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Abstract

Building a reliable predictive model of pedestrian motion is very challenging: Ideally, such models should be based on
observations made in both controlled experiments and in real-world environments. De facto, models are rarely based on
real-world observations due to the lack of available data; instead, they are largely based on intuition and, at best, literature
values and laboratory experiments. Such an approach is insufficient for reliable simulations of complex real-life scenarios:
For instance, our analysis of pedestrian motion under natural conditions at a major German railway station reveals that the
values for free-flow velocities and the flow-density relationship differ significantly from widely used literature values. It is
thus necessary to calibrate and validate the model against relevant real-life data to make it capable of reproducing and
predicting real-life scenarios. In this work we aim at constructing such realistic pedestrian stream simulation. Based on the
analysis of real-life data, we present a methodology that identifies key parameters and interdependencies that enable us to
properly calibrate the model. The success of the approach is demonstrated for a benchmark model, a cellular automaton.
We show that the proposed approach significantly improves the reliability of the simulation and hence the potential
prediction accuracy. The simulation is validated by comparing the local density evolution of the measured data to that of
the simulated data. We find that for our model the most sensitive parameters are: the source-target distribution of the
pedestrian trajectories, the schedule of pedestrian appearances in the scenario and the mean free-flow velocity. Our results
emphasize the need for real-life data extraction and analysis to enable predictive simulations.
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Introduction

An unbroken trend to urbanization and a growing taste for mass

events are among the many reasons why we experience very dense

crowds more and more often. The challenge is to ensure safety and

comfort for people in such situations. Pedestrian stream simula-

tions are nowadays considered a means to mitigate risk in dense

crowds. Buildings and events can be planned with a focus on

safety, making use of virtual experience gained from pedestrian

streams simulations [1–7]. With the help of a simulation tool, a

trained user can run through multiple ‘‘what-if’’ scenarios to gain

experience for situations where it is impossible, uneconomical or

even unethical to gather real experience [8,9]. Moreover, since

recently pedestrian stream models aim not only at simulating

‘‘what-if’’ scenarios, but also at short term prediction of real-life

scenarios. Short term simulation predictions could be used to warn

of critical situations such as danger of high densities.

Pedestrian stream simulations are advantageous only if capable

of correctly reproducing pedestrian motion. Ideally, the models for

social or natural phenomena should be developed on the basis of

observations gathered via controlled experiments and field studies.

As soon as the basic model is constructed, one should ensure that it

reflects the real-life scenario being simulated. An accurate

reproduction of known data, without being an exact proof, would

indicate that the simulator may be trusted for collecting virtual

experience or for realistic predictions. To transform a basic model

into a model capable of reproducing real-life scenarios, it is thus

necessary to calibrate and validate the model against the relevant

real-life data.

A number of pedestrian models have been proposed ranging

from macroscopic to microscopic simulations [10]. However,

construction of reliable models so far has been hindered by a lack

of sufficient data from real-life scenarios. Pedestrian motion

models neither always come straight from observations nor are

rigorously checked against them. Instead most models are

calibrated and validated only against literature values or labora-

tory experiments [11]. They usually focus on a specific phenom-

enon such as: deceleration with increasing density according to a

given fundamental diagram [12], lane formations in bi-directional

pedestrian flows [13–16], pedestrian dynamics near a bottleneck

[17], waiting zones [18], oscillations of flow-direction at doors [19]

or dynamics within highly dense crowds in [20]. In the very best

case models are calibrated and validated against relatively small

and simple real-life scenarios [21] which in most cases again

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e83355



represent some single, isolated phenomenon. The very few

examples of simulation calibration against real-life data include

scenarios focused on entrances into escalators [22], queuing at a

train station [21], bottleneck gates at a train station [23] and bi-

directional flow in a corridor [24,25]. Such calibration approach is

very helpful and fully justified when one seeks to better understand

an isolated phenomenon. However, one cannot expect that

calibration solely based on an isolated phenomenon would be

sufficient to reproduce a complex real-life scenario. Here, a more

holistic attempt is necessary. The authors are not aware of any

publications on comprehensive calibration.

In this paper we present a method for calibrating a cellular

automata-based simulation against a complex real-life scenario

observed at a major German railway station. Based on this real-life

scenario we also examine the applicability of standard literature

suggestions for free-flow velocity values and fundamental dia-

grams. We calibrate our simulation against pedestrian motion

parameters extracted from video data. The success of the proposed

approach is demonstrated by validation of our calibrated

simulation against the observed real-life scenario. The validation

is performed by comparing an aggregated quantity – pedestrian

density evolution in the area of observation.

This paper is organized as follows: The Results section starts

with an Scenario and observational parameters: a German railway station

subsection on observations at a major German railway station. An

overview of assumptions and restrictions of the benchmark model

is given in Simulation tool. In Methodology we identify parameters

critical for calibrating simulations and suggest how to feed them

into a simulation model. Then the calibrated benchmark

simulation is compared with measurements in Proof of concept:

Validation and sensitivity study. The Discussion part summarizes the

results. At the end the Materials and methods section gives insight into

the video tracking technology we used.

