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Università degli Studi di Napoli ‘‘Federico II’’, Napoli, Italy, 3 Istituto Nazionale Fisica Nucleare (INFN) - Sezione di Napoli, Napoli, Italy

Abstract

Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself.
The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts,
adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously
developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous
behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without
altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local
spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published
by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through
the ‘‘thought contagion’’ among aware and unaware individuals. The peculiarity of the present approach is that the
awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of
contagion. In particular, the model is validated against the A(H1N1) epidemic outbreak in Italy during the 2009=2010 season,
by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI). We find that,
increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the
agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within
our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due
to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in
influencing the epidemic spreading of infectious diseases.
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Introduction

Understanding the way people interact with each other is one of

the key ingredients for the comprehension of the epidemic

spreading process. Most epidemiological models are indeed

obtained by combining a transmission model with a socio-

demographic model, based either on a microscopic approach, as

in the IBM models [1–4], or on data informed approaches, as

those that make use of large scale surveys on social contacts [5,6].

Typically, the socio-demographic structure and the kind of

interactions among individuals are assumed to remain unchanged

during the epidemic. This assumption, although useful to outline

the problem, is clearly unrealistic. During an epidemic outbreak,

behavioral changes occur, due to both institutional measures

(vaccination campaign, school closure, travel restrictions, etc.) and

self-initiated measures directed to reduce the risk of contagion.

The literature that treats institutionally induced behavioral

changes, is extensive (e.g. [7–13]). The self-initiated behavioral

changes are instead more difficult to be identified and modeled.

On the other hand, it is a matter of fact that, as soon as individuals

perceive the risk of contagion, they tend to be more cautious in

their social contacts, assuming an adaptive behavior. In so doing,

they can alter the socio-demographic structure, increasing the

social distancing, and/or avoiding those kind of contacts that may

enhance their exposition to the virus. These mechanisms

significantly interfere with the progression of the epidemic. As a

consequence, any realistic epidemic model cannot disregard the

interplay between human behavioral changes and the spreading of

the epidemic itself.

In recent literature, there are some interesting works, which

concentrate on the effect of risk perception [14–17]. Evolutionary

game theory is often invoked to model the effect of the human

response to the risk of contagion. In this approach, the behavior is

understood as a strategy with a specific pay-off and the individual

behavioral choice, in front of the risk of contagion, is dictated by a

comparison among the pay-offs of different strategies. This

approach has been adopted to investigate both the response to

voluntary vaccination programs [18–21] and the effect of self-

prophylaxis measures or reduction of physical contacts, which

alter the susceptibility or the exposition to the infection [22,23]. In

Ref. [24], the self-initiated behavioral changes are classified with

respect to (i) the source of the information that induces the

adaptive behavior, which can be either local or global; (ii) the type

of information, which can be based on the effective number of

infected individuals (prevalence based) or independent of the

disease prevalence (belief based); (iii) the effects of the behavioral
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changes, which may include modifications of the epidemiological

state of the individual (e.g. vaccination campaigns), modifications

in the transmission parameters (e.g. prophylaxis procedures),

modifications of the contact network structure (e.g. increased

social distancing).

In Ref.s [25,26], we have recently developed a stochastic SIR

model for influenza spreading on a lattice, which represents the

dynamic contact network of individuals. An age distributed

population is placed on the lattice and moves on it. The

displacement from a site to a nearest neighbor empty site,

according to certain mobility rules, allows individuals to change

the number and identities of their contacts. The model is based on

the social contact hypothesis, i.e. it assumes that the spreading of

an infectious disease is mainly regulated by the average age-

dependent contact patterns of individuals, thus the dynamics

model is designed with the aim to reproduce those patterns [6]. A

simple SIR transmission model, with a nearest neighbor interac-

tion and some very basic adaptive mobility restrictions, comple-

ments the model. The model is validated against the age-

distributed Italian epidemiological data for the influenza

A(H1N1) during the 2009=2010 season, with sensible predictions

for the epidemiological parameters. In particular, the model

reproduces the epidemiological data during the epidemic peak for

all the age-classes. Deviations are found in the descendant phase,

mainly for young people. In Ref. [26], it was suggested that such

deviations could be partly due to self-initiated behavioral changes,

which might have had a non-negligible impact on the progression

of the A(H1N1) pandemic in Italy. During the peak, indeed, the

spread of awareness and fear, due in particular to a strong media

campaign and to the information published by public health

authorities, resulted in individual behavioral changes, able to

reduce the spreading of the disease. In Ref.s [25,26], some disease

adaptive restrictions, that alter the contact network of individuals

during the spreading of the epidemic, were already included. In

particular, we imposed that an infected individual stops moving as

soon as symptoms appear, and that nobody can have contact with

her/him during the symptomatic phase, except those that were

already her/his nearest neighbors at the stop time, representing

the family members in our simplified model. In the framework of

the above lattice model for influenza spreading, here we focus on

the impact of self-initiated behavioral changes that reduce the

susceptibility to the disease, altering the transmission parameters,

as for instance increased hygienic measures and use of face masks.

