
Use of Net Reclassification Improvement (NRI) Method
Confirms The Utility of Combined Genetic Risk Score to
Predict Type 2 Diabetes
Claudia H. T. Tam1, Janice S. K. Ho1, Ying Wang1, Vincent K. L. Lam1, Heung Man Lee1, Guozhi Jiang1,

Eric S. H. Lau1, Alice P. S. Kong1,2,3, Xiaodan Fan4, Jean L. F. Woo1, Stephen K. W. Tsui5, Maggie C. Y. Ng6,

Wing Yee So1,2,3, Juliana C. N. Chan1,2,3, Ronald C. W. Ma1,2,3*

1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China, 2 Hong Kong Institute of Diabetes and Obesity, The Chinese

University of Hong Kong, Hong Kong SAR, China, 3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China, 4 Department of

Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China, 5 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China,

6 Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States

of America

Abstract

Background: Recent genome-wide association studies (GWAS) identified more than 70 novel loci for type 2 diabetes (T2D),
some of which have been widely replicated in Asian populations. In this study, we investigated their individual and
combined effects on T2D in a Chinese population.

Methodology: We selected 14 single nucleotide polymorphisms (SNPs) in T2D genes relating to beta-cell function validated
in Asian populations and genotyped them in 5882 Chinese T2D patients and 2569 healthy controls. A combined genetic
score (CGS) was calculated by summing up the number of risk alleles or weighted by the effect size for each SNP under an
additive genetic model. We tested for associations by either logistic or linear regression analysis for T2D and quantitative
traits, respectively. The contribution of the CGS for predicting T2D risk was evaluated by receiver operating characteristic
(ROC) analysis and net reclassification improvement (NRI).

Results: We observed consistent and significant associations of IGF2BP2, WFS1, CDKAL1, SLC30A8, CDKN2A/B, HHEX, TCF7L2
and KCNQ1 (8.5610218,P,8.561023), as well as nominal associations of NOTCH2, JAZF1, KCNJ11 and HNF1B (0.05,P,0.1)
with T2D risk, which yielded odds ratios ranging from 1.07 to 2.09. The 8 significant SNPs exhibited joint effect on increasing
T2D risk, fasting plasma glucose and use of insulin therapy as well as reducing HOMA-b, BMI, waist circumference and
younger age of diagnosis of T2D. The addition of CGS marginally increased AUC (2%) but significantly improved the
predictive ability on T2D risk by 11.2% and 11.3% for unweighted and weighted CGS, respectively using the NRI approach
(P,0.001).

Conclusion: In a Chinese population, the use of a CGS of 8 SNPs modestly but significantly improved its discriminative
ability to predict T2D above and beyond that attributed to clinical risk factors (sex, age and BMI).
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Introduction

Type 2 diabetes (T2D) is one of the most common chronic

diseases characterized by insulin resistance and relative insulin

deficiency [1]. The number of people with T2D was estimated to

increase from 285 million adults in 2010 to 439 million adults by

2030, posing an enormous strain to healthcare systems worldwide

[2].

The development of T2D is caused by interplay between

multiple genetic variants, lifestyle and environmental factors. In

the Framingham Offspring Study, a simple clinical model

including parental history of T2D, body mass index (BMI), high

density lipoprotein cholesterol (HDL), triglycerides (TG), blood

pressure (BP) and fasting plasma glucose (FPG) predicted T2D risk

[3]. However, family history alone containing both genetic and
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shared environmental information, has low predictive power in

clinical diagnosis [4] since each family member can differ

genetically.

With the high-throughput genotyping technologies, genome-

wide association studies (GWAS) not only confirmed the candidate

genes such as PPARG [5], KCNJ11 [6], TCF7L2 [7] and WFS1 [8],

but also identified more than 70 novel loci for T2D risk

[9,10,11,12,13,14,15,16,17,18,19,20]. The majority of these var-

iants conferred T2D risk through pancreatic beta-cell dysfunction

[17,21,22], while only a few like PPARG, FTO and IRS1 affected

fat metabolism [12,17,22]. The use of a Combined Genetic Score

(by summing up the number of risk alleles of these diabetes loci;