Results

Scenario and observational parameters: a German railway
station

Our analysis of pedestrian motion is based on video recordings

at the major German railway station. The video data was collected

at the station in the morning (7 a.m.) and in the afternoon

(between 4 p.m. and 6 p.m.) on a workday. The examined area

covers several platforms and a part of the station’s main hall. The

video recordings show different scenarios at the railway station: A

train departure and arrival and pedestrians entering the main hall

and heading towards further destinations such as exits and food

stalls. In all scenarios bi-directional or multi-directional flow was

present. Figures 1 and 2 show a schematic picture of observation

area highlighting the fact that one has to deal with hidden areas

when using video recordings data.

Trajectories of individual pedestrians in time and space were

extracted from the video recordings and then analyzed. We used

partly automated video tracking to extract pedestrian paths,

walking speeds, schedules of pedestrians appearances and disap-

pearances and pedestrian densities. Figure 3 shows trajectories

extracted from one of the video recordings. The topology of the

area of interest, the schedule of pedestrians appearances and

disappearances and the path distributions are scenario-dependent.

Walking speeds and flow-density dependencies have a general

character and are analyzed in detail below.

Distributions of free-flow velocities. In literature it is

mostly assumed that free-flow velocities are normally distributed

[12]. With the availability of real-life measurements it makes sense

to test the validity of this assumption: Here we test a null-

hypothesis on normal distribution of free-flow velocities based on

video analysis data (Figure 4, Figure 5). Our analysis shows that,

the null hypothesis need not be rejected at the 0.5% level

according to the Cramer-van-Mises test (Figure 6, Figure 7).

Strictly speaking, assuming a normal distribution is wrong,

because we neither allow negative speeds nor speeds above the

current men’s world record for sprints (which is slightly below

10 m/s). For the purpose of the simulation, however, the error

seems to be acceptably small and we assume a normal distribution.

Another assumption concerns loiterung and slowly moving people.

Since it is difficult to distinguish between the two we exclude

outliers in our benchmark simulation.

Weidmann claims that pedestrians on their way to work in the

morning are 0.2 m/s slower than on their way home in the

afternoon [12]. We observed a similar difference between morning

and afternoon: In the morning the mean free-flow velocity was

0,9760.1 m/s compared to 1,0460.1 m/s in the afternoon. At

the same time, even in the afternoon, our measurements showed a

much lower mean free-flow velocity than 1.34 m/s generally

assumed.

To be more precise, in the morning we observed a normal

velocity distribution with the standard deviation of 0.29 m/s

Figure 1. Schematic representation of the measurement
experiment: White area corresponds to the vision field camera
mounted in the upper left corner of the figure. There are
platforms on the left side, and obstacles, such as food stalls, in the
middle and on the right side.
doi:10.1371/journal.pone.0083355.g001

Figure 2. Snapshot of the observation area from one of the
cameras. Left (A): Entire observation area: There are platforms on the
left side, obstacles, such as food stalls, in the middle, and a wall on the
right side. Right (B): Focus on moving pedestrians. For privacy’s sake the
second snapshot was blurred.
doi:10.1371/journal.pone.0083355.g002
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around the mean of 0.97 m/s. There was only one outlier (a

passenger with a velocity below 0.1 m/s or above 4.0 m/s) among

the 133 pedestrians with virtually no effect on the statistical

outcome. In the afternoon the free-flow velocities were also

normally distributed with the standard deviation of 0.51 m/s and

the mean of 1,04 m/s. The situation remained unchanged after

exclusion of outliers – 203 data points remained with the mean

free-flow velocity of 1.10 m/s and the standard deviation of

0.47 m/s (see Figure 6). It should be noted that the outliers did not

affect the overall dynamics neither in the morning nor in the

afternoon as they we were only observed in situations with very

low densities and therefore did not act as obstacles.

Compared to the benchmark data in [12] with the mean free-

flow velocity of 1.34 m/s and a standard deviation of 0.26 m/s,

the pedestrians observed at the railway station were slower and

more diverse. We would like to point out that these observations

may depend on the cultural background and that even qualitative

results should not be carried over to other scenarios without

verifying.

Currently prevailing density-flow relationship:
fundamental diagram

The density-flow relationship observed on the video records also

deviated from the fundamental diagram provided by Weidmann

which is usually associated with a mean free-flow velocity of

1.34 m/s (Figure 8). The maximum difference in flow was

0.4 persons/ms at a density of a little less than 1 persons/m2.

Figure 3. Example of a railway station scenario. Pedestrian trajectories (dark gray lines) were extracted from video footage. Green/red points
correspond to the first/last detected pedestrian positions respectively. Light gray rectangles represent obstacles, lavender areas – possible entries and
exits. Rectangles in the middle lead to escalators.
doi:10.1371/journal.pone.0083355.g003

Figure 4. Histogram of free-flow velocities at 17:26 p.m. at a
German railway station. All detected trajectories with free-path in
the direction of movement are considered (214 samples). The mean
free-flow velocity is 1.04 m/s and the standard deviation is 0.51 m/s.
doi:10.1371/journal.pone.0083355.g004

Figure 5. Histograms of free-flow velocities at 17:26 p.m. at a
German railway station. Only trajectories with a free path in the
direction of movement were considered. Obvious dawdlers with a
velocity below 0.1 m/s and one runner with a velocity above 4.0 m/s
were excluded as outliers. Thus 202 samples remained, resulting in the
mean free-flow velocity of 1.08 m/s and the standard deviation –
0.42 m/s.
doi:10.1371/journal.pone.0083355.g005
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Unfortunately higher densities did not occur in that scenario. 90%

of the measured data points were within 0.15 persons/ms of the

smooth approximation of the data.

