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Abstract

Using a behavioral finance approach we study the impact of behavioral bias. We construct an artificial market consisting of
fundamentalists and chartists to model the decision-making process of various agents. The agents differ in their strategies
for evaluating stock prices, and exhibit differing memory lengths and confidence levels. When we increase the
heterogeneity of the strategies used by the agents, in particular the memory lengths, we observe excess volatility and
kurtosis, in agreement with real market fluctuations—indicating that agents in real-world financial markets exhibit widely
differing memory lengths. We incorporate the behavioral traits of adaptive confidence and observe a positive correlation
between average confidence and return rate, indicating that market sentiment is an important driver in price fluctuations.
The introduction of market confidence increases price volatility, reflecting the negative effect of irrationality in market
behavior.
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Introduction

The efficient market hypothesis (EMH), defined by Fama [1]

and established as the central proposition of traditional finance

theory, asserts that prices consistently reflect all the information

available to market traders. According to the EMH, investors earn

above-average returns in financial markets by exposing themselves

to greater risk. Thus individuals interacting in financial markets

are assumed to be fully rational and to be maximizers of the

expected utility of their wealth. Although this simplification of

individual behavior has become central in the field of finance, it

cannot explain several important properties of financial markets,

e.g., long memory and fat tails [2–4].

A number of studies have indicated that investors acting in

financial markets exhibit behavior that deviates from the rational

behavior assumed by the traditional EMH. There are several

empirical anomalies observed in financial markets that challenge

the EMH approach to finance, but these can be explained by using

a behavioral finance approach to examine the behavioral biases

present in the decision-making process of investors.

In contrast, psychologists and scientists have documented that

investors interacting in financial markets do not behave in

accordance with the EMH assumption of rational behavior, but

instead systematically violate the principles of expected utility,

Bayesian learning, and rational expectations. Lux et al. [5]

propose that herding patterns partially explain agent behavior,

and a similar mechanism is proposed by Cont et al. [6]. Duffy et al.

[7] propose that social learning among agents was also a factor.

Gabaix et al. [8] assume that trade splitting behaviors among

investors also affect market dynamics. Sato et al. [9] propose a

dealer model based on past prices to help explain the statistical

behavior of price fluctuations.

The recent development of tools utilizing computational

modeling and artificial intelligence has allowed us to create

computational simulation models that are based on the interaction

of autonomous agents with distinct behavioral features. Among the

most important of these are agent-based modeling techniques [10].

Their use enables us to explore the heterogeneous behavior of

economic agents in financial markets and to explain some of the

empirical market behavior that contradicts the EMH, e.g.,

bubbles, speculative movements, financial crisis, excess volatility

of asset prices, and fluctuations in trading volume.

The purpose of this paper is to present an agent-based model

that uses a behavioral finance approach in which the agents

exhibit a behavioral bias in their decision-making process (their

confidence changes in response to their degree of ongoing success,

or lack thereof, in the stock market). Using this recently-developed

analytical methodology we are able to examine how this

behavioral bias impacts financial markets. Note that there are

very few studies that incorporate psychological characteristics into

agent-based models, among them the work of Takahashi and

Terano [11] and Lovric [12]. We contribute to this effort by

examining how confidence levels affect agent behavior and thus

stock price fluctuations. We construct a model based on the Santa

Fe artificial market, but modify it by allowing the agents to form

their expectations based on pre-set rules and distinguishing
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between fundamentalist and chartist behavior patterns. The

approaches taken by the above-cited papers differ from ours—

Takahashi and Terano [11] base their work on a Bayes correction

model and Lovric [12] base theirs on the Levy, Levy, and

Solomon [13] model.

The paper is organized as follows. Section I describes the agent-

based model framework. Section II explains how the expectations

of the agents are determined. Section III gives additional details

concerning the implementation of the model. Section IV describes

the behavioral bias possessed by agents in their decision-making

process. The results of the computational simulations conducted

will then be presented. These simulations allow the analysis of

aggregate financial market behavior when the interaction of

heterogeneous agents with a given behavioral bias is examined.

