXCR4/SDF1 axis and

PGK1 in prostate cancer [25]. PGK1 also appears to be a crucial

enzyme for peritoneal dissemination of gastric cancer in both

CXCR4/SDF1-dependent and by CXCR4/SDF1-independent

mechanisms, making high levels of PGK1 essential for tumor

growth and metastasis and showing a direct relationship between

PGK1 signalling and CXCR4 [31,32]. These findings support the

importance of cross-talk between glucose metabolism and

chemokine function. This axis might serve as potential therapeutic

option [31,32]. Although the interaction of the CXCR4/SDF1-

PGK1 axis to our knowledge has not been researched for

neuroblastoma, PGK1 might be a possible therapeutic target also

for this tumor entity.

The aim of the current study was to evaluate the role of PGK1

expression in neuroblastoma patients, to determine the impact of

PGK1 expression levels on survival, and to correlate PGK1

expression with CXCR4 expression and bone marrow dissemina-

tion.

Materials and Methods

Patients
Samples from 22 patients with neuroblastoma that were

surgically treated at the University Medical Center Hamburg-

Eppendorf between Juli 2005 and Oktober 2011 were used for this

study. Tumor samples were selected on the basis of availability of

tissues and follow-up data.

Clinical follow-up data were obtained by reviewing the hospital

records, contacting patients on an outpatient basis or by phone

call. Overall survival was calculated from the date of surgery to the

date of death or last follow-up. None of the patients died from a

cause other than neuroblastoma. All tumours were categorised

into groups according to the International Neuroblastoma Staging

System (INSS) [1]. Histological grading was determined according

to Hughes [33]. None of the patients had been pretreated. The

study was approved by the Ethics Committee of the Chamber of

Physicians in Hamburg, Germany. Written informed consent was

obtained from all parents of the patients for the use of the resected

samples and clinical data for research purposes.

Immunohistochemistry
For the immunhistochemistry the HRP-ACE-System from

R&D Systems (Mineapolis, USA) were used. Sections were

counterstained with Mayer’s hematoxylin solution (Merck).

Tumor tissue was identified by hematoxylin eosin (HE) staining.

The CXCR4 staining was performed using the primary rabbit

polyclonal CXCR4 antibody (Abcam, clone 2074, UK) at a

dilution of 1:250. The PGK1 staining was performed using the

primary mouse polyclonal PGK1 antibody (Santa Cruz Biotech-

nology, sc-48342, USA) at a dilution of 1:200. As control sections

were incubated with antibody diluent (DAKO, Denmark) without

primary antibody at 4uC overnight and then treated as other

samples. The immunostaining was scored by two examiners.

Immunocytochemistry, proliferation and western blot
analysis

Neuroblastoma Kelly cells (Sigma-Aldrich, Munich, Germany)

and SH-EP Tet-21/N cells (reported by Lutz et al.[34,35], kindly

provided by G. Eschenburg, Hamburg) were cultivated in RPMI

media containing 10% FCS and seeded in Chamber Slides (BD-

Bioscience, Falcon, USA). After cultivation at 37uC and 7% CO2

for 24 h the cells were fixated with 4% paraformaldehyd and

washed thrice with PBS-Tween solution. Following blocking of

unspecific binding in 3% BSA solution cells were incubated

overnight at 4uC with the primary antibodies for PGK1 and

CXCR4 (see Immunohistochemistry) or antibody diluent as

control. Following washing the cells were incubated with the

secondary antibody labelled with Fitc (AlexFlour 488) at room

temperature for 1 h, washed and mounted with fluorescence

mounting media with DAPI (Dako, Denmark).

Cell proliferation under treatment with AMD3100 was exam-

ined with the Cell Titer 96H Aqueous one solution cell

proliferation assay MTT-Assay (Promega Corporation). In a 96

well plate 5.000 cells per well were plated in RPMI-media

supplemented with 10% FCS and incubated at 37uC with

5%CO2. After 24 h incubation cells received either 20 mg

AMD3100 (Sigma-Aldrich, Munich, Germany) or PBS as control.

48 h after stimulation the MTT-assay were performed according

to manufacture’s protocol and the absorbance was measured in an

enzyme-linked immunosorbent assay reader (Microplate Reader,

Dynatech MR500). Absorbance was related to the starting

concentration. The experiment was repeated at least twice.

