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Abstract

Shape string is structural sequence and is an extremely important structure representation of protein backbone
conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and
are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel
approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical
shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and
eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional
random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for
S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or
sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string
prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP
web server and believe it could be employed to provide a solid platform to predict other protein structures and functions.
The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp.
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Introduction

Nuclear Magnetic Resonance (NMR) is a well-established

technique that allows the determination of three-dimensional

biological macromolecule structures in solution. NMR chemical

shifts (CSs) give a strong correlation with local protein structures.

Currently, NMR CS is exploited to predict the secondary and

tertiary structures of proteins in conjunction with computational

approaches. Vendruscolo et al. demonstrated it was possible to use

CSs in combination with conventional molecular mechanical force

field techniques to determine the conformation of proteins [1].

Shen et al. proposed a CS based structure determination protocol

using an empirically optimized procedure to select protein

fragments from the Protein Data Bank (PDB), in conjunction

with the standard Rosetta Monte Carlo assembly and relaxation

methods to generate protein structure [2]. Wishart et al.

constructed a web server to rapidly generate accurate three-

dimensional protein structures using only assigned NMR CSs and

sequence data [3]. Raman et al. showed that structures could be

accurately determined by incorporating backbone CS, residual

dipolar couplings, and amide proton distances into the Rosetta

protein structure modeling methodology [4]. In these studies,

NMR CS was used indirectly as structural restraints to reduce the

search spaces.

Essentially, NMR CS is directly related with the local structure

of the protein backbone. Many studies have demonstrated that an

accurate prediction of protein secondary structures could utilize

NMR CSs and sequence data. Wang et al. performed two-

dimension clustering analyses of NMR CS to identify protein

secondary structures and the redox state of the cysteine residue [5].

Krishnan et al. presented a comprehensive overview of low-

resolution structural determinants to correlate NMR CS data with

protein structural data in order to provide meaningful information

expeditiously [6]. Ikeda et al. presented a method for assigning 13C

CSs and secondary structures from unresolved two-dimensional

NMR spectra by spectral fitting, named reconstruction of spectra

using protein local structures [7].

Besides protein secondary structure, the protein backbone

dihedral angle is also one of the main research areas using NMR

CS. The protein backbone dihedral angle can be expressed by

angle degrees or structure alphabets. TALOS+ [8] was a widely

used program used to establish an empirical relationship between
13C, 15N and 1H CSs with backbone torsion angles W and Y,

which extended the training set of the original TALOS [9] from a

database containing 20 proteins to 200 proteins. Hirst et al.

independently predicted both the secondary structure and the

backbone dihedral angles and combined the results in a loop to

enhance each prediction reciprocally [10]. The dihedral angle

space was divided into eight regions using an unsupervised

clustering technique. Actually, the Ramachandran plot [11] of the

protein backbone dihedral angles had been divided into distinct

regions defined as shape strings [12]. Shape strings are expressed

by eight characters and are considered as structural alphabets.

There are several expressions of the structural alphabets that have

been utilized in protein structural studies. Offmann et al. mined 16

short structural motifs to represent most of the local structural

features of a protein backbone, and developed a protein structural
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comparison method [13]. Koehl et al. used an alphabet of 20

letters, corresponding to four residues, to find structural similarities

between proteins [14]. Tuffèry et al. considered the structural

alphabets as a generalization of the concept of secondary structure

and recognized protein folding with an optimum alphabet size of

27 structures [15]. These coarse representations of protein

structures can be used for structure comparison and sensible

alignment.

In our previous studies, the predicted shape string was explored

as an effective feature to promote the accuracies of predicting a b–

turn [16], a c–turn [17], a unified turn model [18], a DNA-

binding residue [19] and a domain boundary [20]. The shape

string was also considered as a backbone string to reconstruct the

modeling of membrane proteins [21]. Accordingly, we constructed

a web server, DSP [22], to predict the protein shape string from

the sequences based on innovative technologies: a knowledge-

driven sequence alignment and a sequence shape string profile.