The last section presents some final considerations.

Methods

Model Framework
Before we can simulate the interaction of heterogeneous agents

in financial markets, we must create an artificial stock market.

LeBaron [14] describes how building an agent-based artificial

financial market involves a number of design problems associated

with the trading environment. In the trading environment of our

artificial stock market N agents decide between two investment

options, (i) a risky asset, i.e., a stock divided into n units that pays a

stochastic dividend dt, or (ii) a free-risk security that pays a

constant interest rate r and that has an infinitely elastic supply.

Time is discrete and is indexed by t, and the time horizon is set

according to the experiments conducted. The dividend dt paid by

the stock at each time period is generated by an exogenous

stochastic process, identical with that described by Arthur et al.

[15] and LeBaron et al. [16], a first order autoregressive process

AR(1),

dt~�ddzr(dt{1{�dd)zEt, ð1Þ

where �dd is the base dividend, Et has a normal distribution with

mean zero and finite variance s2, and {1vrv1. The agents

have identical constant absolute risk aversion (CARA) and a utility

function of wealth, i.e.,

U(Wi,t)~{e{lWi,t , ð2Þ

where Wi,t is the wealth of agent i at time t, and l is the risk

aversion level. Each agent i has the same initial wealth value W0.

For the other time periods, the value of total wealth of agent i at

subsequent time t is determined to be

Wi,tz1~xi,t(ptz1zdtz1)z(1zr)(Wi,t{ptxi,t): ð3Þ

where Wi,t represents the wealth of agent i at time t, xi,t represents

the number of stocks sought by agent i, pt and dt are respectively

the price and dividend of the stock at time t, and r corresponds to

the interest rate of the risk-free asset constant over time.

In this model, each agent tries to optimize their respective

allocation of risky assets and risk-free assets. The task facing each

agent at each time period is maximizing the expected utility of

their wealth,

max E½U(Wi,tz1)�, ð4Þ

subject to the constraint given by Eq. (3). Taking into consider-

ation the utility function of wealth defined in (2), and assuming

that the price and dividend expectations of the agents for a stock

over the next time period are normally distributed with mean

Ei,t(ptz1zdtz1) and variance s2
i,t,pzd , the expected utility of

wealth function deriving from this utility function can be written in

terms of the mean and variance of the possible results. Hence,

according to [17],

Table 1. Values attributed to general parameters.

Parameters Values

Number of Agents 100

�dd 4

dt{1 4

r 0.95

mean Et 0

var Et 0.0742

pt{1 20

r 0.10

b 2000

l 0.5

Wt{1,i 100

Ei,t{1(ptz1zdtz1) 22

s2
i,t{1,pzd

4

xi,t{1 1

g 0.015

k 0.25

h 0.01

doi:10.1371/journal.pone.0083488.t001

Table 2. Testing of the model on different parameter sets.

Usable range Justification

{1vrv1 Ensure stationarity of time series.

1000ƒbƒ3000 bv1000 and bw3000 show high kurtosis in relation to returns and prices when agents are
confident.

0:3ƒl lv0:3 reveals very high kurtosis for returns for different agents with and without confidence.

0vgv0:02 g§0:02 reveals high kurtosis for returns when agents are fundamentalists (100%).

0ƒhƒ0:01 hw0:01 shows very high kurtosis for returns when agents are fundamentalists (100%).

doi:10.1371/journal.pone.0083488.t002

Confidence and the Stock Market
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E½U(Wtz1)�~{

ð
e{lWi,tz1 f (Wi,tz1)dw

~{e{l½E(Wi,tz1){ls2=2�:

ð5Þ

According to the maximization problem, the number of stocks

demanded by agent i defined as xi,t is

xi,t~
Ei,t(ptz1zdtz1){pt(1zr)

ls2
i,t,pzd

: ð6Þ

The number of stocks demanded is thus proportional to the

difference between the agents’ price and dividend expectations for

the next period of time and the current price corrected by interest

rate r, and inversely proportional to the measure of absolute risk

aversion l and the perceived variance of returns s2
i,t,pzd .