Kelly and SH-EP Tet-21/N cells were treated equally for 48 h

with AMD3100 and PBS respectively for protein isolation for

western blot analysis. Cell lysates were prepared in RIPA-Puffer

(Sigma-Aldrich) combined with 100x Halt-Protease-Inhibitor

Cocktail (Thermo-Scientific). The protein concentration was

determined using BCA-Protein-Assay Kit (Thermo-Scientific).

Protein (40 mg) from each cell line and treatment were mixed

with Laemmli-Puffer (5% SDS, 20% Glycerine, 4% b-Mercapto-

ethanol in Tris 0,5 M, pH 6.8, and 1% Bromphenoleblue) treated

for 5 min at 96uC. The samples were loaded on a 10% SDS-Page.

After separation the proteins were electrotransferred to a

nitrocellulose membrane (Thermo-Scientific). The proteins were

immunoblotted using Anti-PGK-1 (Santa Cruz, sc-23802, in a

dilution of 1:500). The bands were detected using the Super Signal

West Dura Extended Duration Substrate (Thermo-Scientific) For

re-blotting, membranes were stripped according to manufacture’s

protocol. An anti-Tubulin antibody (Cellsignaling, in a dilution of

1:3000) served as a control.

Bone marrow analysis
Bone marrow samples were obtained from four different

locations (the anterior and posterior superior iliac crests on both

sides) of neuroblastoma patients at the time of initial diagnosis.

Bone marrow smears were immediately placed on glass slides.

Visualization was achieved by Giemsa staining. Stained slides were

evaluated by two independent examiners, who came to congruent

result in all cases, using standard microsopy. The occurrence of

metastatic cells in at least one location was classified as bone

marrow involvement.

Statistical analysis
The statistical analysis was conducted using SPSS version 13.0

(SPSS, Chicago, IL, USA). A p-value less than 0.05 was defined as

significant. For correlation of PGK1 expression with CXCR4

expression, overall metastases and bone marrow metastases the

Spearman’s-rank-correlation-coefficient was used. Kaplan-Meier

survival analysis and log-rank test were performed to compare the

survival time between groups. For in vitro experiments, the two-

sided t-test was used for significance testing. Normal distribution of

the measured values was proven before. The errorbars in the

barplots represent the standard deviation.

PGK1 as Predictor of Survival in Neuroblastoma
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Results

Patient characteristics
In total, 22 surgically resected pediatric neuroblastoma speci-

mens were included in this study.

The mean age of the patients at the time of operation was 711

days, the mean follow up time 1194 days. Staging and grading are

summarized in Table 1. Metastases had occurred in 59% of the

patients. Bone marrow dissemination was found in 36% of the

patients.

PGK1 expression in neuroblastoma
PGK1 expression of the 22 neuroblastoma specimens was

determined by immunohistochemistry. Fig. 1 shows representative

staining patterns for PGK 1. Lack of staining or weak staining of

PGK 1 (i.e., #20% of tumor cells expressed PGK) was classified as

PGK1-negative expression and moderate to strong staining (i.e.,

.20% of tumor cells expressed PGK1) was classified as PGK1-

positive expression. A total of 7 (32%) of the 22 tumors were

PGK1 positive and 15 (68%) samples were PGK1 negative

(Table 1).

PGK1 and CXCR4 expression
CXCR4 expression of the tumor specimen was determined by

immunohistochemistry. Representative staining patterns for

CXCR4 were shown in Figure 1. Classification of CXCR4

expression was performed analogous to the PGK1 expression

classification mentioned above. A total of 10 (45%) of the 22

tumors were CXCR4 positive and 12 (55%) samples were

CXCR4 negative (Table 1). Of the 10 CXCR4 positive tumors

6 (86%) expressed PGK1, while of the 12 CXCR4 negative cases

only 1 (14%) showed expression of PGK1. A significant positive

correlation of positive PGK1 and positive CXCR4 expression

could be observed (correlation coefficient 0.522, p = 0.008) (Figure 2a).

PGK1 and bone marrow dissemination
All 22 patients were examined for bone marrow metastases.