Simulation tool
Pedestrian stream models. There are various models of

pedestrian motion, all of them with their own merits [17,22,26–

34]. On www.ped-net.org alone, 65 different tools are listed, not

including the tool described here. For more complete surveys we

refer to [35–39] with descriptions of a large number of approaches

[9,36,40–46] for modeling pedestrian movements.

Two particularly well established classes of pedestrian motion

models, cellular automaton based models [47–50] and social force

models, [22] both embrace similar ideas: Both use inspiration from

similar physical models, such as the idea of repulsive forces

between pedestrians to ensure that they keep a distance among

each other. The mathematical formulations, however, are very

different. Despite the differences, the methodology presented

further is suitable for both classes of models and for any other

model that is able to calibrate according to the parameters and

measurements we describe below, as for example, [51–53].

Cellular automaton model
In this section we describe our benchmark simulation tool. It

has been introduced by the authors and by their colleagues in

earlier publications [54–56]. Hence, we restrict this description to

the minimum necessary to understand the paper. Although the

methodology we present here is independent of the specific model,

comprehending the main principles of our model helps to identify

how empirical results may serve as input. In particular, we aim to

identify the data that can be used directly as input from

observations and the data that serves as a basis for model

calibration.

Our goal is to construct a simulation model that is capable of

reproducing real-life scenarios and preemptively predicting critical

situations, such as life threatening local densities, faster than real-

time. That is, it must build on observational data and allow for

exceptional computational speed. Our benchmark simulation tool

based on a cellular automaton fulfills both requirements.

Since we stick to measurable data, many psychological aspects

are neglected in our model. Differences between virtual pedestri-

ans are extremely reduced, and the pedestrian model is based on

very few simple assumptions:

N Pedestrians ‘‘know’’ the shortest path. Limited vision of

pedestrians is neglected as well as incomplete knowledge of

the terrain. Pedestrians move from their current positions

towards individual targets along shortest obstacle-free path,

unless such a path is blocked by a fellow pedestrian.

N They move at individual preferred speeds – the free-flow

velocities – as long as the path is free.

N Each individual has a need for private space that depends on

his/her current situation. This need is expressed in the

distances that individuals try to keep from each other. It also

makes people keep distances from obstacles such as walls.

N Pedestrians decelerate when the local density in their direction

of movement is increased.

Figure 6. Quantile plots of free-flow velocities comparing the
distribution measured at 17:26 p.m. at a German railway
station to a normal distribution. All detected trajectories with free-
path in the direction of movement are considered (214 samples).
doi:10.1371/journal.pone.0083355.g006

Figure 7. Quantile plots of free-flow velocities comparing the
distribution measured at 17:26 p.m. at a German railway
station to a normal distribution. Obvious dawdlers with a velocity
below 0.1 m/s and one runner with a velocity above 4.0 m/s were also
excluded. Thus 202 of 214 samples remained.
doi:10.1371/journal.pone.0083355.g007

Figure 8. Measured density-flow relationship at a German
railway station at 17:26 p.m. on a workday compared to
Weidmann’s diagram (dashed line). The maximum difference in
flow between Weidmann’s data (already given in a smooth form) and
the measured data was 0.4 persons/ms. Densities above 1 person/m2

did not occur. The solid line is a smooth approximation of the measured
data.
doi:10.1371/journal.pone.0083355.g008
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N All further individuality, such as age or fitness, is captured by

the personal free-flow velocity.

Clearly, the behavior of pedestrians is strongly simplified with

this approach. This has two major advantages: The number of

input parameters that must be procured from measurements is low

whereas the computational speed of the simulation tool is very

high. Both aspects are of extreme practical importance.

Cellular automaton. As in any cellular automaton model,

the area of observation is divided into a lattice of cells (Figure 9).

Although square cells seem to be the most popular choice, we

prefer a hexagonal grid for its two additional natural directions of

movement compared to the square grid. The cell diameter is set to

53 cm to accommodate an average sized Caucasian male. This

parameter can be adapted to better fit e.g. Asian pedestrians or

children. Each cell at each time step has one of the following states:

either empty or occupied by either a person, an obstacle or a

target.

Spatial dimensions and topology. Pedestrians move on a

single plane or on multiple planes such as floors. This allows us to

consider two spatial dimensions only. Virtual persons enter and

leave the scenario through sources and targets, namely entrances

and exits. Sources and targets have three types of parameters –

their positions, schedules of pedestrian generation/disappearence

and, for the sources, also source-target distributions, that give

probabilities for selecting pedestrian destinations when generating

pedestrians. All these parameters can be taken directly from

measurements and fed into the simulation.

Potential fields. In many aspects, our model is similar to

other cellular automaton models based on potentials [43,48,57–

59]. In particular, we borrow the inspiration for the rules from

electrostatics: Pedestrians are treated as negatively charged

particles, say electrons. Pedestrians are attracted by positive

charges, such as exits, and repelled by negative charges such, as

other pedestrians or obstacles. The forces between pedestrians,

targets and obstacles are expressed through suitable scalar

functions, the potentials, which are summed up to form an overall

potential field. We choose the potential described in the following,

note, however, that different approaches could be used for

constructing the potential fields [38,60].

N Each virtual person carries around his or her own potential

given by a radially symmetric function of type exp{ExE that is

almost zero a few cells away from the person.