The perceived variance of returns, s2
i,t,pzd , is

s2
i,t,pzd~(1{h)s2

i,t{1,pzdzh½ptzdt{Ei,t{1(ptzdt)�2, ð7Þ

where parameter h determines the weight placed on the most

recent square error as opposed to the weight placed on past square

errors. This parameter is of primary importance, for the more

weight agents give to recent deviations, the more their behavior

will become noisy and their trading more volatile.

After determining the optimum number of stocks demanded by

agent i at each time period, the dynamics for determining the

market price, described by Chen and Yeh [18] and Farmer and

Joshi [19], is as follows. Designating bi,t to be the number of stocks

agent i wants to buy at time t, and oi,t the number of stocks agent i

wants to sell at time t, we find that

bi,t~

xi,t{xi,t{1, xi,tw~xi,t{1

0, otherwise,

8><
>: ð8Þ

and

oi,t~

xi,t{xi,t{1, xi,tvxi,t{1

0, otherwise:

8><
>: ð9Þ

Hence

Bt~
XN

i~1

bi,t ð10Þ

and

Ot~
XN

i~1

oi,t ð11Þ

are the demand and supply totals respectively.

Thus the market price of a stock at time t is determined through

a price adjustment in terms of a surplus demand of stocks.

According to Farmer and Joshi [19], a market impact function is

here derived to adjust the stock price. The format of this function

allows the market price to be always positive, i.e.,

pt~pt{1e(Bt{Ot)=b: ð12Þ

Here b represents a scale factor that normalizes the surplus

demand in the stock market and thus minimizes market

fluctuations. The rate of return on stocks in the artificial financial

market consists of two elements:

N Capital Gains: The stock price is collectively determined by all

investors through the interaction between the total supply and

demand in the market.

N Dividends: Distributed by a company at each time period

according to Eq. (1) above.

Figure 1. Evolution of the Dividend and Price of the Stock (Agents 100% Fundamentalist).
doi:10.1371/journal.pone.0083488.g001

Table 3. Descriptive Statistics (Agents 100% Fundamentalist).

Dividend Stock Price Rate of Return

Mean 3.989391968 19.1530035 0.208230248

Median 3.99124 19.1331 0.208019

Standard deviation 0.234956843 0.430676299 0.018671856

Sampling Variance 0.055204718 0.185482075 0.000348638

Excess Kurtosis 20.12709383 0.059072402 1.091727473

Skewness 0.042000304 0.295107615 0.095830846

doi:10.1371/journal.pone.0083488.t003

Confidence and the Stock Market
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Hence,

Ht~
pt{pt{1zdt

pt{1
, ð13Þ

where Ht is the overall rate of return for the stock at time t.

Formation of Expectations and Trading Strategies
Agent-based models allow us to use a range of methods when

determining the expectations and trading strategies used by

different groups of agents. This capability in agent-based models

is the most distinguishing feature. Note that, because many agent-

based models allow the trading strategies adopted by agents to

evolve and improve with the use of such tools of artificial

intelligence as genetic algorithms, fuzzy logic, and neural

networks, the behavior of the agents becomes increasingly realistic.

In this paper the expectations concerning future stock prices

and possible dividends held by agents are formed according to

fixed, predetermined rules. Four rule categories are set, each of

which can be adopted by agents to form their future price and

dividend expectations for a market-traded stock—Ei,t(ptz1z

dtz1). Initially the agents can be characterized as either

fundamentalists or chartists. The chartists can then be sub-divided

into three groups based on the memory length they use to

determine their expectations. Note that the interaction among

groups of agents with differing behavioral rules affects the

aggregate behavior of the market. The rules for expectation

formation that agents can adopt will be discussed in greater detail

below.