Bone marrow dissemination was found in 8 (36%) of the patients

(Table 1). In total, metastases were found in 13 patients (59.1%),

which besides bone marrow mainly occurred in lymph nodes and

liver (Table 2). When examining these 13 metastatic cases (overall

metastases), 6 (86%) tumors expressed PGK1, while of the 9 (41%)

Table 1. Patient characteristics.

All patients PGK1+ PGK1-

n = 22 n = 7 (31.8%) n = 15 (68.2%)

Age at operation d (mean) 14–2372 (711.14) 39–2373 (1112.71) 14–1516 (523.73)

Follow up time d (mean) 105–2351 (1194.23) 105–2351 (1194.23) 135–2179 (1260.27)

INSS stage (%) 1 6 (27.3) 1(14.3) 5 (33.3)

2 0 (0) 0 (0) 0 (0)

3 5 (22.7) 1(14.3) 4 (26.7)

4 7 (31.8) 4 (57.3) 3 (20)

4 s 4 (18.2) 1 (14.3) 3 (20)

Hughes grade (%) 1 a/b 3 (13.6) 1 (14.3) 2 (13.3)

2 5 (22.7) 0 (0) 5 (33.3)

3 14 (63.6) 3 (85.7) 8 (53.3)

Metastases Positive 13 (59,1) 6 (85,7) 7 (46.7)

n patients (%) Negative 9 (40,9) 1 (14,3) 8 (53.3)

Bone Marrow Positive 8 (36.4) 5 (71.4) 3 (20)

n patients (%) Negative 14 (63.6) 2 (28.6) 12 (80)

CXCR4 Positive 10 (45.5) 6 (85.7) 4 (26.7)

n patients (%) Negative 12 (54.5 1 (14.3) 11 (73.3)

Survival Dead 4 (18.2) 4 (75,1) 0 (0)

n patients (%) Alive 18 (81.8) 3 (42,9) 15 (100)

doi:10.1371/journal.pone.0083701.t001

Figure 1. Immunohistochemistry for PGK1 and CXCR4. Repre-
sentative images of PGK1 and CXCR4 positive and negative immuno-
histochemical staining of neuroblastoma tissue are shown (20x
standard microscopic enlargement).
doi:10.1371/journal.pone.0083701.g001
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not metastasised cases only 1 (14%) showed expression of PGK1

indicating an association. However a correlation of overall

metastases with expression of PGK1 was not significant (correlation

coefficient 0.379, p = 0.09) (Figure 2b). There was also no correlation

of overall metastases with the expression of CXCR4 (correlation

coefficient 0.941, p = 0.937).

Of the 8 patients with bone marrow dissemination 5 (71%)

tumors expressed PGK1, while of the 14 bone marrow negative

cases only 2 (29%) showed expression of PGK1 (Table 1). A

significant positive correlation of positive PGK1 and bone marrow

dissemination could be observed (correlation coefficient 0.498,

p = 0.018) (Figure 2c).

Impact of PGK1 on survival
We next examined the relationship between PGK1 expression

and survival of patients with neuroblastoma. Overall survival was

analyzed by the Kaplan-Meier method, and the log-rank test was

used for univariate analysis (Figure 3). PGK1-positive expression

in the primary tumor was statistically significantly associated with

poorer overall survival than PGK1-negative expression (p = 0.003).

All 4 (18%) patients that died during the follow-up period showed

PGK1-positive expression of the tumor, while of the 18 living

patients only 3 showed positivity for PGK1.

PGK1 and CXCR4 expression of neuroblastoma cell lines
Kelly and SH-EP Tet-21/N neuroblastoma cell lines were

examined for expression of PGK1 and CXCR4. Kelly cells

showed a strong expression of CXCR4, while SH-EP Tet-21/N

cells not only showed a strong CXCR4 expression but also

expression of PGK1 (Figure 4). Inhibition of the CXCR4 receptor

with 20 mg AMD3100 led to an inhibition of proliferation,

although only SH-EP Tet-21/N cells reached a significant level of

growth reduction. This suggests that the role of CXCR4 for cell

proliferation might depend on the simultaneous overexpression of

PGK1. On examination PGK1 expression levels in western

blotting 48 h after inhibition of the CXCR4 receptor, Kelly cells

retained the weak expression of PGK1, while SH-EP Tet-21/N

cells downregulated their formerly strong expression of the PGK1

protein to a moderate level. This is an indicator for a functional

linkage between the CXCR4 receptor pathway and PGK1.