N Obstacles like walls are assigned positive potentials to make

‘‘people’’ prefer to keep a distance.

N The long–range attracting potential of a target is coded in a

floor field that corresponds to the arrival time of a wave front

traveling with constant speed from the target through the space

formed by the obstacles and boundaries of the scenario [55].

This ensures that each pedestrian moves along the shortest

path to his or her target as long as this path is free from other

pedestrians.

N It is also possible to include clumps of pedestrians in the way to

a target in the computation of the floor field thus adding a

further dynamic aspect to the potential [55].

When a virtual person steps ahead he or she selects the empty

neighbor cell with the steepest descent of the overall potential,

thereby obstacles and other persons are successfully skirted. The

repulsive potential of a fellow pedestrian on the shortest path leads

to either evasion or slowing down.

Sequential update scheme. Simulation dynamics follows a

specific kind of sequential update scheme. Each person has an

individual speed, the free-flow velocity, which he/she tries to

achieve – and indeed does achieve when the path is free. The

value of the free-flow velocity prescribes how often the

corresponding person will be chosen for an update: At each time

step all persons are identified that are allowed to move. Faster

persons are chosen more often so that on average each person

moves with their prescribed speed as long as the path is free. The

positions of the chosen pedestrians are updated in the order of

their ‘‘life-time’’ in the simulation – that is, the time that has

elapsed since their generation.

Figure 9. Cellular automaton model: Pedestrians move towards a target on hexagonal cell grid. Persons, targets and obstacles occupy
cells. Positions are updated sequentially in each simulation step so that collision is impossible.
doi:10.1371/journal.pone.0083355.g009
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Using the terminology in [57] our model is: microscopic,

discrete and deterministic with stochastic aspects, rule-based but

potential-driven.

Methodology
This section describes our methodology of comprehensive

calibration against a real-life scenario. The first step towards

calibration is to identify the key parameters that must be input into

the simulation program. In the previous section we have described

the data required for our benchmark model: positions of sources

and targets, shapes and positions of obstacles, a pedestrian

appearance schedule, source-target distributions, velocity distribu-

tions and flow-density dependency. Some of the parameters, such

as the location and form of obstacles, can be extracted from the

data sources and fed directly into the simulation; Other

parameters must be estimated by statistically analyzing the data.

Some input even comes in the form of a function such as the

density-velocity relation.

Most parameters change with time and must be calibrated at

suitable intervals. Here, we distinguish between quasi-stationary

and dynamic parameters: Dynamic parameters change quickly

and have an immediate strong impact on the prediction; Quasi-

stationary parameters must be re-calibrated at regular intervals of

several prediction periods (whereas stationary input needs to be

adapted on demand only). In general, what inputs are stationary,

quasi-stationary or dynamic depends on the scenario. Distinguish-

ing among different parameter types is important since it helps to

determine how often one should adapt the simulation with respect

to a certain type of parameter. In the following we describe our

classification which appears suitable for our railway station

scenario. Still, the principles listed below have a general character

and can be applied to various scenarios.

The typical duration of a simulated railway station scenario is

several minutes and the classification introduced further is related

to this duration. We suggest constructing a ‘‘basic scenario’’ from

the observations, and then calibrating the more volatile informa-

tion in shorter intervals:

N Stationary input – stationary data can be expected not to change

over a period of time significantly longer than the scenario

duration. For a railway station, the input is assumed to be

stationary if it does not change in a range from several hours,

to days, weeks, or even months, etc., – for example, the

locations of permanent structures such as platforms. However,

even this type of data must be checked in regular and relatively

short intervals because any alterations in the infrastructure

may dramatically impact the scenario.

N Topology – the area of observation could be divided into

walkable and non-walkable areas. The latter includes obstacles

with their types, positions and forms and areas where

pedestrians are not allowed to enter, such as railway tracks.

This data is fed directly into the simulation and can be

assumed to remain stationary.

N Positions of sources and targets – the topology also determines

possible positions of sources and targets for virtual pedestrians,

that is, the locations where people come from and where they

go to. For a railway station these can be: Departure and arrival

platforms, entrances and exists. Again, this is direct input data

that is mostly stationary. One should, however, check this

information at some regular intervals since entries and exits

can get closed at any time.

Quasi-stationary input. By quasi-stationary parameters we

mean parameters which gradually change over time but can be

considered stationary for several prediction periods. On the scale

of our simulation scenario, they can be considered stationary for a

few minutes. Such parameters often depend on the time of day or

type of scenario. We recommend to store typical values in a

scenario data base and to use them as default starting values for

fast and yet accurate calibration:

N The Distribution of free-flow velocities is very often taken from

literature following Weidmann’s suggestions [12] of a normal

distribution with the mean velocity 1,34 m/s and the standard

deviation of 0,26 m/s. In Distributions of free-flow velocities we

described how the results of our free-flow velocity measure-

ments differ from literature values (Figure 4, Figure 5).

Therefore, in contrast to the usually assumed distribution,

we propose to extract the distribution of the free-flow velocities

from observations and to generate virtual pedestrian velocities

according to the empiric distribution from the last measure-

ment. Note, if a scenario contains stairs, escalators or other

types of non-standard planes, the free-flow velocities should be

measured additionally for these surfaces. For example, for

stairs and escalators up and down the free-flow velocity should

be measured separately.