Awareness and fear of the risk of contagion may spread among

the population in many different ways. Here, we concentrate on

three different mechanisms: 1) the local spread of awareness due to

the presence in the neighborhood of infective individuals, that

renders neighbors aware about the risk of contagion; 2) the global

spread of awareness due, for instance, to the news published on the

mass media and to institutional educational campaigns; 3) the local

spread of awareness occurring through a mechanism of ‘‘thought

contagion’’ [27] similar to that of infectious diseases. Different

scenarios that correspond to different combinations of these

awareness mechanisms are analyzed. Let us emphasize that the

first mechanism for awareness spreading is governed by the

epidemic spreading itself, while the second and third mechanisms

require the introduction of further parameters to establish how the

number of infected individuals influences the global spreading of

concern about the disease, and to fix the probability of thought

contagion. In order to fix these parameters, we adopt a data-

informed strategy. In particular, we use data on risk perception

gathered in Italy by the behavioral risk factor surveillance system

[28]. These data allow to construct a cross-check strategy that put

together epidemiological data and awareness data.

Summarizing, the main motivation of the present paper is to

analyze the interplay between the epidemic spreading of an

infectious disease and the spontaneous behavioral changes of the

population in response to the epidemic itself. In so doing, we adopt

a phenomenological approach, by testing our model both on

awareness and epidemiological data. We show that a better

agreement between simulated and gathered data on awareness

leads to a better agreement also for the epidemiological data.

Furthermore, we show that the crucial mechanism for reproducing

a realistic trend for the awareness spreading among the

population, is the one triggered by the mass media.

Materials

Epidemiological Data
Influnet is the influenza surveillance system in Italy, coordinated

by the Ministry of Health in collaboration with the Istituto

Superiore di Sanità (ISS), the Interuniversity Centre for Research

on Influenza (CIRI), the Regional Health Departments, the

general practitioners and pediatricians and some university

laboratories. This system collects and publishes data on the

influenza spreading on the entire national territory, since the

season 2003=2004, and it is based on nationally organized sentinel

networks of physicians with a coverage of at least 1{5% of the

population. Because every sentinel physician reports the aggre-

gated weekly number of patients seen with ILI, the reporting rate

results to be one per week.

Age-specific influenza-like illness (ILI) incidence data of H1N1

pandemic during the season 2009=2010 are available in the report

[29] with a partition in four age classes (0{4, 5{14, 15{64, over

65 years old). Apart fluctuations, the number of physicians

participating to the surveillance during the H1N1 epidemic, and

correspondingly the number of patients, is stable during the period

between 40-th and 53-th week, considered for our simulations.

Data on Risk Perception
The existence of a behavioral risk factor surveillance system in

Italy (known as PASSI, Progressi delle Aziende Sanitarie per la

Salute in Italia) [30], allowed to analyze knowledge, attitudes and

behaviors of the adult population (18{69 years) regarding the flu

pandemic A(H1N1), starting from the peak of the outbreak to the

end of the epidemic. In Ref. [28], authors show the trend over

time of different indicators, which describe awareness and concern

of the population about the risk of contagion. The most relevant

indicators, as the perception of high risk of being infected, and the

worry about the pandemic, as expected, are decreasing functions

of time (dropping roughly from 45 % of the interviewed persons at

the peak, to respectively 20% and 15%, three months later).

Interestingly, a high percentage of individuals were aware of the

main hygienic measures to control the virus spread (the aware

people, averaged over the considered period, was roughly 93% of

the interviewed persons). Thus, this study proves the effectiveness

of the Government informative campaign, centered on the

adoption of effective hygienic measures for preventing the

influenza spreading, and confirms the idea that behavioral

changes, directed to the reduction of the susceptibility to the

disease, might have had a role in the spreading of A(H1N1)

influenza in Italy. According to Ref. [28], it seems instead that

social distancing had a definitely minor impact on the epidemic

spreading, since the percentage of individuals that in the same

period declared to have restricted their activity out of home was on

average roughly 16% of the interviewed persons. This justifies our

focusing on behavioral changes that induce the reduction of

Epidemic Spreading and Behavioral Changes
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susceptibility of aware people, rather than structural changes of the

contact network among individuals.

Mass Media Coverage
Italian media devoted intense attention to the epidemic

spreading, especially during the peak. In order to have a

quantitative understanding of this phenomenon, we performed

an analysis of the number of articles, mentioning the term ‘H1N1’,

which appeared from week 17 (20{26 April) to week 52 (21{27
December) on the top four national newspapers: Corriere della Sera,

La Repubblica, La Stampa and Il Sole 24 ore, which cover the 48% of

the overall newspaper circulation in Italy. Data from TV and

Radio are not included in the present analysis. The results are

plotted in Fig. 1. From the data collected, it emerges that the 32%
of the overall news, published in the observed time window of 36
weeks, was concentrated only in 3 weeks (from week 44 to week

46), which indeed correspond to the epidemic peak. Moreover, the

distribution of the news in Fig. 1 follows a discontinuous path, with

the alternation of periods of alarmism and quiet. During the spring

(weeks 18{19), the first laboratory confirmed cases were reported

in Europe (first in Spain and UK, and then in many other

European countries). The first ascertained case in Italy was

reported on the 3-rd of May. At the same time, the OMS

upgraded the classification of the H1N1 from Phase 3 to Phase 4
(from small clusters to community level outbreak) on April, 27th

2009, and up to Phase 5 (human-to-human spread of the virus into

at least two countries in one WHO region) on April, 29th 2009.