CGS) has been shown to predict T2D risk better than using each

genetic loci alone [23,24,25,26,27,28,29,30,31,32,33,34,35]. Oth-

er groups have demonstrated that pathway-specific CGS,

constructed by using beta-cell function-related loci, was associated

with reduced beta-cell function [24,36,37,38,39]. Despite these

advancements in our understanding of the T2D genetics, the

discriminative power of GCS above and beyond clinical risk

factors remains low. In the present study, we investigated the

individual and combined effects of 14 loci relating to beta-cell

function in predicting 1) risk of T2D in a case-control cohort; 2)

glucose-related traits in healthy subjects; 3) clinical characteristics

in T2D patients, and 4) use of insulin in a Chinese population. We

also used both receiver operating characteristic (ROC) analysis

and net reclassification improvement (NRI) to assess the contri-

bution of the CGS in predicting T2D risk.

Research Design and Methods

Ethics Statement
Written informed consent was obtained from all participants or

parents of adolescents as appropriate. This study was approved by

the Clinical Research Ethics Committee of the Chinese University

of Hong Kong.

Subjects
Details of the study design, ascertainment, inclusion criteria and

phenotyping procedures of subjects have been reported

[32,40,41]. All study subjects were of southern Han Chinese

ancestry residing in Hong Kong. The case cohort consisted of

5882 unrelated T2D patients (mean age 56.8613.3 years, 46%

male, mean duration of T2D 7.166.7 years) selected from the

Hong Kong Diabetes Registry (HKDR) [42]. The HKDR was

established as a quality improvement program at the Prince of

Wales Hospital since 1995. We made use of the universal health

care system which provides more than 95% of chronic care to

patients in Hong Kong. Once a diabetic subject is enrolled, he or

she will be observed until death. Subjects in the cohort include

patients referred from primary care clinics for complications

assessment, as well as patients from specialist clinics. Subjects in

the case cohort from HKDR were enrolled between 1995 and

2005. Around 46% of these patients had BMI$25 kg/m2,

consistent with the general characteristics of type 2 diabetes

patients in our locality. T2D was diagnosed according to the 1998

World Health Organization (WHO) criteria. Type 1 diabetic

patients with acute ketotic presentation, or patients with non-

Chinese or unknown nationality, or missing data on type of

diabetes, or continuous requirement of insulin within 1 year of

diagnosis were excluded. The healthy control cohort consisted of

2569 subjects ascertained from 3 sources: a) 1057 adolescents

(mean age 15.361.9 years, 46% male) from a community-based

school survey, b) 586 adults (mean age 41.3610.5 years, 45%

male), and c) 926 elderly (mean age 72.365.3 years, 51% male)

from two community-based health screening programs. To obtain

a representative sample population of Hong Kong Chinese

adolescents, we randomly selected schools and students using a

computer-generated coding system. Those with chronic illnesses

such as diabetes with or without drugs were excluded from the

study [43]. Adults recruited from a territory-wide health awareness

and promotion program were randomly selected by stratified

random sampling with computer-generated codes in accordance

to the distribution of occupational groups [44]. The elderly were

recruited from community centers for the elderly and housing

estates in Hong Kong since 2001. By using the stratified sampling

technique, approximately one third of participants were randomly

selected from each of the following age groups: 65–69, 70–74, and

$75 years old [41]. The clinical characteristics of subjects in case

and control cohorts are summarized in Table 1.

Clinical Studies
All participants were examined in the morning after an

overnight fast. Anthropometric measurements including waist

circumference (WC), body weight and height were documented.

Body mass index (BMI) was calculated as weight (kg) divided by

squared height (m2). Central obesity was defined as WC$90 cm

for male or $80 cm for female. Fasting blood samples were

collected for DNA extraction and measurements of hemoglobin

A1c (HbA1c), fasting plasma glucose (FPG) and insulin (FPI).

Homeostasis model assessment of insulin resistance (HOMA-IR)

was calculated as (FPI [mU/l]6FPG [mmol/l])422.5, and

homeostasis model assessment of beta-cell function (HOMA-b)

was calculated as FPI6204(FPG23.5) [45]. Glomerular filtration

rate (eGFR) was estimated using the abbreviated Modification of

Diet in Renal Disease (MDRD) formula further adjusted for the

Chinese ethnicity: eGFR = 1866[SCR60.011]21.1546[age]20.203

6[0.742 if female]6[1.233 if Chinese] where SCR is serum

creatinine expressed as mmol/l and 1.233 is the adjusting

coefficient for Chinese population [46]. Use of medications,

including oral blood glucose-lowering agents and insulin, were also

recorded for all T2D patients. Anti-hypertensive medications

included all blood pressure lowering drugs except for angiotensin

converting enzyme (ACE) inhibitors and angiotensin receptor

blockers (ARBs), which were grouped as renin angiotensin system

(RAS) blocker. Lipid-lowering medications included statins and

fibrates. Insulin therapy was defined as continuous dispensing of

insulin for at least 6 months.