Here we demonstrate a new approach, NMRDSP, which is an

extension of DSP and can more accurately predict the protein

shape string based on NMR CSs and structural profiles obtained

from sequence data. A non-redundant set (1,003 entries) was

explored as the training set of NMRDSP. Six NMR CSs (HA, H,

N, CA, CB and C) were collected from the Biological Magnetic

Resonance Bank (BMRB) database and were normalized and

alphabetized. The structural profile of the residues was obtained

from the DSP web server, which used the sequence data. The

normalized and alphabetized NMR CSs and structural profiles

were adopted as features (14 features) to input into a classification

algorithm of conditional random field (CRF). The results confirm

that the NMR CS and the structural profile are the significant

features required for the prediction of the shape string and the

combination of both of them significantly improves the accuracy of

the predictor.

Materials and Methods

Data sets of chemical shifts and protein shape strings
All of the NMR CS data used in the NMRDSP were retrieved

from the BMRB database [23] as of 2013. In the BMRB database,

there were 6,670 entries, in which 4,036 sequences matched PDB

sequences. We used the PISCES program [24] to reduce the

redundancy of the 4,036 entries and determined that there were

no two chains that had more than 25% sequence identity. In total,

1,381 entries were obtained which had both NMR CS data and

three-dimensional structures. These entries were filtered further

manually. We deleted the entries that had incomplete NMR CS

data, incorrect branches, non-standard residues and any dupli-

cates. Finally, 1,187 entries remained. As with TALOS+, six NMR

CSs HA, H, N, CA, CB and C were used in NMRDSP.

We retrieved the shape strings of the sequences obtained from

the above step from the website: http://www.fos.su.se/,pdbdna/

[12]. Due to the intrinsically disordered regions and sequence

breaks, the sequences that had observed shape strings did not

completely match the sequences that had NMR CS data, though

they had the same PDB ID. A program was designed by C#

language to automatically align the residues in the sequences.

However, there were several sequences that could not be

completely aligned. We deleted such entries manually. In total,

we obtained 1,003 entries, which had credible NMR CSs and

observed shape strings. We named the set NS1003 and deposited

these sequences and NMR CSs into the SHIFTY format [25]. The

BMRB IDs and PDB IDs of NS1003 are listed in the

Supplementary Materials S1.

The NS1003 set was divided into two subsets: NS203 and

NS800. We randomly selected 203 entries from the NS1003 set

and constructed an independent testing set. The rest of the entries

were used as a crossover validation set to evaluate NMRDSP.

Normalization and alphabetization of the NMR chemical
shifts

The NMR CS data are pre-processed by normalization and

alphabetization.

The NMR CS data are decimal real numbers, and different

types of NMR CS have different distributions in different regions.

In order to treat all types of NMR CS fairly we initially normalized

the original data into [0, 1] regions using linear transformation.

For a position in the NMR CS data that has been assigned

vacancy, a tag ‘‘N’’ is labeled which is not counted in the linear

transformation. The linear transformation formula is:

xnew ~
xi { xmin

xmax { xmin

ð1Þ

where, xnew is the new value after linear transformation, xi is the

original value of CS, i denotes one type of CS from one of the 20

common amino acids, xmin is the minimum of one type of CSs from

one amino acid and xmax is the maximum of one type of CS from

one amino acid. Therefore, there are 120 xmin and 120 xmax stored

in NMRDSP for linear transformation.

The aim of linear transformation is to make the feature of each

type of CS from each amino acid distribute in equal regions.

Another aim is to prevent outliers. For one of six CS for an amino

acid in a query, if it’s value is greater or less than the maximum or

the minimum, respectively, for a special type of amino acid and a

special type of CS, this value will be set as the maximum or

minimum obtained from the training set.

These linear transformed values are then alphabetized. It is well

known that NMR CS data are often affected by changes in

environmental conditions: pH and temperature for example.