N Density-flow relation – often Weidmann’s diagram is used as

fundamental diagram to describe the density-flow relation.

However, our measurements suggest that the real behavior of

pedestrians may differ (Figure 8). Therefore, we propose to use

a measured flow-density relation instead. In particular, to deal

with measured scattered values, we propose to use a smooth

approximation or piecewise interpolation of the measured

density-flow relation as a reference curve, or objective

function, for calibration. This can be achieved robustly with

standard optimization methods [54,61]. We expect the

relationship to be quasi-stationary which is a very desirable

quality to speed up the calibration process: The last set of

calibrated parameters gives an excellent starting position for

the next calibration; thus, calibration time would not become

an issue. However, the assumption of quasi-stationarity of the

density-flow relationship remains to be further substantiated

through more extensive measurements. Note that similar to the

case of the free-flow velocity, the density-flow relationship

should be measured separately for stairs, escalators, etc.

N Distance kept from walls – when moving, pedestrians keep a

certain distance from obstacles. In [62] movement of a single

person in the presence of walls is examined. We propose to

investigate multiple trajectories to derive a distribution of the

distances kept to the walls. This distribution can be taken as a

reference curve according to which the simulation tool can be

calibrated. The statistical data on the distances to walls in our

video footage is under investigation at the moment. First

observations indicate that the influence range of a wall is about

2 m.

N Source-target relationship – to direct virtual pedestrians from

sources to targets in a way that fits the scenario, statistical

information on mapping between sources and targets must be

extracted from video footage, or any other type of suitable

sensor. The analysis of the video data for our railway station

suggests that the distribution differs from scenario to scenario

and depends on time, however, usually it changes on time

intervals larger than the simulated period of time. Hence we

propose to re-evaluate the target-source distribution at

relatively short intervals to direct virtual pedestrians from

sources to targets in a way that fits the scenario.

Predicting Pedestrian Flow Based on Real-Life Data
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Dynamic input. Dynamic parameters change very quickly

and therefore demand constant recalibration. An obvious example

are pedestrian appearances following, e.g. train arrivals. Neither

arrival times nor train occupancies are predictable with precision,

so pedestrian appearances are volatile. Since this kind of

information changes every few minutes, it limits the maximum

span of predictions intervals accordingly. A permanent readjust-

ment process is necessary here.

Schedule of pedestrian appearances and disappearances – how many

pedestrians per second appear from a source? How many

disappear at a sink or a target? This data is necessary to feed

virtual pedestrians into the simulation and remove them in

accordance with the scenario. At the same time this schedule is

very volatile.

Proof of concept: validation and sensitivity study
In this section we describe the validation of the model by

comparing simulation results to measurements. We also present

the results of a sensitivity analysis conducted to determine the

parameters, whose small changes have a significant impact on the

simulation results. For sensitive parameters, accurate measure-

ments are critical if one aims at reproducing real-life scenario and

performing predictive simulations.

Validation goal. The goal of validation is to make certain

that a model used to describe some complex real system well

matches the characteristics of this system. Our benchmark model

was first validated with respect to a number of phenomena and

data from laboratory experiments following the suggestions for

tests of the RiMEA validation initiative [63]. Then we conducted

our own validation tests described in [61] and [64]. In this section

we describe the validation of our benchmark model for the real-life

railway station scenario.

Quantities suitable for comparison. The simplest way to

validate a model against real-life data is to compare video

recordings with simulation visually. This is a valuable plausibility

check to which validation has been largely restricted [9,65] so far.

As far as quantitative validation has been attempted in previous

investigations, it was performed based on trajectories, flow or

velocity comparisons [24]. Here, we would like to go further and

identify quantities suitable for forecasting critical situations such as

critical densities. For this, we pick the crowd density as it evolves

with time in the area of observation: It can be measured quite

easily in both, real scenario and its virtual reenactment and is of

high practical interest since local high densities indicate hot spots

where the risk for accidents is elevated.

Comparison of the real-life scenario with the virtual

reenactment. As soon as adjustments and calibration against

measured data have been performed, a predictive simulation can

be started. The velocity distribution, the density-flow relation, the

schedule of appearances and disappearances of pedestrians, the

source-target distribution and the positions and shapes of sources

and targets (s. Methodology) were extracted from video recordings

and used as input.

For the model validation we choose the most challenging

scenario (see Figure 10) where the highest densities together with

multi-directional flow were observed: A train arrives, passengers

disembark and walk towards exits. There are also other

pedestrians walking in the main hall. At first, the pedestrian

density is relatively low until the bulk of passengers passes through

the area of observation. Then the density decreases again until all

passengers from that train are gone.

To compare the simulation and the data extracted from the

video recordings let us first look at the density evolution in the

most busy and complicated area in the scenario: the rectangle

covered by a grid as shown in Figure 10. Figure 11 shows the

comparison of densities (simulated to measured) in a time span of 3

minutes: The solid line corresponds to the video footage, the

dashed line to the simulation.

Consider Figure 11: The simulation reproduces the scenario

quite well: The pedestrian density peak occurs at the proper area

and time, and it has the correct duration and order of magnitude.

However, the simulation somewhat overestimates the density. Part

of the difference can be explained by the influence of chance: The

simulation is subject to random input. For each new seed the

results differ so that individual velocities and trajectories cannot be

expected to match. Only a statistical match of measurements and

simulation results is possible.