Fundamentalists
Fundamentalist agents estimate the future value of the stock by

using the future discounted dividend flow model (the Gordon

model). In this trading strategy the risky asset value forecast is

based on its fundamental value, the dividend paid by the stock.

The agents note the value of a stock dividend paid in the current

period and, based on this value, assume the stock dividend will

grow at a constant rate,

E(dtz1)~dt(1zg), ð14Þ

where g is the dividend growth rate. Using the future discounted

dividend flow model, the expected future price of a stock is defined

to be

E(ptz1):
dt(1zg)

k{g
, ð15Þ

where k refers to the discount rate of the future dividend flow.

Using these equations we determine the value of Ei,t(ptz1zdtz1),
which is then used to determine the optimum number of stocks to

be purchased by each agent i at each time period.

Chartists
Recent trends in the literature show an increasing interest in

chartist trade behavior, sometimes called ‘‘noise trading’’ [20,21].

Chartist agents forecast the future price and dividend of a risky

asset by assuming that price changes are affected by inertia, i.e., if

the stock price has recently increased, it will continue to increase,

and if it has decreased, it will continue to decrease. Reference [22]

defines chartists as those who keep track of past average prices in

order to be either trend followers or trend contrarians. Takahashi

and Terano [11] distinguish between three types of chartist agents,

categorizing them according to the length of their memory when

they analyze the price history of a stock and make a forecast.

Empirical findings supporting this assumption [23–25] have

demonstrated that agent memories are indeed heterogeneous.

The expectation of a future stock price is defined to be

E(ptz1):pt{1(1zat{m)2, ð16Þ

and the expectation of a future stock dividend is defined to be

Figure 2. Excess Volatility of the Return Rate with increasing presence of chartists.
doi:10.1371/journal.pone.0083488.g002

Figure 3. Excess Kurtosis of the Return Rate with increasing
presence of chartists.
doi:10.1371/journal.pone.0083488.g003

Confidence and the Stock Market
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E(dtz1):dt{1(1zat{m): ð17Þ

The forecast rules are then categorized according to memory

length m,

N when m~1, at{1~pt{1=pt{2{1,

N when m~5, at{5~
1

5

X5

m~1
(pt{1=pt{m{1{1), and

N when m~10, at{10~
1

10

X10

m~1
(pt{1=pt{m{1{1).

Note that this moving average mechanism is similar to

mechanisms proposed by other researchers [11,22] for defining

the strategies of chartists, with some variation in the details of the

calculations used. Using this definition of chartists, in Sec. V we

will introduce the confidence factor as we analyze chartist

behavior and how market sentiment affects market dynamics.

Model Implementation
After determining the main elements constituting the artificial

financial market, the computational simulations can be carried

out. The artificial financial market is implemented using LSD

(Laboratory for Simulation Development) software, a platform

written in C++ for the development, use, and distribution of

computational simulations. This software is suitable for the

implementation of agent-based models because it creates simula-

tions in discrete time, and results are expressed as a series of values

for each variable of the model. The computational simulations are

executed according to the following steps.

(1) At the beginning of each time period t, the value of dividend

dt is generated.

(2) The agents then make their predictions in terms of stock price

and dividend for the next time period Ei,t(ptz1zdtz1). The

agents can be fundamentalists or chartists, depending on the

rules they use for their predictions.

(3) After the expectations of the future price and dividend of the

stock are defined, the number of stocks demanded by the

agents at time period t [Eq. (6)] is set.

(4) Using Eqs. (8) and (9), the buy and sell stock orders by the

agents are determined.

(5) The buy and sell stock orders are added to the market.

(6) Using Eq. (12), the market price of the stock is then adjusted

to reflect the surplus stock demand in the market.