Different environmental conditions cause slight shifts in NMR

CSs. In order to tolerate these variations, we performed

discretization of the NMR CSs. Each linear transformed region

[0, 1], was divided into ten equal sub-regions (Figure 1). The

NMR CS data that belonged to a sub-region were expressed by

the same character in a string (L, A, D, C, Q, M, V, W, P and G).

Adding ‘‘N’’ gave 11 letters for each of six NMR CS features that

were used to express the NMR CS data. The alphabetized features

can be manipulated by CRF.

Shape string and its profile
In most cases, the backbone of a protein can be precisely

described by the Q/y torsion angle pairs of the constituent amino

acids. A shape string is defined as a classified region [12,26] in the

torsion angle space and is a way of coarse grained protein

structural representation. There are eight characters (S, R, U, V,

K, A, T and G) used to record shape states. There may be some

positions of a query sequence that have no available shape string

data. An empty position is expressed as ‘‘X’’, wherein the shape

string is represented by nine characters (A, S, K, R, T, U, V, G

and X). Shape A represents a-helix and shape S represents b-sheet.

Shape K is found at ends of helices or in 310 helices. Shape R is the

polyproline type II structure. The turn region is denoted as shape

T. Shape U and V represent bridge regions. Shape G is special for

glycine. Shape string is a one-dimensional string of symbols, which

can carry more structural information than the classical secondary

A Novel Method of Predicting Protein Shape Strings
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structure representation [27]. Typically, shape T reflects the turn

structure in protein, and predicted shape T could help to identify

the turns [16,17]. The observed shape string can be freely

obtained based on a sequence of known structure from the web

server [12]. We have constructed a DSP web server to accurately

predict the shape strings of protein sequences [22]. DSP has

developed two innovative technologies: a knowledge-driven

sequence alignment and a shape string profile strategy. For a

query sequence, the outputs of DSP are predicted shape strings

and shape string profiles.

In DSP, a hallmark pattern was defined as conservative in both

the sequence patterns and the shape string structures. We initiated

a traversal search for consecutive sequence patterns with sufficient

frequency in a representative non-redundant PDB chain set

(nr0PDB, NCBI MMDB 2009 Dec, 7,775 entries, 0-level non-

redundancy). We developed an algorithm to extract candidate

patterns from unequal length sequences without sequence

alignment. The frequency criterion was set to 100 and 5,667

consecutive sequence patterns were obtained. For each position of

a consecutive sequence pattern, the p-value of the corresponding

shape string of the amino acid was calculated according to a

binomially distributed model. Based on the p-values, we selected

2,761 hallmark patterns with lengths ranging between two and

four residues that typically exhibited conserved structures to

construct a hallmark pattern library. The hallmark pattern

represented remote homology in the sequences and shape strings,

and was an indispensable tool in generating the shape string

profile.

The sequence shape string profile was generated as follows: In

the first step, the query sequence was aligned using PSI-BLAST

[28] against the nr3PDB (NCBI MMDB 2009 December, 3-level

non-redundancy, 40,849 entries in total) resulting in the top N

(default is 10) subjects. We utilized the hallmark patterns to hit the

unmatched fragments and obtain the hit segments. These hit

segments and their flanking amino acids (+S and -S, default is 5)

were aligned together against nr3PDB using PHI-BLAST. The

matched fragments obtained by the first alignment and the shorter

sequences obtained by the subsequent alignments were counted

and stored in eight boxes. Lastly, these boxes constituted a vector

that represents the sequence shape string profile for each residue

and was considered to include the structural hallmark pattern and

shape string evolutionary information. The DSP is described in the

Supplementary Materials S2. The shape string profile obtained

from DSP is termed the DS_Profile in the following text.