We also suspect that real pedestrians coordinate their move-

ments better than virtual pedestrians do: Our virtual pedestrians

are quite ‘‘short-sighted’’ and take steps to avoid collision only

when they actually ‘‘feel’’ the potential of other pedestrians; Real

pedestrians are more likely to plan ahead. This is a typical

disadvantage of so-called greedy algorithms that rely on locally

optimal choices to enable high-speed simulations.

The important question is whether such systematic overestima-

tion is acceptable. In our case we are interested in a warning

system for potentially dangerous densities. Therefore we believe

that a slight overestimation can be tolerated, whereas any

underestimation would render the model unusable.

So far the comparison was restricted to a single rectangle in the

area of observation. As a next step we look at the whole area of

observation. The results are represented in Figure 12. We observe

that the density magnitudes are very similar for both, the video

recordings and the calibrated simulation, in the whole area of

observation. The slight density overestimation at the hot spot is

also visible (Figure 12, calibrated simulation). Most importantly,

the position of the density peak in the simulation is very close to

the one in the video recordings. In contrast to that, the

uncalibrated simulation is not capable of reproducing the observed

data. No high densities occur and the small spikes appear

randomly.
Sensitivity analysis. We finally investigate how the uncer-

tainty in our model input affects its output: For which parameters

does a small change cause a significant change in the simulation

results? These sensitive parameters should be measured very

carefully whereas non-sensitive ones require only a rough

estimation.

We introduce a target function, the fitness, that quantifies the

precision of our simulation. The higher the fitness the better the

match between observation and simulation is supposed to be. To

Figure 10. Snapshot of a simulated scenario. Circles correspond
to pedestrians. Lines give contours of obstacles, sources and targets
locations. The rectangle covered by a grid (lower left corner) shows the
area of observation.
doi:10.1371/journal.pone.0083355.g010
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calculate the fitness, we cover the scenario area with N

measurement tiles of unit size 1 m61 m. In each tile we measure

the distance between the observed and simulated densities by

counting the number of pedestrians in each unit tile every two

seconds (the two second interval is chosen in accordance with the

observed velocities). The fitness at time t is given by the inverse of

the sum over all measurement tiles:

Fitness(t)~ 1=(
PN

k~1 E(Dk
v (t){Dk

s (t)E) ð1Þ

Here, N is the number of tiles and Dt
v(t) and Dk

s (t) are the

pedestrian densities observed on the video and in the simulation at

tile k at sample time t. Overall fitness is obtained by summing over

all samples in time. This approach quantifies how closely the local

densities in the video recordings and in the simulation evolve. The

calibrated parameters gathered when applying our methodology

yield the benchmark fitness.

To conduct the sensitivity analysis, we compare the fitness of the

simulation outcome when varying the parameter values by 10%.

Figure 13 illustrates the influence of the crucial parameters on the

quality of the match. The source-target distribution seems to be

the most sensitive parameter and should be measured very

precisely for a scenario. Also the schedule of pedestrian

appearances on the scenario and the velocity distribution play a

very important role for the predictive power of the simulation.

Discussion and Conclusion

Pedestrian stream simulations are only helpful for gaining

virtual experience and for real-time prediction when they are able

to reproduce the corresponding real-life scenario. A vital step to

achieve this is calibration and validation of a model against the

real-life scenario. So far, the data on realistic behavior of

pedestrians under natural conditions was very limited [66].

Calibration and validation in many models was mostly performed

for an isolated phenomenon observed in a controlled experiment

or for a relative small observation area in case of real-life scenarios

as in [22] etc. Therefore, the question was open: How to calibrate

and validate a pedestrian stream simulation against complex real-

life scenarios?

To answer this question we addressed a number of subques-

tions:

N Are standard values for free-flow velocities and density-flow

relations always valid?

N What characteristics of pedestrian dynamics should be

extracted from real-life scenario for simulation calibration?

N Which characteristics have a high impact on simulation

accuracy?

N How to calibrate a simulation based on characteristics of

pedestrian dynamics extracted from video recordings?

N How to validate a model quantitatively after calibration?

To answer these questions we first analyzed video recordings of

a real-life scenario at a major German railway station. We

provided experimental evidence that people at the railway station

walk significantly slower than standard literature suggests [12].

These results support the idea that free-flow velocities depend on

the environment [22]. Pedestrians also decelerate more strongly

than Weidmann9s fundamental diagram indicates [12]. This

underlines the importance of scenario-specific measurements as

input data and calibration to measured data, especially if

predictive simulations are attempted.

Based on data extracted from video recordings we suggested

and applied a methodology for model calibration against our real-

life scenario. The benchmark model was based on a cellular

automaton. The most important aspects and characteristics taken

Figure 11. Comparison of densities measured on video footage (solid line) to simulated densities (dashed lines) on the area of
observation shown in Fig. 10. Pedestrians are fed into the scenario with the source target distribution, free-flow velocities and the density-flow
relationship measured at the start of the scenario. 180 seconds (3 minutes) are simulated.
doi:10.1371/journal.pone.0083355.g011

Figure 12. Comparison of pedestrian densities extracted from the video recordings with the predictive simulation. Densities are
averaged over 6 seconds. Snapshot is taken 40 seconds after a train arrival: at time when pedestrian density peak occured.
doi:10.1371/journal.pone.0083355.g012
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into account are: scenario topology, sources and targets positions,

statistical distribution of trajectories between sources and targets,

schedule of pedestrian appearances and disappearances (in the

scenario), distribution of free-flow velocities, prevailing density-

flow relationship, and distances that pedestrians keep from

obstacles. Some of the parameters are direct input parameters

while others, like the density-flow relationship, are expressed

through target functions for parameter adjustments.