(7) After the market price of the stock for time period t is defined,

the agents’ asset portfolio and the wealth level for the current

time period are updated. Equation (7) for the perceived

variance of returns is also updated for use in the next time

period. The information on both the aggregate behavior of

the market and the individual behavior of the agents is

recorded for later analysis.

In all the simulations, the artificial market consists of 100 agents

and each run is for 5,000 time steps. Each agent is allowed only

five stocks during each time period. Short selling of up to five

stocks is permitted. These restrictions are kept uniform in artificial

financial markets so that replication of the results is more realistic.

Table 4. Descriptive Statistics of the Return Rate of the Stock (Chartists m~5)

25% 50% 75% 100%

Chartists Chartists Chartists Chartists

Mean 0.198716887 0.201945959 0.201895818 0.201971459

Standard Deviation 0.011845511 0.021880992 0.026652911 0.030414828

Sampling Variance 0.000140316 0.000478778 0.000710378 0.000925062

Kurtosis 3.147274427 3.0369499 4.38921917 7.82753461

Skewness 20.000345276 20.174160967 20.614287785 21.219774691

doi:10.1371/journal.pone.0083488.t004

Figure 4. Plots of CDF of simulation result from purely
fundamentalists and heterogeneous agents with chartists of
different memory. While the prior exhibits a close to normal
distribution, the later shows a fat tail that is more realistic.
doi:10.1371/journal.pone.0083488.g004

Table 5. Descriptive Statistics (different types of agents).

Stock Price Rate of Return

Mean 20.56182484 0.194568287

Standard deviation 0.813071391 0.030512176

Sampling Variance 0.661085087 0.000930993

Kurtosis 8.302251611 11.811203205

Skewness 21.369367354 0.916660916

doi:10.1371/journal.pone.0083488.t005

Confidence and the Stock Market
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Because chartists must look at past m periods to make their

decisions, in the first m period we assume the behavior of the

chartists will match that of the fundamentalists.

Overconfidence and Self-attribution Bias
Barberis and Thaler [26] divide studies of behavioral finance

into two categories, (i) those attempting to show that arbitrage

transactions in financial markets are not perfect, i.e., are not

always effective in allowing asset prices to remain connected to

their fundamental values, and (ii) those attempting to use a study of

the psychology of decision-makers to demonstrate that agents

make systematic errors because of uncertainty, i.e., they deviate

from neoclassical assumptions in terms of maximization of utility,

stable preferences, and optimal information processing.

Overconfidence is considered a judgment bias related to the

cognitive psychology of the decision-maker and has received a

great deal of attention in financial studies. According to Kahne-

man and Riepe [27], because financial decisions are made in

environments that are highly complex and uncertain, agents rely

on fixed decision-making rules and intuition. When intuition is

given excessive weight, overconfidence can affect investment

decisions and agents end up encountering unknown risks,

experiencing unanticipated outcomes, and engaging in reckless

trading.

Studies of the psychology of agents strongly indicate that traders

are overly confident in their ability to predict the future and

overestimate the accuracy of their data. Experimental evidence

presented by Aldrighi and Milanez [28] indicates that in a

sampling in which agents were instructed to point out the variation

ranges of some variable with a confidence level of 90%, they were

able to indicate the ranges including the correct value only 70% of

the time. The study presented by Barberis and Thaler [26]

documents that agents tend to overestimate or underestimate the

probability attribution, i.e., events they believe will occur with

100% probability in fact occur in only 80% of the cases, and

events they believe cannot occur in fact occur in 20% of the cases.

Odean [29] proposes that there are reasons to expect that

agents actively trading in financial markets will be more confident

in their investment abilities than the population in general.

Investors who have been successful in the past may over-evaluate

the degree to which they were responsible for their positive

outcomes and thus become overconfident. Agents can thus have

unrealistic expectations about their ability to generate future

profits from market transactions and execute trades in which the

expected profits are insufficient to cover trading costs. They can

also overestimate the accuracy of their information or believe the

information they have is relevant when in fact it is not. In this

study we treat overconfidence as a calibration error and model it

as an underestimation of the stock return variance. This

adjustment of confidence can be understood as an adaptive

process in line with the so-called adaptive market hypothesis

(AMH) introduced by Lo [30].