Sequence and secondary structure information
Sequence information is expressed by the position-specific

scoring matrix (PSSM). PSSM is constructed from the multiple

alignment of the top-scoring BLAST responses to a given query

sequence [28] and is considered to contain evolutionary informa-

tion of the sequence. PSSM is widely used as an effective feature to

predict protein structure and function. Recently, SPSSM (struc-

tural position-specific scoring matrix) was proposed to improve the

accuracy of the prediction of protein secondary structure [29].

SPSSM is a distinctive PSSM-like profile, which contains

evolutionary information of protein secondary structure. A

description of SPSSM is shown in the Supplementary Materials

S3. PSSM and SPSSM were explored as selectable features in this

study.

Architecture of NMRDSP
The flowchart for NMRDSP is shown in Figure 2. For a

submitted query, in SHIFTY format [25], NMRDSP extracts the

query NMR CS data and the query sequence data. For the

obtained NMR CS data, NMRDSP checks the availability of the

data, and normalizes and alphabetizes the NMR CSs. There are

six alphabet features for each amino acid in the query. For the

obtained query sequence(s), DSP is performed to generate the

Figure 1. An example of normalization and alphabetization of Cystine C NMR CS data. After normalization, the values of NMR CS
distribute from zero to one (horizontal ordinate). After alphabetization, each sub-region is expressed a character (top). The performances of pre-
processing are given in Table 1.
doi:10.1371/journal.pone.0083532.g001

A Novel Method of Predicting Protein Shape Strings

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e83532



shape string profiles. There are eight alphabet features for each

amino acid in the query sequence. When training is performed,

the 14 features of the training sequences are used as an input for

the CRF training program to construct a prediction model. When

testing is performed, the 14 features of a query sequence are used

as an input of the CRF prediction program to predict the shape

strings of the query based on the obtained trained model.

Performance measures
We adopt two criteria to evaluate the prediction performance:

accuracy (S8 and S3) and segment overlap measure (SOV). S8 is

eight-state accuracy and is defined as,

s8i ~
ni
mi

ð2Þ

where ni is the number of correctly predicted the i shape string,

mi is the total number of the i shape string. Eight-state shape string

is mapped to the three states by [S, R, U, V]RS, [A,K] RH and

[T,G] RT as defined by Zhou et al.[27]. S3 is a corresponding

measurement and is calculated as a similar formula like the above.

SOV (Segment Overlap Measure) is a segment overlap measure

and was defined by Zemla et al.[30], and has been selected as one

of the predicted evaluation criteria. SOV is defined as,

Sov(i)~100| 1

N(i)

P
S(i)

minov(s1,s2)zd(s1,s2)
maxov(s1,s2)

|len(s1)

� �
ð3Þ

With the normalization value N(i) defined as:

N(i)~
P
S(i)

len(s1)z
P
S0(i)

len(s1) ð4Þ

d(s1,s2)~minfmaxov(s1,s2)�minov(s1,s2));

minov(s1,s2); int(len(s1)=2); int(len(s2)=2)g
ð5Þ

where, s1 and s2: The two secondary structure assignments

being compared; len(s1): The number of residues in segment s1;

minov(s1, s2) : The length of the actual overlap of s1 and s2;

maxov(s1, s2): If both segments have residues in state i, the total

extent for which either of the segments s1 and s2 has a residue in

state i.

The expected value and its corresponding variance are

determined by bootstrapping: 80% of the targets are randomly

selected 1,000 times, and the average accuracy and the standard

error of the scores are calculated [31].

Results and Discussion

Characteristics of NS1003
NS1003 is a large set, which is compared with previous data sets

and used in predictions of protein backbone conformations based

on NMR CS. We analyzed the characteristics of NS1003. A

comparison of frequency distributions of amino acids and

distributions of sequence lengths are shown in Figure 3.

The PDB NMR set, shown in Figure 3, was collected from PDB

as of 2013. All the structures of the sequences were determined by

NMR experiments. These sequences had a reduced redundancy of

25%. There were 2222 entries in the PDB NMR set. Comparing

the NS1003 with the PDB NMR sets, the distribution of the

numbers of amino acids and the sequence lengths are very similar.