We demonstrated that the proposed method significantly

improves the quality of simulation and the potential prediction

accuracy: The success of the proposed approach was tested by

comparing evolutions of simulated and observed pedestrian

densities. The simulation predicts the density evolution correctly,

both qualitatively and quantitatively: Maximum density is

somewhat overestimated but never underestimated, so that the

simulation can be used as a predictive warning system for

potentially dangerous local densities. We also found that the most

sensitive parameters are the source-target distribution, the

pedestrian appearance schedule and the free-flow velocities. These

core parameters should be measured with high precision as they

strongly influence the accuracy of the pedestrian simulations.

The proposed method is a first step towards comprehensive

calibration and adjustment of simulations to complex real-life

scenarios. The proof of concept with a benchmark simulation tool

shows that short term predictive simulations are possible as long as

the crowd is sufficiently dense to allow statistical interpretation.

This also defines the limits of pedestrian simulation: Individual

behavior can only be captured and reproduced in a statistical

sense. Dangers that are triggered by highly individual behavior

may be investigated as far as their effect on the crowd is

concerned, but one cannot predict when they occur or whether

they will occur at all. Furthermore, fast changes – sometimes

within seconds – of very sensitive input data, such as pedestrians

appearance, make clear that longer-term forecasts can only be

understood as possible outcomes among other conceivable

scenarios. The only useful procedure here is to simulate scenarios

and observe possible outcomes to gain virtual experience.

Hence, longer term simulations can be seen as valuable

contributions to risk analysis, while short-term simulations have

the potential to support immediate decisions on safety issues. For

example, a short-term prediction could help to decide whether

train passengers should be allowed to disembark when a train

station is already crowded.

Further steps to improve the method can include considering

group behavior: In our benchmark scenario single commuters

dominated the crowd so that there was no need to incorporate

group behavior as in [56] and [67]. However, if groups are present

in a crowd, their effect cannot be neglected [68].

Materials and Methods

Data extraction from videos
All trajectories were extracted from the video recordings using a

partly automated tool that allowed to ‘‘click’’ positions on the

video recordings. We analyzed five recordings in total, each of

which had a duration of at least 1.5 minutes. The number of

pedestrians on each recording was about 400. One video

recording was made at 7 a.m. in the morning of a workday,

other recordings were made in the afternoon between 4 p.m. and 6

p.m., also on a workday.

For each trajectory detected on video recordings, its source and

its target were identified: usually the first and the last detectable

position. Some meaningful sources and targets may have been

obscured by obstacles or hardly visible from the camera angle. In

such cases we used additional information like the direction of

pedestrian movement to identify, for example, a likely exit. Based

on this information we identified how likely a person coming from

source A is to choose target B thus collecting the source-target

statistics. Also using the extracted trajectories resolved in time, we

were able to derive the schedule of pedestrian appearance at each

source and disappearance at each target on the scenario.

Trajectories that were partially obscured from the camera view

or where the view was distorted by distance were only used to

gather source-target statistics. Detailed analyses of velocities, flows

and distances to walls were conducted exclusively on the visible

and undistorted parts of the trajectories to keep measurement

errors small.

While the programs we used also introduced errors, we estimate

that they were small compared to the error committed by

manually pinning down the center position of each person’s head

when tracking pedestrian trajectories. We had no cost-effective

way to systematically investigate this error. However, we think it is

Figure 13. Sensitivity analysis of parameters. The influence of parameter deviation on fitness, i.e. accuracy of simulation, is evaluated. The
upper bar ‘‘Optimal parameters’’ corresponds to the fitness reached with parameters gathered by applying the proposed methodology. Other bars
show how fitness changes if a parameter value is deviated 10% from optimal value.
doi:10.1371/journal.pone.0083355.g013
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safe to assume that the head was always correctly identified, but

with a deviation from the center. In this case, an error in position

would not exceed 9 cm – the radius of a circular approximation of

a human head.
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reihe des IVT.

13. Asano M, Sumalee A, Kuwahara M, Tanaka S (2007) Dynamic cell

transmission-based pedestrian model with multidirectional flows and strategic

route choices. Transp Res Rec 2039: 42–49.

14. Hoogendoorn S, Daamen W (2005) Self-organization in pedestrian flow. Trafic

and Granular Flow 3(4): 373–382.

15. Jiang Y, Wong S, Zhang P, Liu R, Duan Y, et al. (2012) Numerical simulation of

a continuum model for bi-directional pedestrian flow. Appl Math Comput 218:

6135–6143.

16. Xiong T, Zhang P, Wong S, Shu C, Zhang M (2011) Macroscopic approach to

the lane formation phenomenon in pedestrian counter flow. Chinese Phys Lett

28: 108901.

17. Kretz T, Grünebohm A, Kaufman M, Mazur F, Schreckenberg M (2006)

Experimental study of pedestrian counterflow in a corridor. J Stat Mech:

P10001.

18. Davidich M, Geiss F, Mayer HG, Pfaffnger A, Royer C (2013) Waiting zones for

realistic modelling of pedestrian dynamics: A case study using two major german

railway stations as examples. Transp Res Part C Emerg Technol: In press.