Discussion

We report here, to our knowledge for the first time, the

expression of PGK1 in neuroblastoma. PGK1 expression signif-

icantly positively correlates with CXCR4 expression, which is

known to be an important player in the tumor biology of

neuroblastoma, and tumor dissemination to the bone marrow.

Moreover the expression of PGK1 is significantly associated with a

negative impact on survival in patients with neuroblastoma.

Role of PGK1 expression
The expression and secretion of the ATP-generating glycolytic

enzyme PGK1 has been shown to be involved in several

physiological mechanism, most importantly angiogenesis and

glucose metabolism, but also metastases under the regulation of

SDF1 and HIF-1a amongst others [24,25,27]. A close relationship

between the regulation of the CXCR4/SDF1 axis and PGK1 has

been shown for prostate cancer [25], influencing the ‘‘angiogenic

switch’’ [25] through the regulation of angiostatin [28–30]. PGK1

also appears to be a crucial enzyme for peritoneal dissemination of

gastric cancer [31,32]. Here, high levels of PGK1 seem to be

essential for tumor growth and metastasis. However, the role of

PGK1 has not been investigated for neuroblastoma, and PGK1

could well be a novel therapeutic target for this tumor entity. In

our current study we describe not only the expression of PGK1 in

about a third of the tumors, but also a negative impact of the

occurrence of PGK1 on survival. This demonstrates the relevance

of PGK1 also for neuroblastoma. As the small sample size of this

retrospective study is the main limitation, prospective studies

should be performed in the future to include more patient material

with immunohistochemical staining of bone marrow samples in an

attempt to confirm the results described here. The downregulation

of PGK1 by inhibition of the CXCR4 receptor indicates a

functional linkage of their pathways. Although further in vitro and

in vivo studies targeting PGK1 should be conducted, the present

results suggest that PGK1 may be a promising therapeutic target.

Interaction of PGK1 with the CXCR4/SDF1 axis
A close relationship between PGK1 and the CXCR4/SDF1

axis is known for several cancers [36–44]. CXCR4 is a seven-

transmembrane G-protein-coupled chemokine receptor. Together

with its ligand SDF1 it promotes progression and metastatatic

homing of a number of malignant diseases including prostate,

Figure 2. Correlation of PGK1 expression with CXCR4 expression, overall metastases and bone marrow metastases. A Significant
positive correlation of positive PGK1 expression with positive CXCR4 expression depicted in a bar chart (correlation coefficient 0.522, p = 0.008). B The
bar chart depicts a positive correlation of positive PGK1 expression with overall metastases without reaching the significance level of 0.05 (correlation
coefficient 0.379, p = 0.09). C Significant positive correlation of positive PGK1 expression with bone marrow dissemination depicted in a bar chart
(correlation coefficient 0.498, p = 0.018).
doi:10.1371/journal.pone.0083701.g002

Table 2. Metastatic sites.

Metastatic site (n = 13 patients) number of patients percentage of patients (%)

Lymph nodes 7 31.8

Liver 6 27.3

Bone marrow 8 36.4

Bone 1 4.5

Continuous spread to pancreas 1 4.5

Continuous spread to muscle 1 4.5

doi:10.1371/journal.pone.0083701.t002
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non–small-cell lung, pancreatic, breast, gastric and esophageal

cancer [36–44]. In the studies on gastric cancer a direct

relationship between PGK1 signalling and CXCR4 is observed

and supports the importance of interaction between glucose

metabolism and chemokine function [31,32]. Therefore the

authors conclude that the CXCR4/SDF1-PGK1 axis might serve

as a potential therapeutic target [31,32]. Our in vitro results suggest

that in neuroblastoma cells CXCR4 in combination with

overexpression of PGK1 also plays a role in cell proliferation.