This means that NS1003 is a good representative set of the PDB

NMR data. There are a few sequences whose lengths are longer

than 300 residues, limiting the region of study. We believe that

NMR experiments will be able to relieve this bottleneck.

In the NS1003 set, there are 122,831 residues with defined

shape strings. The distribution of the NS1003 residues in eight-

state shape strings are shown in Figure 4.

The distribution of the numbers of residues in eight-state shape

strings shows that the data is unbalanced in the shape string types.

The number of shape string "A" is predominant. The number of

"S" and "R" are in the middle of the range. This unbalanced data

is a challenge to the multi-classification of the shape strings.

The distribution of normalized NMR CS data in NS1003 for

amino acids is shown in the Supplementary Materials S4. The

distributions of normalized NMR CS data in NS1003 for shape

strings are shown in the Supplementary Materials S5.

Figure 2. The flowchart of NMRDSP. There are four procedures in
the flowchart. The normalization and the alphabetization are pre-
processed of NMR CS data. The DSP is used to generate shape string
profiles. Then 14 features are input for CRF.
doi:10.1371/journal.pone.0083532.g002
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Performances of pre-processing
The pre-processing was performed on the NMR CS data. The

original, normalized and alphabetized NMR CS data was used as

the feature respectively. The results are shown in Table 1.

From Table 1, we can see the performance is improved after

normalization, and the performance is slightly improved further

on S8 after alphabetization. For other measurements (S3 and

SOV), the differences appear in the regions of the variances, so the

alphabetization of NMR CS is used in the NMRDSP.

Selecting NMR chemical shifts
NMR CS is an easily obtained experimental datum. 1H, 13C

and 15N data from proteins are available in several databases,

including the BMRB database [23]. However, NMR CS data of a

sequence are not always complete. This means there may be many

CS positions of residues that are not recorded. For the positions

that have not assigned effective CS values the letter "N" is used.

In NMRDSP only six NMR CS data, HA, H, N, CA, CB and

C, were used as features. To determine the importance of these

features, we used the leave one feature out for cross validation.

Every NMR CS feature was removed one at a time and only once.

It means five validations were carried out, and each used five

features and removed a feature. The result is shown in Table 2.

In Table 2, all measurements are affected compared with using

six NMR CS features (the last line in table 2) when a NMR CS

feature is left out. The performance is the worst when the CA

NMR CS is omitted. This illustrates that CA is the most important

feature for prediction. According to the performances, we rank the

importance as: CA.HA.H.N = CB.C. Although NMR CS

"C" feature is at the end of the ranking, it still contributed 0.23%,

0.27%, 0.18% and 0.37% for S8, SOV8, S3 and SOV3

respectively. The results also correspond with the existed

predictors, such as TALOS+ [8], in which all six NMR CS

features were used. We decide to use all six NMR CSs features to

predict shape string.

Features of NMR CS, sequences and predicted structures
There are many reports to describe the prediction of protein

backbone conformations using sequence and structural features.

Selecting effective features is the key for successfully designing a

protein structural sequence predictor. We summarize our exper-

iments and find that an effective sequence and structure feature of

a residue must be different when the residue appears in different

surroundings. According to this rule there are several candidates of

Figure 3. The characteristics of NS1003. (A) The numbers of amino
acids in the NS1003 and the PDB NNMR set. (B) The distribution of the
sequence lengths for NS1003 and PDB NMR set. These confirm that the
non- redundant NS1003 set can represent the PDB NMR set.
doi:10.1371/journal.pone.0083532.g003

Figure 4. The distribution of the numbers of NS1003 residues
in eight-state shape strings. The number of "A" strings is the most.
The number of "G" strings is the least. The distribution is imbalance.
doi:10.1371/journal.pone.0083532.g004

Table 2. Performances of leave one feature out validations
and using all six features on NS800 (5-fold cross validation, %).