Genotyping
We genotyped 14 genetic variants (NOTCH2 rs10923931,

ADAMTS9 rs4607103, IGF2BP2 rs4402960, WFS1 rs734312,

CDKAL1 rs7756992, JAZF1 rs864745, SLC30A8 rs13266634,

CDKN2A/B rs10811661, HHEX rs7923837, TCF7L2 rs7903146,

KCNQ1 rs2237892, KCNJ11 rs5219, TSPAN8/LGR5 rs7961581,

HNF1B rs4430796) associated with T2D and beta-cell dysfunc-

tion in multiple populations including Chinese. We did not test

for associations for all tagging single nucleotide polymorphisms

(SNPs) of the respective genes. Genotyping on genomic DNA

was performed either at deCODE Genetics using the Centaurus

(Nanogen) platform or at the McGill University and Genome

Quebec Innovation Centre using the Sequenom MassARRAY

platform (San Diego, CA, USA). All SNPs were in Hardy-

Weinberg equilibrium (P.0.01) in control cohorts using the

exact test implemented in PLINK [47]. The overall genotype

call rates were .95% and the minor allele frequencies (MAF) in

normal controls were comparable with the HapMap CHB data.

Use of NRI and Genetic Score to Predict T2D
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Computation of Combined Genetic Score (CGS)
We selected SNPs with alleles associated with T2D consistent

with the literature and P values ,0.05 to calculate the CGS using

two approaches. In the simple count method, we assumed similar

effect sizes for each SNP and assigned each subject an unweighted

CGS based on the sum of risk alleles. In the weighted method, the

number of risk allele for each SNP was multiplied by a weight

derived from its relative effect size (b-coefficient) estimated in the

present study. In this combined cohort, 2.7% had missing

genotypes which were imputed by the average-risk allele at each

SNP and the CGS for each individual was then rounded to the

nearest value.

Statistical Analysis
All statistical analyses were performed using the Statistical

Package for Social Sciences for Windows version 15 (SPSS,

Chicago, IL, USA), PLINK v1.07 (http://pngu.mgh.harvard.edu/

purcell/plink/), and R 2.15.1 (http://www.r-project.org/) unless

not specified otherwise. A 2-tailed P value ,0.05 was considered

significant.

We estimated the study power using Quanto. Assuming an

additive model with the at-risk allele frequencies ranging between

5–50% for the variant, the sample size of the case-control cohort at

hand would provide .75% power to detect the association with

T2D risk at a level of 0.05, assuming prevalence of 0.1 and an

odds ratio of 1.2. In addition, assuming that the total explained

QTL variances ranges from 0.1 to 1%, the current sample size in

the quantitative trait analysis would provide us 68–99% power to

detect the association at a level of 0.05.

Data are expressed as percentage, mean6SD or median

(interquartile range), as appropriate. Continuous variables (FPI,

HOMA-IR and HOMA-b) were log transformed to approximate

normal distribution. Each trait was winsorized separately within

adolescent and adult cohorts by replacing extreme values with 4

standard deviations from the mean. Less than 0.2% of data were

replaced.

We conducted logistic regression analysis with adjustments for

sex, age and BMI to compare the genotypes frequencies and CGS

between T2D cases and healthy controls under a log additive

model. Odd ratios (ORs) with 95% confidence intervals (CIs) were

presented. The difference in distributions of CGS between T2D

patients and healthy controls were compared by Student’s t-test.

Multiple testings were corrected by permutations for 10,000 times.