19. Helbing D, Molnar P, Farkas I, Bolay K (2001) Self-organizing pedestrian

movement. Environ Plann B Plann Des 28: 361–383.

20. Helbing D, Johansson A, Al-Abideen HZ (2007) Dynamics of crowd disasters:

An empirical study. Physl Rev E 75: 046109.

21. Berrou J, Beecham J, Quaglia P, Kagarlis M, Gerodimos A (2007) Calibration

and validation of the legion simulation model using empirical data. Pedestrian

and evacuation dynamics 2005: 167–181.

22. Johansson A, Helbing D, Shukla PK (2007) Specification of the social force

pedestrian model by evolutionary adjustment to video tracking data. Adv

Complex Syst 10: 271–288.

23. Hoogendoorn S, Daamen W (2004) Design assessment of lisbon transfer stations

using microscopic pedestrian simulation. In: Computers in railways IX

(Congress Proceedings of CompRail 2004). pp. 135–147.

24. Rudloff C, Matyus T, Seer S, Bauer D (2011) Can walking behavior be

predicted? an analysis of the calibration and fit of pedestrian models.

Transportstion Research Record Journal of Transportation Research Board:

101–109.

25. Zanlungo F, Ikeda T, Kanda T (2012) Social norm model to obtain realistic

macroscopic velocity and density pedestrian distributions. PLOS ONE: e10047,

volume = 7, number = 12.

26. Xia Y, Wong SC, Shu CW (2009) Dynamic continuum pedestrian flow model

with memory effect. Phys Rev E 79: 066113.

27. Guo RY, Huang HJ (1999) Simulation of pedestrian movement in microscopic

models with continious space representation. Transp Res Part C Emerg Technol

24: 50–61.

28. Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys

Rev E 51: 4282–4286.

29. Henderson L (1971) The statistics of crowd fluids. Nature 229: 381–383.

30. Hoogendoorn SP, Bovy PHL (2000) Pedestrian speed density functions using

gas-kinetic modelling. In: Bovy PHL, Thijs R, editors, Estimators of travel time

for road networks. Delft University Press, pp. 107–130.

31. Kretz T, Grobe A, Hengst S, Kautzsch L, Pohlmann A, et al. (2009) Quickest

paths in simulations of pedestrians. J Stat Mech 03: P03012.

32. Chraibi M, Wagoum AUK, Schadschneider A, Seyfried A (2011) Force-based

models of pedestrian dynamics. NHM 6: 425–442.

33. Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the helbing-

molnár-farkas-vicsek social force model for pedestrian evolution. Simulation 81:

339–352.

34. Yu W, Johansson A (2007) Modeling crowd turbulence by many-particle

simulations. Phys Rev E 76: 046105.

35. Gwynne S, Galea E, Owen M, Lawrence PJ, Filippidis L (1999) A review of the

methodologies used in the computer simulation of evacuation from the built

environment. Build Environ 34: 842–855.

36. Teknomo K (2006) Application of microscopic pedestrian simulation model.

Transp Res Part F Trafic Psychol Behav 9: 15–27.

37. Zheng X, Zhong T, Liu M (2009) Modeling crowd evacuation of a building

based on seven methodological approaches. Build Environ 44: 437–445.

38. Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian

dynamics by real-coded cellular automata (RCA). Physica A 379: 654–660.

39. Asano M, Iryo T, Kuwahara M (2010) Microscopic pedestrian simulation model

combined with a tactical model for route choice behaviour. Transp Res

Part C Emerg Technol 18: 842–855.

40. Antonini G, Bierlaire M, Weber M (2006) Discrete choice models of pedestrian

walking behavior. Transp Res Part B Methodol 40: 667–687.

41. Batty M, Desyllas J, Duxbury E, Batty M, Desyllas J, et al. (2003) Safety in

numbers? Modelling crowds and designing control for the notting hill carnival.

Urban Stud 40: 1573–1590.

42. Funge J (1999) Representing knowledge within the situation calculus using

interval-valued epistemic fluents. Reliable Computing 5: 35–61.

43. Klüpfel HL (2003) A Cellular Automaton Model for Crowd Movement and

Egress Simulation. Dissertation, University Duisburg-Essen.

44. Lerner A, Chrysanthou Y, Lischinski D (2007) Crowds by example. Comput

Graph Forum 26: 655–664.

45. Robin T, Antonini G, Bierlaire M, Cruz J (2009) Specification, estimation and

validation of a pedestrian walking behavior model. Transp Res Part B Methodol

43: 36–56.

46. Sud A, Andersen E, Curtis S, Lin MC, Manocha D (2008) Real-time path

planning in dynamic virtual environments using multiagent navigation graphs.

IEEE Trans Vis Comput Graph 14: 526–538.

47. Blue VJ, Adler JL (2001) Cellular automata microsimulation for modeling bi-

directional pedestrian walkways. Transp Res Part B Methodol 35: 293–312.

48. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of

pedestrian dynamics using a two-dimensional cellular automaton. Physica A

295: 507–525.

49. Lachapelle A, Wolfram MT (2011) On a mean field game approach modeling

congestion and aversion in pedestrian crowds. Transp Res Part B Methodol 15:

1572–1589.

Predicting Pedestrian Flow Based on Real-Life Data

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83355



50. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway

trafic. Journal de Physique I 2: 2221–2229.
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