These events called the attention of the media on the H1N1,

generating a first peak in the number of news during the spring.

Other moderate peaks of information were observed during the

summer, in correspondence of very specific events (the first death

of an Italian individual living abroad, adolescents and young

people contracting the infection while they were attending English

holidays courses abroad, the announcement of a possible delay in

the opening of schools, etc.). However, a systematic presence of a

high number of daily news on the H1N1 is observed only in fall,

during the outbreak of the epidemic. Furthermore, the analysis of

the news published before the school opening (mid of September),

shows that they mainly focused on international aspects, rather

than local ones, while those published during the peak clearly

focused on the local outbreak, and in particular, on the massive

spread of the disease among children in schools, and on death

cases. In particular, analyzing the content of the news reported by

the newspapers, we explicitly checked that the number of news

that mentioned all three terms ‘H1N1’, ‘children’ and ‘school’ in the

time window from October, 20th to November, 20th (roughly

from week 43 and half to week 48 and half) was triple with respect

to the one of the previous 4 weeks, when schools were already

open but the number of cases was still small. A careful analysis of

the correlation between media coverage and risk perception, with

the inclusion of data on other media (e.g. TV and Radio) will be

discussed in a forthcoming paper.

The Model

In this section, following Ref.s [25,26], we briefly illustrate the

baseline model for influenza spreading. Then, we introduce the

self-initiated behavioral changes and discuss the impact on the

epidemic spreading.

Contact Network Dynamics
The model is an attractive lattice-gas on a D dimensional lattice

[25,26]. The population is distributed on the lattice according to

the age group densities of a specific country. In particular, the

lattice is occupied by N individuals of 4 different types, labeled by

the index a~1, 2, 3, 4, corresponding respectively to the age

groups, 0{4, 5{14, 15{64 and over 65 years old. Contacts and

transmission of the infection occur only between nearest neighbors

on the lattice. Notice that no notion of distance is defined on the

lattice, which instead represents the dynamic contact network of

individuals. The existence of empty sites allows individuals to

change the identities (and eventually the number) of their

simultaneous contacts by moving from a site to a nearest neighbor

empty site, which corresponds to move from a certain environ-

ment/social group to another (e.g. from work to home). The

dynamics is governed by an attractive interaction among

individuals of the same age class, and the parameters of the

model are chosen so that the overall daily number of contacts

reproduces the corresponding Polymod data in each age class [6].

In details, defining the nearest neighbor effective number,

Nage(1), of the individual located at the site 1, and belonging to a

certain age class, as the total number of nearest neighbors

belonging to the same age class, one can define the following

algorithm. At each step of the dynamics:

1. choose at random an individual (located at the site 1), and a

nearest neighbor destination site (2), on the lattice. If the site 2
is occupied, another individual is randomly chosen. The

probability that the randomly chosen site 2 is empty depends

on the local occupation density, increasing as the crowding

decreases;

2. if the site 2 is empty, try to move the individual from the site 1
to the site 2 with the probability:

T(1?2)~ minf1,ebage½Nage(2){Nage(1)�g: ð1Þ

The movement from the site 1 to the site 2 occurs with

probability 1, if the number of nearest neighbors in the same age

class increases or remains constant, otherwise it occurs with

probability

T(1?2)~e{bage jDNage j: ð2Þ

with jDNagej~½Nage(1){Nage(2)�. Thus, the probability for an

individual to move from the site 1 to a randomly chosen nearest

neighbor site 2 is given by the probability that the site 2 is empty,

times T(1?2), where the first term favors spacing and the second

one instead crowding.

The parameters, bage, are the age-dependent inverse mobilities,

and play the role of assortativity regulator. In our simulations, they

are fixed so as to reproduce the data on the number of total (both

physical and non-physical) age-dependent daily contacts, furnished

by the Polymod large scale survey [6], in which the contact

patterns, relevant for infections transmitted by the respiratory or

close-contact route, were acquired in 8 EU countries. For further

details on the role of bage in the dynamics of individuals we refer to

Ref. [26].

The model, which we use to simulate the contact network

dynamics, was borrowed from the Statistical Mechanics. In that

context, lattice models are usually studied using numerical

simulations, employing Metropolis algorithm. A lattice-gas is a

system of N particles distributed on a lattice. Usually, each site of

the lattice can be occupied only by 1 particle and nearest neighbor

particles interact via an attractive potential. Here, we generalize

this model considering particles belonging to 4 different classes:

Epidemic Spreading and Behavioral Changes
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particles of the same type attract each others with a strength

proportional to bage, while particles of different types interact only

by means of the excluded volume (i.e., a lattice site cannot be

occupied by two or more particles simultaneously). Using a

Hamiltonian formalism, this model is described in terms of a

specific mathematical operator (the Hamiltonian), which gives the

energy of the system:

bH~{
X4

age~1

bage

X

SijT

n
age
i
:nage

j with ni~0,1 ð3Þ

where the sum SijT runs over the nearest neighbor site SijT, the

index i[f0,:::,LDg and L is the linear size of the lattice, n
age
i is the

age class occupation number of the site i, which is 0, if the site is

empty, and 1, if the site is occupied by one individual of the age

class ‘‘age’’. More details on the Hamiltonian description can be

found in Ref[26].