Associations of glucose-related quantitative traits and clinical

features with individual SNPs and/or categorized CGS (according

to the quartiles of CGS) were tested by linear and logistic

regression analysis for continuous and categorical variables,

respectively. The covariates included in the regression analyses

were selected based on our previous studies [48,49,50,51]: we

adjusted for sex, age, BMI and ‘‘study cohort’’ (a dummy variable

coded as 0 for adult controls and 1 for adolescent controls) in

glucose-related quantitative traits analysis; analysis for age at

diagnosis (AAD) was adjusted for sex, BMI and HbA1c; analysis for

BMI, WC and central obesity were adjusted for sex and age;

analysis for HbA1c was adjusted for sex, age and BMI; analysis for

the proportion of insulin therapy at baseline was adjusted for sex,

age, smoking status, HbA1c, eGFR at baseline and drug usage

(lipid lowering, blood pressure lowering, RAS inhibitors and oral

glucose lowering drugs). The genetic effects on quantitative traits

were presented by either b6SE estimated from the linear

regression model or the marginal mean (95% CIs) estimated from

general linear model adjusted for covariates, categorized by the

number of risk alleles.

In the sub-phenotype analysis for T2D risk, multiplicative

interaction between overweight (BMI$25 kg/m2 vs BMI,25 kg/

m2) and CGS was tested by logistic regression analysis including

the main and product interaction terms of overweight and CGS.

Cochran’s Q statistic (P,0.05) and I2 index were used to assess

heterogeneity of ORs between subgroups.

To evaluate the discriminative power of the prediction model

on T2D risk, we calculated the area under the receiver operating

characteristic (ROC) curve, denoted area under curve (AUC)

based on the predicted risks for each individual obtained from the

logistic regression analysis. Three different prediction models were

considered: 1) including clinical variables (sex, age and BMI) only;

2) including unweighted or weighted CGS only; and 3) including

both clinical variables and CGS. The AUC can vary from 0.5 (no

discrimination) to one (prefect discrimination). Furthermore,

the contribution of CGS was assessed by the net reclassification

improvement (NRI) method which evaluates the proportion

of subjects moving accurately or inaccurately from one risk

category to another after adding CGS into the model. Typically,

NRI analysis is applied in studies with prospective follow-up.

In order to apply NRI analysis in our case-control study, we

adopted the approach proposed by Pencina et al [52]. We

included the term of log[r/(12r)6ncontrol/ncase] to the intercept of

logistic regression model to adjust for predicted risk with

prevalence r.

Results

Single SNP Association for T2D Risk, Age of Diagnosis
and Glucose-related Traits

We genotyped 14 SNPs relating to beta-cell function in

5882 T2D patients and 2569 healthy controls. Of these, 8 SNPs

Table 1. Clinical and metabolic characteristics of 5882 subjects with type 2 diabetes (T2D) and 2569 healthy controls in Chinese
population.

Characteristics Healthy Adolescents Healthy Adults Healthy Elderly T2D subjects

N (male%) 1057 (45.6%) 586 (45.1%) 926 (51.2%) 5882 (45.5%)

Age (years) 15.361.9 41.3610.5 72.365.3 56.8613.3

Age-at-diagnosis (year) – – – 49.7612.6

Body mass index (kg/m2) 19.963.6 22.963.3 23.263.3 25.163.9

Fasting plasma glucose (mmol/l) 4.760.4 4.860.4 – –

Fasting plasma insulin (pmol/l) 45.1 (35.5–60.5) 41.1 (26.0–58.3) – –

Data are shown as N, %, mean6SD or median (interquartile range).
doi:10.1371/journal.pone.0083093.t001

Use of NRI and Genetic Score to Predict T2D
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including IGF2BP2 rs4402960, WFS1 rs734312, CDKAL1

rs7756992, SLC30A8 rs13266634, CDKN2A/B rs10811661,

HHEX rs7923837, TCF7L2 rs7903146 and KCNQ1 rs2237892

were consistently and significantly associated with T2D

after adjusting for sex, age and BMI (OR = 1.14–2.09,

8.5610218,P,8.561023) (Table 2). The association of KCNQ1

rs2237892 was the strongest (P,8.5610218) while TCF7L2

rs7903146 showed the largest effect (OR [95% CI] = 2.09 [1.63–

2.69]), albeit with rare allele frequency (0.034 in T2D patients;

0.019 in healthy controls). Nominal associations were found at

NOTCH2 rs10923931, JAZF1 rs864745, KCNJ11 rs5219, and

HNF1B rs4430796 with ORs ranging from 1.07 to 1.24

(0.0516,P,0.0816) (Table 2), but not for ADAMTS9 rs4607103

and TSPAN8/LGR5 rs7961581. All significant SNPs except WFS1

rs734312 remained statistically significant after correcting for

multiple comparisons (Table 2). Among the 14 SNPs examined in

this analysis, the probability that 12 or more SNPs (P#0.1) would

come up with effect estimates that point in the same direction as

previous reports is 6.561023 based on the binomial distribution.