In the model, given the perceived stock return variance

described by Eq. (7), a confidence coefficient is then created

which, when multiplied by the perceived variance of the returns,

characterizes its overestimate,

ŝs2
i,t,pzd~Ci,t

:s2
i,t,pzd : ð18Þ

Here coefficient C is the coefficient of agent confidence level

adjustment. When C~1, the agent has a neutral level of

confidence and the variance of stock returns is not underestimated.

When Cw1, the agent has little confidence and the variance of

stock returns is overestimated. When 0ƒCv1, the agent is

overconfident and the variance of stock returns is underestimated,

i.e., the agent’s prediction of the expected return of the stock is

overconfident.

We assume that an agent’s level of confidence evolves during

the time span of the simulation. According to Odean [29], the

overconfidence of extremely successful agents can further increase

by the ‘‘self-attribution bias,’’ i.e., they believe that their success in

trading is solely the result of their own abilities.

Figure 5. Average Confidence Level and Return Rates (Different Types of Agents with overconfidence).
doi:10.1371/journal.pone.0083488.g005

Table 6. Correlation between Average confidence and return
rate.

Average confidence

Return Rate 0.235

Return Rate w/o Dividend 0.25

doi:10.1371/journal.pone.0083488.t006

Table 7. Descriptive Statistics (Different Types of Agents with
Overconfidence).

Stock Price Return Rate

Mean 20.30198682 0.19733

Std. Deviation 0.822535095 0.039841

Sampling Variance 0.676563982 0.001587

Kurtosis 3.195286159 3.103466

Skewness 20.194194136 0.014115

doi:10.1371/journal.pone.0083488.t007

Confidence and the Stock Market
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The rules for updating the confidence levels are

If jE(ptzdt){pt{dtjƒ2stCt?ctz1~
jt

m
?Ctz1~1{ctz1 ð19Þ

If jE(ptzdt){pt{dtjw2stCt?ctz1~
jt

m
?Ctz1~1zctz1: ð20Þ

Here ct is the confidence index, Ct is the coefficient of

adjustment of confidence, and jt is the number of correct forecasts.

In other words, if the difference between the prices and

dividends is less or equal to 2stCt, then the confidence for the next

period increases and the coefficient of adjustment of confidence

decreases. This coefficient decreases to reduce the perceived

standard deviation of the agent. Should the difference between the

expected return of the stock and the actual return fall within the

confidence interval set by the agent, the confidence level is

increased and multiplied by coefficient Ctz1~1{ct, if it does not,

the confidence level is decreased and the standard deviation is

corrected by coefficient Ctz1~1zct.

Results and Discussion

Table 1 shows the values attributed to the parameters of the

model. We specify the initial values on the basis of configurations

exhibited in several artificial financial markets, among them those

created by Arthur et al. [15], Lovric [12], and Farmer and Joshi

[19]. We keep the same initial parameter values in all of these

simulations. The selected parameter ranges are summarized in

table 2.

We carry out the simulations as follows:

(a) In the first simulation, all agents are fundamentalists.

(b) In the second simulation, we take the presence of chartist

agents in the market into consideration (with m~5) and

progressively increase their participation by 25 percentage

points.

(c) In the third simulation, we take the behavioral heterogeneity

of agents into consideration. The market is now composed of

25 fundamentalist agents, 25 chartist agents with m~1, 25

chartist agents with m~5, and 25 chartist agents with

m~10.

(d) The fourth simulation adds the factor of agent overconfi-

dence to the configuration produced by (c).

Neutral Confidence
In the first simulation all the agents are fundamentalists and the

same rule for the formation of expectations—the discounted

dividend flow model—is applied to all agents. We use this

simulation as a reference case for comparison with the outcomes of

the subsequent simulations. The agents are homogeneous and the

stock price in terms of its fundamental value is the risky asset.