In such a context, the algorithm here adopted, Eq.(1), is

obtained as a standard Metropolis algorithm for a Hamiltonian

system in the canonical ensemble (i.e., at constant b).

Baseline Transmission Model
The previous model for the population dynamic is coupled with

a SIR stochastic model, in which each individual can be healthy

without immunity (i.e. susceptible, S), infective (I) or healthy with

immunity (i.e. recovered, R). An internal degree of freedom for the

healthy/infective status (Ii~0,1) is associated to each individual,

and a further degree of freedom for susceptible/immune status

(antii~0,1) is attributed to healthy individuals. After a potentially

contagious contact with an infected nearest neighbor, a susceptible

(Ii~0,antii~0) becomes infected (Ii~1,antii~0) according to

her/his specific age class susceptibility, Sage.

The infective individual goes through an asymptomatic phase,

followed by a symptomatic one. During the epidemic, some

disease adaptive rules are over-imposed:

N Infected individuals typically stay at home during the

manifestation of symptoms, reducing their contact network

essentially to the family. This tendency is implemented in the

model by imposing that, at time Ts (where s stays for stop or

symptoms) after the contraction of the infection, the infected

individual stops and does not move until she/he recovers.

N Susceptible individuals tend to avoid contacts with the infected

ones during their symptomatic phase. This tendency is

implemented by imposing that the empty sites, which are

nearest neighbor to symptomatic infected individuals, are

interdict. In other words, symptomatic infected individuals can

only infect their susceptible nearest neighbors at the stop time,

Ts (i.e. the family in our simplified model).

N The neighbors of infected individuals can move without any

restriction.

After a time Tinf since infection, the infected individual acquires

permanent immunity (i.e. develops antibodies), changing the

internal degree of freedom (Ii,antii) from (1,0) to (0,1), and

starting to move again. Each infected individual has her/his own

infective period. In particular, we assume the infective period, Tinf ,

Figure 1. Number of articles, which mentioned the term ‘H1N1’, appearing from week 17 (from April, 20th to April, 26th) to week 52
(from December, 21th to December, 27th) on the top four Italian newspapers: Corriere della Sera, La Repubblica, La Stampa and Il Sole
24 ore.
doi:10.1371/journal.pone.0083641.g001
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and the stop time, Ts, to follow exponential distributions, with the

same parameter values adopted in [26] and reported in Table 1.

The infectivity is taken to be constant during the disease.

This simplification corresponds to disregard the effect of the

viral load in the infection process, which is indeed entirely ascribed

to the immunological status of the susceptible individual. To

disregard the viral load in the transmission process is acceptable

for highly infective disease, as the influenza pandemic. In any case,

the model can be easily upgraded in order to overcome this

simplification, introducing a variable infectivity and a susceptible-

infector dependent transmission rate.

Introduction of self-initiated human behavioral changes
In this section, we consider the interplay between human

behavioral changes and epidemic spreading. We focus on self-

initiated behavioral changes that reduce the susceptibility to the

disease without altering the contact patterns among individuals.

The only modifications of the structure of the contact network are

the adaptive mobility restrictions already included in the baseline

model.

Susceptible individuals, which become aware of the risk of

infection, adopt a protective behavior in order to reduce the risk of

contagion (increased hygienic measures, use of face masks, etc),

which may alter the type but not the number of contacts. We

introduce a susceptibility reduction factor x for the aware

individuals with respect to the unaware ones. x is independent

of the age class and equal for each individual. An extra degree of

freedom for the awareness status (Ai~0,1) is associated to each

individual. After a potentially contagious contact with an infected

individual, an aware susceptible individual becomes infected

according to the reduced susceptibility Saw
age~x:Sun

age, with

0vxv1. We also introduce a memory effect such that aware

individuals lose their awareness after a time ta, which is

exponentially distributed with average awareness time ta (reported

in Table 1), and a truncation of the distribution at 5ta.

We consider three different mechanisms of awareness spread-

ing.

N I mechanism (Awareness at local level - Prevalence Based).

Individuals that are nearest neighbors of infected symptomatic

ones, become aware and acquire state of awareness Ai~1.

The awareness induces individuals to adopt preventive

measures with the effect of reducing their susceptibility to

the values Saw
age. In this case, the information which induces

awareness is prevalence based and locally available, according

to the classification in [24].

N II mechanism (Awareness at global level - Prevalence Based).