Next, we examined the effects of genetic variants on AAD in

T2D patients and glucose-related quantitative traits in healthy

adolescents and adults. The reported T2D risk alleles for three

SNPs (CDKAL1 rs7756992, SLC30A8 rs13266634 and KCNQ1

rs2237892) were associated with younger AAD

(1.061023,P,0.0482) (Table 2). Elevated FPG and reduced

beta-cell function (assessed by HOMA-b) were also associated

with T2D risk alleles of CDKN2A/B rs10811661

(b6S.E. = 0.03660.013, P = 5.561023) and SLC30A8

rs13266634 (b6S.E. = 20.04260.021, P = 0.0438), respectively

(Table S1).

Combined Genetic Effect on T2D Risk, Glucose-related
Traits in Healthy Adolescents and Adults, as well as
Clinical Features in T2D Patients

We further investigated the joint genetic effect on T2D risk.

Figures 1a and 1c showed the distributions of unweighted and

weighted CGS between T2D patients and healthy controls,

respectively. For both CGSs, a greater proportion of T2D patients

carried a higher number of risk alleles than healthy controls.

Patients with T2D had more risk alleles (mean6SD = 7.6061.69

and 6.0361.59 for unweighted and weighted CGS) than healthy

controls (mean6SD = 7.0861.69 and 5.5361.52 for unweighted

and weighted CGS, respectively) (P of t-test = 4.0610237 and

6.6610242 for unweighted and weighted CGS, respectively). In

multivariate logistic regression analysis, each additional risk allele

resulted in increasing odds of T2D by 1.24 (95% CI = 1.20–1.28,

P = 2.2610240) and 1.29 (95% CI = 1.25–1.34, P = 2.2610245) for

unweighted and weighted CGS, respectively (Figure 1b and 1d).

Subjects carrying $11 risk alleles in unweighted CGS had an OR

of 6.25 (95% CI = 4.13–9.47, P = 4.8610218) compared to those

carrying #4 risk alleles (Figure 1b). Similarly, subjects carrying

$10 risk alleles in weighted CGS had an OR of 7.75 (95%

CI = 4.18–14.36, P = 7.9610211) compared to those carrying #3

risk alleles (Figure 1d).

To explore the effect of CGS on glucose-related traits and

clinical features, we divided all participants into 4 groups by

quartiles of CGS. In healthy adolescents and adults, increasing

number of risk alleles was moderately associated with lower

HOMA-b (b6SE = 20.03160.015, Punweighted CGS = 0.0339;

b6SE = 20.02960.014, Pweighted CGS = 0.0422). A trend was

observed for higher FPG using the unweighted CGS

(b6SE = 0.01860.009, Punweighted CGS = 0.0502) but was no longer

Table 2. Associations of single nucleotide polymorphisms (SNPs) of replicated genetic loci with type 2 diabetes and age at
diagnosis in Chinese populations.

Risk allele
frequency

Type 2 Diabetes in 5882
cases and 2569 controls Age at diagnosis in 5882 cases

Chr SNP Gene

Risk/
non-risk
allele Cases Controls OR (95% CI) P Ppermutation b (SE) P Ppermutation

1 rs10923931 NOTCH2 T/G 0.037 0.029 1.24 (1.00–1.53) 0.0516 0.5293 0.838 (0.627) 0.1817 0.9403

3 rs4607103 ADAMTS9 C/T 0.680 0.691 0.97 (0.89–1.05) 0.4293 0.9996 0.346 (0.253) 0.1719 0.9308

3 rs4402960 IGF2BP2 T/G 0.251 0.230 1.16 (1.06–1.27) 8.561024 0.0132 20.172 (0.270) 0.5250 1.0000

4 rs734312 WFS1 A/G 0.817 0.799 1.14 (1.03–1.25) 8.561023 0.1131 20.269 (0.306) 0.3792 0.9979