Left feature S8 SOV8 S3 SOV3

HA 61.4160.24 51.0460.28 77.8060.21 65.7160.33

H 61.7160.24 51.2960.29 77.5660.19 65.2660.36

N 61.8460.23 51.9160.29 77.7660.20 65.8860.34

CA 61.1660.23 50.5260.26 76.9060.20 64.5360.33

CB 61.8860.24 51.8560.26 78.1360.21 66.4260.33

C 62.0260.25 52.1760.27 78.260.22 66.4560.31

Six features 62.2560.23 52.4260.27 78.3860.20 66.8260.31

doi:10.1371/journal.pone.0083532.t002

Table 1. Performances on NS1003 set by using the original
NMR CS data, the normalized data and the alphabetized data
(5-fold cross validation, %).

NMR data S8 SOV8 S3 SOV3

Original 56.7560.20 47.0260.26 75.4560.13 58.6860.35

Normalization 61.1860.23 53.0460.27 78.4260.20 66.9560.35

Alphabetization 62.2560.23 52.4260.27 78.3860.20 66.8260.31

doi:10.1371/journal.pone.0083532.t001

A Novel Method of Predicting Protein Shape Strings
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effective features: PSSM, secondary structure, solvent accessibility,

shape string, sequence and structural motif. As a preparatory

study, we explored the PSSM, SPSSM, NMR CS and DS_profiles

as selectable features, which had been confirmed to be effective in

prediction. The results are shown in Table 3.

The performances varied with features. As a feature of sequence

the performance of PSSM is good. It makes the S3 accuracy of

shape string prediction approximate to the Q3 accuracy of

predicting secondary structure based only on sequence informa-

tion. SPSSM gives an improved performance compared with

PSSM. It confirms that the structural information is more useful

for structural prediction. Undoubtedly, NMR CS has greatly

improved the accuracy of shape string prediction in comparison

with sequence and structural features. However, due to influences

of environmental conditions, incorrect assignments and imperfec-

tions of NMR CSs, this performance is not perfect. It is clear that

more effective features are expected.

The DS_Profile performs better than all of the other features

tested. The benefit comes from the knowledge-driven sequence

alignment. The DS_Profile is designed for predicting shape string

[22] and it is not surprising that it is the critical feature for

prediction.

Combination of features
We assessed combinations of different features. The results are

shown in Table 4.

Research was initiated using the DS_Profile feature, and other

features were added successively. The best feature combination

was using the DS_Profile and NMR CS. Using these two types of

features NMRDSP achieved accuracy of 75% for S8 and 86.9%

for S3. Adding PSSM and SPSSM did not improve the

performance of prediction. The results illustrate that using the

DS_Profile and NMR is the best performance for predicting shape

string in the experiments of different feature combinations.

Performance on the independent testing set
NS203 was used as an independent testing set to validate our

approach based on the training set of NS800 and the features

DS_Profile and NMR CS. The performance is shown in Table 5.

We achieved an accuracy of 75.8% for S8 and 87.8% for S3.

From table 5 we can see that the predicted accuracies are

different for different shape string types. For the largest "A" type

(figure 4), accuracy achieves 91.8%, which is the highest accuracy

comparing with other shape string types. On the other hand, due

to the numbers of "V", "U" and "G" are less than the numbers of

other types, their predicted accuracies are less than 40%. The

imbalance affects the performances of multi-class classification.

The other element that affects the performances of a prediction

is the sequence identity between the query and training set. The

sequence identity between the query and training set is the

foundation of machine learning approach. However, if the

sequence identity between the training and the testing is high, it

will cause over-estimation. If the sequence identity between the

training and the testing is very low, the prediction will be near

random guess. Usually, the sequence identity is measured by

distance (according to the definition) between sequence pairs in

sequence space. A robust approach should perform well when the

sequence identity is low, for example less than 25%. The

histograms of the pairwise sequence identities of NS800 and

NS203 are given in Supplementary Materials S6. The indepen-

dent testing set was divided into three classes according to pair

sequence identities. The performances of three classes are showed

in figure 5.