The global spread of awareness, due to the news about the

progress of the epidemic published by the mass media, or to

institutional educational campaigns, induces people to change

their behavior. We consider a prevalence based mechanism of

awareness spreading, triggered by the globally available

information. In particular, at each time t, the state of

awareness Ai~1 is attributed to a number of randomly

chosen individuals, NA(t), depending on the total number of

infected individuals by the following relation:

NA(t)~a(1{e{d�I(t)) ð4Þ

where d and a are fitting parameters, and I(t) per mil is the

fraction of the infected individuals at time t. Eq.(4) recalls

Eq.(7) of Ref. [17], for lS?SF
, which represents the rate, at

which susceptibles acquire awareness in a similar behavior-

disease coupled model with a global mechanism of awareness

spreading triggered by mass media. Adopting Eq. (4), we

obtain that NA(t) is maximum when I(t) is also maximum. In

this way, we implicitly assume that the time evolution of the

information spread by the media, is functionally dependent on

the time evolution of the number of infective individuals,

without any temporary effect of amplification or falsification.

The alert phase lasts until the end of the epidemic.

N III mechanism (Awareness at local level - Belief based). With

the ‘‘thought contagion’’, an aware individual persuades an

unaware one to adopt a protective behavior in order to prevent

the disease. This contagion mechanism of the state of

awareness takes place among nearest neighbors and is, in all

respects, similar to the contagion of the infectious disease. This

is an example of awareness raising due to a belief based and

locally available information. To include this mechanism, we

adopt the following procedure: when an unaware individual

moves, we check for the status of awareness of the nearest

neighbors. If there is one aware nearest neighbor, the

individual becomes aware (Ai~1) with a certain probability,

pa. The parameter pa represents the probability of becoming

aware after each contact with an aware individual. Thus, in

the case of multiple simultaneous contacts with aware

individuals, the procedure of ‘‘awareness infection’’ is repeated

for each of them. Analogously, when an individual moves, he

spreads his state of awareness to the nearest neighbors with the

same probability. In any case the update of the awareness state

precedes the update of the disease state.

In the following, we consider the case, in which the first

mechanism of awareness spreading due to the contact with

infected individuals works alone (Scenario A). Then, we discuss the

case, in which also the second mechanism of awareness, due to the

global spreading of information through the mass media, is added

to the first one (Scenario B). Finally, we consider the case in which

also the third mechanism of awareness spreading, due to the

contagion of fear, is added to the first two mechanisms (Scenario

C).

Table 1. Parameters of the model fixed a-priori.

Lattice parameters Value

D 6

L 14

r 20%

Epidemiological parameters Value

�TTs 1 day

�TTinf 5 days

Behavioral change parameters Value

�tta 3:5 days

x 0:95

pa 0:0025

For the typical duration of influenza symptoms and asymptomatic phase see for
instance http://www.cdc.gov/h1n1flu/qa.htm.
doi:10.1371/journal.pone.0083641.t001
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Results

In Ref. [26], a population with the age class distribution of the

Italian one (Table 2) was placed on a lattice, with linear size L and

occupation percentage r. A value of r equal to 20% was fixed a-

priori in all the studied cases. This value of r is fixed in order to

balance between the average number of nearest neighbors and the

mobility of individuals on the lattice. Lattices with different

Euclidean dimension D were considered, and L was fixed so that

the number of individuals Np was roughly 1:5:106 for each D (for

D~6, L~14). For fixed D and r, at high enough L, the finite size

effects observed by varying L are negligible. For each D, the

parameters bage and Sage were obtained as the best fit parameters

that allow to reproduce the age-specific physical and non-physical

daily contact numbers of the Polymod survey, and the peaks of the

age specific curves for the H1N1 pandemic in Italy, respectively.

The D~6 model turned out to be the one that better fit the

experimental data (for further details, we refer to Ref. [26]). For

this reason, in the present paper, we focus only on the D~6 case

(which we refer to as reference simulation), and in the following,

we fix all the above parameters at the values chosen in Ref. [26]

for that case (Tables 2 and 1). As in Ref [26], the simulations are

initialized with a density of infected individuals, randomly

distributed on the lattice, which is equal to the 5% of the density

of influenza-like illness (ILI) cases observed at 43th week during

the A(H1N1) pandemic in Italy. This is roughly the smallest value

of initial infected individuals necessary to activate the spreading of

the disease. Below that threshold the infection process immediately

fall off. The simulated illness cases, and their errors, are evaluated

respectively as mean values, and standard deviations, over 32
independent processes. Starting with this simulation, we analyze

what happens when the three mechanisms of awareness spreading

listed in the previous section are included into the model. First, we

consider the case, in which the first mechanism of awareness

spreading due to the contact with infected individuals works alone

(Scenario A). Then, we discuss the case, in which also the second

mechanism of awareness, due to the global spreading of

information through the mass media, is added to the first one

(Scenario B). Finally, we consider the case, in which also the third

mechanism of awareness spreading, due to the contagion of fear, is

added to the first two mechanisms (Scenario C).