Figure 1 shows the evolution of dividend value and stock price.

Note that the financial series obtained in this simulation has the

fundamental value of the risky asset as a reference. All agents have

the same information set and interpret it identically. Because the

main information signal is the dividend paid by the stock, the

behavior of the financial market is affected by this variable.

The EMH states that the fundamental value of asset prices fully

reflect all the information available to market agents. Asset prices

are thus random, i.e., price changes are unpredictable, unaffected

by price history, and are impacted soley by exogenous new

information made available to traders. Our results support the

EMH only when all agents are assumed to be homogeneous, when

they all base their market expectations solely on the fundamental

value of the asset traded. When this is the case, changes in the

fundamental value of the risky asset strongly affect the asset

trading price.

Table 3 shows the statistics of this simulation. The frequency

distribution of the stock rate of return is close to a normal

distribution. The frequency is highest in the center and

symmetrically decreases toward the tails. The statistics presented

in this table confirm this feature, i.e., the mean and median of the

return rate of stock are approximately equal and the asymmetry

coefficient approaches zero. The coefficient of kurtosis indicates

that the flattening of the frequency distribution is slightly larger

than a normal distribution. This fact reveals the existence of more

kurtosis in the stock return rate distribution than in a normal

distribution.

In the next simulation, chartists with memory length m~5 are

introduced. Each subsequent realization increases the presence of

chartists by five percentage points, with the rest of the agents

remaining fundamentalists. Figure 2 shows the changing simula-

tion results for excess volatility as we increase the percentage of

chartists in the system.

Note that when the number of chartist agents is greater than

25% the market becomes more volatile. The greater the chartist

participation, the greater the stock price fluctuations and the more

extreme and periodic the fluctuations become. The impact of their

actions is greater than the impact of the actions of fundamentalist

agents. When the number of chartist agents decreases below 25%

the market becomes less volatile, the actions of chartists have little

impact, the actions of fundamentalists have greater impact, and

the stock rate of return does not experience large swings. This in

turn favors the predictions made by chartists. As chartist market

participation then increases, market volatility increases. And thus

the market alternates between periods of relative calm and periods

of volatility.

As seen in Fig. 3, the excess kurtosis significantly increases only

when the percentage of chartists exceeds 75% of the total number

of agents. This lends support to the finding that at least 80% of

agents are chartists [31].

Table 4 shows that the degree of average value dispersion

increases as the participation of chartist agents increases. The

Table 8. Comparison of simulation result with S&P500 from Yahoo! Finance [32].

Jan 03 2000 Dec 03 2012 Monthly return St Deviation Kurtosis

S&P500 1394.46 1426.19 0.014% 0.046 3.80

Simulation 20 20.7235 0.023% 0.037 3.87

doi:10.1371/journal.pone.0083488.t008
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coefficient of variance and the standard deviation of the return

rate of the stock confirms this fact, and both progressively increase

between simulations. The weight of the distribution tails becomes

increasingly heavy, i.e., with excess kurtosis, which is indicated by

the kurtosis coefficients.

Another simulation examines the interaction of different types

of agents. Behavioral heterogeneity is modeled by allowing agents

to adopt different trading strategies. The market consists of

fundamentalist agents and chartist agents with differing memory

lengths (m~1, m~5, and m~10). Of the total of 100 market

agents, 25% are fundamentalists, 25% are chartists with memory

m~1, 25% are chartists with memory m~5, and 25% are

chartists with memory m~10. Table 5 shows the descriptive

statistics produced by this simulation. Figure 4 plots the cumulative

distribution function of the results from fundamentalists and from

heterogeneous agents with different memory lengths. Note that the

tails of the frequency distribution of the return rate become

heavier and the distribution exhibits excess kurtosis, a character-

istic commonly found in financial series. These characteristics are

due to the behavioral heterogeneity present in the market.