The positive correlation of PGK1 and CXCR4 expression in

neuroblastoma patients as well as the downregulation of PGK1

through inhibition of the CXCR4 receptor, which we found in our

Figure 3. Overall Survival. For Kaplan-Meier survival analysis patients were grouped according to positive and negative PGK1 expression. All
patients that died during the follow-up period showed positive PGK1 expression, while none of the PGK1 negative patients died. Overall survival of
neuroblastoma patients with a PGK1 negative expression was significantly better than that of PGK1 positive patients (p = 0.003).
doi:10.1371/journal.pone.0083701.g003

Figure 4. PGK1 and CXCR4 expression, proliferation and inhibition of CXCR4 of neuroblastoma cell lines. Kelly (A) and SH-EP Tet-21/N
(B) neuroblastoma cells were immunostained for PGK1 and CXCR4 expression (Immunohistochemistry). Both cell lines show a positivity for CXCR4
and react to treatment with 20 mg AMD3100 with an inhibition of proliferation (MTT-assay), although only SH-EP Tet-21/N cells reach a significant
level of growth reduction. On examination of PGK1 protein expression levels (Western blot) after 48 h of CXCR4 receptor inhibition, treatment with
20 mg AMD3100 leads to a downregulation of PGK1 protein (45 kDa) in SH-EP Tet-21/N but not in Kelly cells. Tubulin (55 kDa) served as control.
doi:10.1371/journal.pone.0083701.g004
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in vitro studies, are indicators for a causal interaction between the

PGK1 pathway and the CXCR4/SDF1 axis.

Dissemination to the bone marrow
Although, in spite of extensive research, the mechanisms of

metastasis and tumor cell homing are still poorly understood, it is

known that certain types of cancer preferentially metastasize to

particular sites [45]. A major preferential metastatic site for several

types of cancer, including breast and prostate carcinoma as well as

neuroblastoma is the bone marrow [3,7,8,10,11,46,47]. In

neuroblastoma, dissemination to the bone marrow can be detected

in approximately 65% of children diagnosed with stage IV disease

using a standard morphologic examination of aspirates and

biopsies [8,11]. Patients with very high risk disease can be

identified by quantification of neuroblastoma cells in bone marrow

[8,11].

In addition to its critical role in tumor cell growth, survival and

angiogenesis in multiple cancers, the CXCR4/SDF1 axis has been

shown to mediate homing and metastatic secondary growth in

SDF1-producing organs, such as liver and bone marrow

[24,48,49]. It was hypothesised that the CXCR4 receptor

participates in the metastatic homing of tumor cells to the bone

marrow through secretion of SDF1 by the bone marrow stromal

cells [20,38]. It also has been shown that the CXCR4 receptor

plays a role in the bone metastasis of prostate carcinoma [42], and

in the bone marrow metastasis of myeloma and neuroblastoma

cells [15,50]. Recent reports indicate that CXCR4 is commonly

expressed on neuroblastoma metastases in the bone marrow and

that it may be actively contributing to neuroblastoma tumor cell

homing to the bone marrow [16,51]. However, the role of the

CXCR4/SDF1 axis in the complex processes of organ-specific

dissemination has been strongly debated [12,51–54]. For example,

an in vitro study of neuroblastoma cell lines as well as patient

samples, CXCR4 could not demonstrate a functional role,

although it was expressed on bone marrow metastases [52]. A

further study found that the CXCR4/SDF1 axis strongly

enhances cell growth without increasing in vivo invasion in

neuroblastoma progression [12]. This makes PGK1 an interesting

independent indicator for tumor cell dissemination.

CXCR4 expression is increased by HIF-1a [55], and a study

revealed higher expression of HIF-1a in breast carcinomas of

patients with bone marrow metastasis [56]. Whether HIF-1a has a

role in the metastasis of neuroblastoma cells is yet to be

determined. However, HIF-1a plays an important role in the

regulation of PGK1 [27], and makes further functional investiga-

tion desirable. The positive correlation of PGK1 with bone

marrow metastases combined with the negative impact on survival

we found in our study is an indicator that PGK1 might serve as an

independent factor in the complex homing of neuroblastoma cells

to the bone marrow.

Conclusion
The expression of PGK1 is significantly associated with a

negative impact on survival and tumor dissemination to the bone

marrow in patients with neuroblastoma. PGK1 expression

positively correlates with CXCR4 expression in neuroblastoma

patients and is downregulated by inhibition of CXCR4 in

neuroblastoma cells. Our data indicate that PGK1 plays an

important role in neuroblastoma tumor growth and dissemination.

Further in vivo studies outstanding, it is a candidate target for

novel therapeutic strategies.
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