In Fig. 2, the density of aware individuals is plotted in the 3
scenarios, starting from the epidemic peak (roughly 46th week),

while Figs 3, 4, 5 show the comparison of the simulated illness

cases by age group 0{4, 5{14, 15{64, over 65 years old, with

the corresponding epidemiological data on the ILI cases and the

reference simulation, in the 3 scenarios respectively. In each case,

the susceptibilities of aware individuals are reduced by a factor x,

starting from the epidemic peak. We choose a reduction factor

x~0:95, corresponding to a 5% reduction of the susceptibilities

(listed in Table 2) of aware individuals with respect to the unaware

ones. Such a value is chosen in order to simulate a slight reduction

of the susceptibility, as the one expected with the application of

basic restrictive hygienic measures. More drastic and efficient

measures, as for instance spontaneous vaccination, are not

considered.

Let us discuss each scenario separately.

Scenario A. In this scenario, awareness is exclusively gener-

ated by the contact with symptomatic infected individuals, and the

time evolution of the awareness density (red line in Fig. 2) is an

outcome of the epidemic spreading. For average awareness time

ta~3:5 days, as fixed here, the awareness density turns out to be

extremely low compared to the PASSI data. Correspondingly, the

epidemiological data are indistinguishable from the reference

simulation, as shown in Fig. 3. If we increase ta (e.g., from 3:5 to 7
days), only a modest growth in the density of aware individuals is

observed, essentially due to the fact that an individual, who

becomes aware at a time t, has a higher probability to be still

aware after 1 week. However, the overall number of individuals,

that acquire awareness during the spreading of the epidemic, does

not change, since it depends only on the time evolution of the

epidemic. As a consequence, the awareness density obtained with

this increased value of ta still remains negligible with respect to the

one given by the PASSI survey, and the effect on the disease is

negligible as well. This is a coherent result within our model,

because the contact with infected symptomatic individuals is quite

rare, as a consequence of the adaptive mobility rules already

present in the baseline model, which on one side prevent

symptomatic infected to move and, on the other side, interdict

the sites that are nearest neighbors to them. Correspondingly, the

effect of the awareness due to this mechanism is unnoticeable, at

least for this value of x. Decreasing the value of the susceptibility

reduction factor, x, one can see that the corresponding data do not

significantly modify, unless one reduces the parameter x to very

small and unrealistic values (at least smaller than 0:25).

Scenario B. In this scenario the global prevalence-based

spreading of awareness, triggered by the mass media and

introduced according to Eq. (4), is added to the local mechanism

already present in the first scenario. In this case, the parameters a
and d in Eq. (4) can be adjusted in order to fit the PASSI data.

We first perform some simulations by varying a and d until we

locate a small region of the parameter space, in which the number

of aware individuals is close enough to the PASSI data. In this

region, we construct a fine grid in the 2 dimensional (a,d)
parameter space, run the simulation and evaluate the number of

aware individuals in correspondence to each point of the grid and

each time ti for which PASSI data are available. The final state,

adopted to run the epidemic, is chosen as the one that minimizes

the x2:

x2~
X4

i~1

(N(ti){NPassi(ti))
2

s2
i

, ð5Þ

where N(ti) are the simulated number of aware individuals, each

obtained as the average value over 32 independent processes,

NPassi(ti) are the corresponding values obtained with the PASSI

survey, and si is the standard deviation

s2
i ~

1

n

Xn

k~1

(N(ti)
k{N(ti))

2, ð6Þ

Table 2. Age Class Parameters.

Age group fa bage Sun
age Saw

age

0{4 0:048 1:035 0:07 0:0665

5{14 0:093 1:05 0:12 0:114

15{64 0:659 0:585 0:019 0:018

z65 0:20 0:825 0:004 0:0038

2nd column: distribution of the Italian population in age classes, ISTAT - 2009;
3rd column: age dependent mobility parameters; 4th column: age dependent
susceptibilities for unaware individuals; 5th column: age dependent
susceptibilities for aware individuals. The susceptibilities of aware individuals
Saw

age are reduced by a factor of 5% with respect to the unaware Sun
age .

doi:10.1371/journal.pone.0083641.t002
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where the sum over k runs over the n~32 identical and

independent processes. In particular, the best fit procedure selects

the values of d and a reported in Table 3. The corresponding

density of aware individuals is compared to the PASSI data in

Fig. 2. The epidemiological curves, plotted in Fig. 4, display a

descendant phase, which is quicker than the one in the reference

simulation. This is particularly true for the 0{4 and 5{14 age

classes, for which the descendant phase becomes closer to the

experimental data.

Scenario C. This scenario includes all three mechanisms of

awareness spreading. Here, the thought contagion has the effect of

amplifying the awareness spreading mainly due to the globally

available information. In this case, the probability of awareness

contagion is a-priori fixed equal to pa~0:0025. Such a small value

is required in order to avoid that the percentage of aware

individuals reaches unrealistically high asymptotic values. Again,

through a best fit procedure, the values of d and a are obtained

(see Table 3). In this case we get an even better agreement with

PASSI data, as shown in Fig 2, and a corresponding slight

improvement in the accordance between epidemiological data and

simulated data, as shown in Fig 5.

Comparing Figs 3–5, one can notice that a better reproduction

of the awareness data of Ref. [28], is accompanied with a better

reproduction of the descendant phase in the epidemiological

curves, which become quicker increasing the number of aware

individuals. This circumstance confirms the hypothesis formulated

in Ref. [26], according to which a possible reason for the

disagreement in the descendant phase for the age group 5{14
could be the self-initiated health care measures carried out by

many Italian families.