Table 3. Performances of using PSSM, SPSSM, NMR CS and
DS_Profile features on NS800 (5-fold cross validation, %).

Used feature S8 SOV8 S3 SOV3

PSSM 50.9660.22 40.4360.23 65.6260.19 48.2760.28

SPSSM 56.1760.26 43.2460.28 70.8460.24 56.0760.32

NMR CS 62.2560.23 52.4260.27 78.3860.20 66.8260.31

DS_ Profile 71.760.29 64.0660.37 82.0360.25 71.5360.40

doi:10.1371/journal.pone.0083532.t003

Table 4. Performances of different feature combinations on
NS800 (5-fold cross validation, %).

Feature Combinations S8 SOV8 S3 SOV3

DS_Profile 71.760.29 64.0660.37 82.0360.25 71.5360.40

DS_Profile+NMR 75.0060.26 68.1660.51 86.9160.18 78.5760.54

DS_Profile+NMR+SPSSM 74.8760.26 68.0160.51 86.9560.17 78.3660.54

DS_Profile+NMR+SPSSM+PSSM 73.1760.28 66.2860.46 86.0260.19 76.2360.47

doi:10.1371/journal.pone.0083532.t004

Table 5. Performances of NS203 independent testing set (%)
based on NS800 training set.

8-State Accuracy SOV 3-State Accuracy SOV

S 81.5860.52 71.0660.69 S

R 60.7260.81 58.1760.90 S

U 35.7161.08 35.4861.31 S

V 32.5561.20 33.7161.39 S 87.9060.31 80.4760.55

K 38.1961.04 37.7661.14 H

A 91.8560.24 82.3360.59 H 91.760.22 83.5960.50

T 61.4560.86 59.3361.02 T

G 43.1361.50 43.0261.79 T 60.6160.76 59.3960.96

Total 75.8060.29 69.1660.53 Total 87.8160.23 80.5860.43

doi:10.1371/journal.pone.0083532.t005

Figure 5. Performances of NMRDSP, DSP and Frag1D for three
classes of different sequence identities.
doi:10.1371/journal.pone.0083532.g005
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When the sequence identity is not greater than 15%, the S8

accuracy of NMRDSP achieved 76.1%, and the S3 accuracy

achieved 87.6%. When the sequence identity is between 20% and

25%, the S8 accuracy of NMRDSP achieved 76.9%, and the S3

accuracy achieved 88.4%.

We compared our approach with DSP and Frag1D [25] on

the independent testing set. The results are shown in table 6 and

figure 5.

The NMRDSP had an improvement of accuracy (S8) of 4.4%

and 13.9% compared with DSP and Frag1D respectively. It is

indisputable that using NMR CS data can effectively improve the

performance of shape string prediction.

The improvements on accuracies of performances mainly come

from the novel technology: hallmark pattern. Hallmark pattern

was defined as a short fragment that is conservative in both

sequence patterns and shape string structures and could extract

remote homology [22].

NMRDSP web server
The NMRDSP web server was constructed according to Figure

2 and is freely available at http://cal.tongji.edu.cn/NMRDSP/

index.jsp. The software of CRF is CRF++0.54 which is available

at http://crfpp.sourceforge.net/. The training set was NB1003.

The input file format of NMRDSP web server is SHIFTY. The

template file of CRF and the input file format of NMRDSP are

given in the Supplementary Materials S7. The software takes

about one minute to analyze and process a query sequence. The

output of NMRDSP is a downloadable text file which contains the

query sequence(s), predicted shape strings and their probabilities.

Conclusion

In this study we have demonstrated that NMR CS and the

structural profile are significant features for predicting shape

strings, and a combination of both has increased the accuracy of

prediction. The NMRDSP web server has been constructed for

shape string prediction. We believe NMRDSP could be employed

as a solid platform to predict other protein structures and

functions.
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