Overconfidence
We test the different configurations of our model, which allows

the interaction of agents with differing trading strategies, by now

assuming that agents can have an overconfidence bias. As shown

above, agent overconfidence influences their estimation of the

variance of stock return. This in turn influences their orders for

stock purchase or sale. Therefore we focus our next simulation on

the interaction between the differing types of market agent, and

allow their confidence levels to evolve during the simulation time.

The market is composed of 25 fundamentalists who are not

influenced by confidence, and 75 chartists (divided equally

according to their memory analysis) who are. Figure 5 presents

the results of this simulation.

The strong presence of agents who follow market trends causes

greater volatility in stock prices and return rates, features

observable in real-world markets. Bubbles and crashes are also

indicated as reoccurring events. Figure 5 shows that periods when

return rates increase coincides with periods in which the agents are

more confident. Periods when the return rate drops sharply

coincides with periods in which the agents are less confident.

Table 6 shows that there is a positive correlation between the

return rate (with and without dividends) and the average level of

agent confidence, a result that has important implications for

financial markets. Table 7 shows that the volatility measured for

both stock price and return rate in terms of standard deviation

increases more than in Table 5, which only takes agent

heterogeneity into consideration. Including the psychological

feature of confidence level increases the volatility (and the risk to

assets) of stock prices and return rates. On the other hand, the

kurtosis index decreases substantially, suggesting that, when rules

of behavior are established, the distribution tails become less fat

and approach the index of kurtosis in a normal distribution.

To compare this with real-world data, we use the price history

of the S&P 500 available from Yahoo! Finance [32] and the

market confidence index from the Yale School of Management

[33]. Note that all the data of our model agrees well with S&P 500

data for these 13 years (see Table 8). Note also that the empirical

correlation between the S&P 500 returns and the confidence index

is 0.192 before August 2008 (the financial crisis) and that our

simulation result is 0.25. After the crash of Lehmann Brothers in

September 2008, however, the individual confidence index

unexpectedly increases and provokes a small, negative correlation

between the above variables (20.043) from September of 2008 to

August of 2013.

Ranges of selected parameters
To test the robustness of our results, we simulate the model on

different parameter sets (see Table 2). Our major findings are valid

within the broad usable range of the parameters. Outside of this

usable range the model tends to exhibit excessive, unrealistic

kurtosis.

Conclusions

Behavioral finance provides a new way of analyzing financial

markets. Many of the stylized facts in a financial time series

contradict the central theoretical proposition in finance, i.e., the

efficient market hypothesis (EMH). Empirical evidence shows that

much of the behavior of individual market agents cannot be

explained using conventional decision models, especially in their

attitudes toward risk and their susceptibility to such biases in

judgment as overconfidence.

Using agent-based modeling techniques we have examined the

influence of overconfidence on the decision-making process of

market agents. By applying this bias to behavioral agents, we made

possible the enrichment of this recently-developed analytical

methodology and demonstrated that these models can take into

account additional behavioral characteristics.

By testing the interactions between market agents with differing

trading strategies we are able to demonstrate that the presence of

behavioral heterogeneity explains the excess volatility of risky

assets relative to their fundamental value. In addition to its possible

relevance to the development of new market trading strategies, this

study proposes that the confidence levels of trading agents change

over time and that their actions, influenced by their confidence

levels, actively influence the creation of reoccurring market

bubbles.

The results presented here coincide with many features found in

real-world financial time series, and they contradict the results

produced by traditional theories in finance. Most important,

agent-based models allow us to more fully understand real-world

market features than when more traditional analytical methods are

used.

Note that this work represents a simple exercise of behavioral

finance—using agent-based models to understand trader confi-

dence in financial markets. Future studies could focus on risk

aversion or excessive optimism or, using the tools of artificial

intelligence (e.g., genetic algorithms or neural networks), examine

further the changing behavioral rules followed by market agents.
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