It is also interesting to analyze the role of different mechanisms

in reproducing the PASSI awareness plot. As already stated, the

first mechanism is completely marginal, thus we concentrate on

the comparison between the second and third mechanisms. By

keeping fixed the value of pa as in scenario C (pa~0:0025), we

turn off the second mechanism of awareness spreading, due to the

mass media, in order to isolate the contribution of the thought

contagion mechanism. In Fig. 6, the density of aware individuals

obtained in this case (red line) is compared with that of scenario C,

in which all the three mechanisms are active, and PASSI data. We

see that, by turning off the mechanism triggered by the mass-

media, the density of aware individuals, which is always lower than

5%, decreases in time and tends to zero. One may wonder if the

PASSI data could be reproducible without mass media, by simply

increasing the probability of thought contagion pa. However, it

turns out that increasing pa (e.g. pa~0:005,0:0055, data not

shown here) the density of aware individuals still stay lower than

the PASSI density plot and, more importantly, it tends to a

plateau, whose value is an increasing function of pa. For higher pa

(pa~0:01), we find that the density of aware individuals reaches an

unrealistic plateau of roughly 64% of the population. On the

contrary, by turning off the mechanism of thought contagion, and

keeping only mechanisms I and II at work, the awareness curve

(blue line in Fig. 6) follows from below the same trend of the

PASSI one. We conclude that, within our model, the inclusion of

the second mechanism of awareness spreading due to the mass

media is crucial for obtaining the trend of the PASSI plot.

Summarizing, we find that

N Scenario A does not allow to reproduce a realistic curve for the

awareness density, i.e. the PASSI data [28]. This result is

Figure 2. The density of aware individuals in the 3 scenarios is compared with the data gathered by the PASSI survey [28], courtesy
of the authors.
doi:10.1371/journal.pone.0083641.g002
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consistent with the fact that the contact with a symptomatic

infected individual is a rare event in our model, because the

adaptive mobility rules prevent symptomatic infected individ-

uals to move, and interdict their nearest neighbor sites. Thus,

the spreading of awareness through this mechanism is quite

marginal. Consistently, the comparison between the simulated

epidemic curves and the reference simulation shows that they

are indistinguishable. An appreciable displacement from the

reference simulation can only be obtained for unrealistic

reductions of the susceptibilities of aware individuals with

respect to the unaware ones.

N Both scenario B and C allow to roughly reproduce the PASSI

awareness density plot, with the appropriate choices of the fitting

parameters d and a in Eq. (4) (d~0:65 and a~0:126 day{1 in

Scenario B and d~0:6 and a~0:079 day{1 in Scenario C).

N In scenario B and C, the comparison between the simulated

epidemic curves and the reference simulation shows that, as

expected, increasing the awareness, the descendant phase

becomes quicker and quicker and the epidemiological data are

better reproduced.

N The comparison between the epidemic curves obtained in

scenario B and C (Figs 4 and 5) shows that, in spite of the

specific mechanisms, which cooperate to generate the expected

awareness, as far as the same density of aware individuals (i.e.

the PASSI data) is obtained, the epidemic curves do not

significantly differ from each other.

N The simulations realized by turning off the II mechanism of

awareness contagion show that the global spreading of

awareness triggered by the mass-media is crucial to reproduce

the specific trend of the PASSI curve.

Discussion

In this paper, we propose a very simple model for the epidemic

spreading in an age-structured population with dynamic contacts

and human behavioral changes. The main purpose is to analyze

how the introduction of behavioral responses modifies the

spreading of an infectious disease.

In literature there are several papers that treat the interplay

between epidemic spreading and self-initiated behavioral changes.

Some of them mainly focus on the spreading of awareness through

a mechanism of thought contagion (e.g. [16,31]), others consider

the presence of infected individuals in the neighborhood as the

main reason for awareness raising (e.g. [14,32]), others take into

account also global information mechanisms (e.g. [17,33]). The

novelty of the present study is that we do not fix a-priori one

mechanism of awareness spreading, but consider different

scenarios, and compare the simulated data with available

experimental data on the risk perception. Thus, the identification

of the crucial mechanism comes from the comparison with

available data. We choose to reproduce data on awareness of the

Italian population about the risk of contagion during the

2009=2010 A(H1N1) epidemic outbreak, gathered by the behav-

ioral risk factor surveillance system in Italy (PASSI). Then, we

Figure 3. The simulated illness cases by age group in SCENARIO A are compared with the reference simulation and the
corresponding epidemiological data for the H1N1 pandemic in Italy during the season 2009=2010, furnished by the sentinel
surveillance system Influnet.
doi:10.1371/journal.pone.0083641.g003
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Figure 4. The simulated illness cases by age group in SCENARIO B are compared with the reference simulation and the
corresponding epidemiological data for the H1N1 pandemic in Italy during the season 2009=2010, furnished by by the sentinel
surveillance system Influnet.
doi:10.1371/journal.pone.0083641.g004

Figure 5. The simulated illness cases by age group in SCENARIO C are compared with the reference simulation and the
corresponding epidemiological data for the H1N1 pandemic in Italy during the season 2009=2010, furnished by the sentinel
surveillance system Influnet.
doi:10.1371/journal.pone.0083641.g005
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analyze how the presence of awareness in the population changes

the progression of the epidemic. We find that, improving the

accordance between the simulated and the experimental data on

awareness, a better agreement between simulated and experimen-

tal epidemiological data is also achieved. In particular, we show

that the local and prevalence based mechanism of awareness, due

to the contact with a symptomatic infected individual, is a

marginal mechanism, in our model, whereas the two important

ones are the prevalence based global mechanism due to the

information spread by the mass-media/educational campaigns,

and the one due to the thought contagion among individuals. We

have also shown that, excluding the global information spreading

mechanism, a realistic trend for the awareness density cannot be

reproduced.

There are some limitations which affect this study, besides those

concerning the dynamic and epidemic model, already discussed in

Ref. [26]. In particular, the functional form assumed for the global

spreading mechanism, given in Eq. (4), establishes a functional

relation between the awareness spread by global information and

the disease prevalence. With this choice, we disregard the effect of

possible media misrepresentation or temporary amplification of

the perceived risk of contagion [34], not correlated to the disease

prevalence. In a future work, we propose to further analyze the

data on the media coverage (frequency, duration and space on the

Italian television and newspapers, dedicated to the H1N1), and

make a correlation analysis among these data, the perceived risk of

contagion [35] and the disease prevalence data [36], in order to

check the functional form of Eq. (4). This analysis could help in

identifying further global mechanisms of information spreading,

independent on the disease prevalence, that could have had a role

in raising the awareness of the risk of contagion.

Another limit of our analysis is that the data furnished by the

PASSI survey start from the epidemic peak. This is the reason why

we choose to study the effects of awareness starting from the

epidemic peak too. Indeed, an extrapolation of data at time before

the peak cannot be trusted to describe how the risk was perceived

from the beginning of the epidemic in Italy. In fact, as discussed in

Sect. 0, the alarms launched by the Italian mass media was an

almost discontinuous process, with the alternation of periods of

scaremongering and skepticism. The content of the news also

changed in time, moving from international aspects, during spring

and summer, to the local context, during the epidemic peak. In

this scenario, a declining trend of the risk perception, starting from

the initial phase of the epidemic, seems to be quite unrealistic, if

compared with the newspaper coverage and content. It is instead

reasonable to expect that, even if the knowledge about the

pandemic and the awareness of the main hygienic measures to

control the epidemic spreading were widespread among the

population before the peak, the risk perception increased when

people felt the infection ‘‘close to home’’, i.e. when they perceived

the concrete risk of being infected. Similar analysis on the

Table 3. Fitting parameters.

Behavioral change parameters Value

d (scenario B) 0:65

d (scenario C) 0:6

a (scenario B) 0:126 day{1

a (scenario C) 0:079 day{1

doi:10.1371/journal.pone.0083641.t003

Figure 6. Contributions to the density of aware individuals due to the different mechanisms, compared with the PASSI data for
high risk perception [28], courtesy of the authors.
doi:10.1371/journal.pone.0083641.g006
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correlation between media coverage and risk perception in other

European countries showed that the initial peak of information,

during the earliest stage of the outbreak, was typically not

accompanied by a correspondingly high level of worry (see for

instance [37]). Furthermore it has been shown that the correlation

between media coverage and risk perception increases with the

geographical proximity [38] and when the media report local,

rather than international, news [35].

A further limit comes from the fact that, as previously

emphasized, we only concentrate on behavioral changes that alter

the parameters of the epidemic (i.e. the susceptibility to the disease)

and do not consider the case, in which the effect of the awareness

is a reduction in the number of contacts. Even if in principle it is

hard to say which kind of behavioral response is most likely to be

assumed by aware individuals, in [37] it has been shown that the

exposure to the media campaign on the risk of contagion in UK

increased the perceived efficacy of hygiene behaviors and

decreased the perceived efficacy of social distancing and avoidance

behavior. We believe that the media campaign in Italy had a

similar outcome, as confirmed also by the PASSI survey.

Furthermore, introducing a social distancing mechanism would

lead to a structural modification of the network of contacts.

However the contact patterns in the present model are fixed in

order to reproduce the average daily contact numbers per age-

class furnished by the Polymod large-scale survey. Polymod data

were collected in absence of an epidemic outbreak, so these data

do not allow to reconstruct the modifications that occur during an

epidemic. If data on contact patterns among individuals during an

outbreak were also available, this could allow to include social

distancing effects in our model.

Given the low coverage of pandemic vaccine that has poor

protective effects against the epidemic (e.g. [39]), we decided not to

include the vaccination measure in the present model. However,

this process was already discussed in [26] and could be

straightforwardly included also in this behavioral - disease model.

Finally, it would be very interesting to study the behavior of the

system by varying the parameters, in order to analyze how

different parameters and mechanisms influence the epidemic size,

the timing of the epidemic, and the appearance of multiple waves.

We leave such analysis to future work.
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