6 rs7756992 CDKAL1 G/A 0.506 0.459 1.22 (1.14–1.32) 1.061027 1.061024 20.456 (0.231) 0.0482 0.5054

7 rs864745 JAZF1 A/G 0.783 0.771 1.08 (0.99–1.19) 0.0816 0.6958 20.350 (0.288) 0.2242 0.9710

8 rs13266634 SLC30A8 C/T 0.568 0.527 1.22 (1.13–1.32) 2.261027 1.061024 20.708 (0.236) 2.861023 0.0364

9 rs10811661 CDKN2A/B T/C 0.618 0.579 1.21 (1.12–1.31) 9.761027 1.061024 20.382 (0.242) 0.1142 0.8226

10 rs1111875 HHEX G/A 0.302 0.274 1.22 (1.12–1.32) 2.961026 1.061024 20.373 (0.256) 0.1452 0.8905

10 rs7903146 TCF7L2 T/C 0.034 0.019 2.09 (1.63–2.69) 9.661029 1.061024 20.664 (0.648) 0.3060 0.9936

11 rs2237892 KCNQ1 C/T 0.719 0.656 1.45 (1.33–1.58) 8.5610218 1.061024 20.911 (0.277) 1.061023 0.0132

11 rs5219 KCNJ11 T/C 0.342 0.325 1.07 (0.99–1.16) 0.0772 0.6739 20.095 (0.247) 0.7006 1.0000

12 rs7961581 TSPAN8/LGR5 C/T 0.228 0.229 0.98 (0.89–1.07) 0.6187 1.0000 0.087 (0.278) 0.7533 1.0000

17 rs4430796 HNF1B G/A 0.267 0.254 1.09 (1.00–1.18) 0.0617 0.5888 20.125 (0.267) 0.6393 1.0000

The ORs (95% CIs) and P values for type 2 diabetes were calculated using logistic regression analysis adjusted for sex, age and BMI assuming an additive genetic model
in 5882 cases and 2569 controls. The bs (SEs) and P values for age at diagnosis were calculated using linear regression analysis adjusted for sex, BMI and HbA1c assuming
an additive genetic model in 5882 cases. ORs (95%CIs) and bs (SEs) were reported with respect to the risk allele described in literature.
doi:10.1371/journal.pone.0083093.t002

Use of NRI and Genetic Score to Predict T2D
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significant for the weighted CGS (b6SE = 0.01260.009, Pweighted

CGS = 0.1986) (Figure S1a–d). No association was observed for

any traits with both unweighted and weighted CGS after

Bonferroni correction. In patients with T2D, those with more

risk alleles were leaner (BMI: Punweighted CGS = 4.461029, Pweighted

CGS = 2.3610210; WC: Punweighted CGS = 5.061026 and 2.761024 for

male and female, Pweighted CGS = 4.561027 and 9.761025 for male

and female; Central obesity: Punweighted CGS = 1.561024, Pweighted

CGS = 6.961025), had younger AAD (Punweighted CGS = 9.461027,

Pweighted CGS = 5.661027), higher rates of positive family history of

T2D (Punweighted CGS = 0.0261, Pweighted CGS = 0.0218) and were more

likely to be treated with insulin at time of recruitment (Punweighted

CGS = 0.0332, Pweighted CGS = 0.0249) (Table 3).

Sub-phenotype Analysis on T2D Risk Stratified by
Overweight and Non-overweight Subjects

To test for the heterogeneity of T2D risk with CGS between

overweight and non- overweight subjects, we stratified the subjects

into two groups: overweight group defined as BMI$25 kg/m2 and

non-overweight group defined as BMI,25 kg/m2. There were

strong associations of CGS with T2D risk in both groups for

unweighted and weighted CGS (P,0.0001) (Figure S2). In the

non-overweight group, the OR (95% CI) per copy of risk allele

(1.26 (1.21–1.31)) increased exponentially across the counts of

unweighted CGS, and also more steeply compared to the OR in

the overweight group (1.17 (1.10–1.24) per copy of risk allele,

Punweighted = 0.0312 and I2 = 0.7846 in heterogeneity test of OR). We

did not detect any interaction between CGS and overweight/non-

overweight groups for T2D risk (P.0.05).

Predictive Power of CGS for T2D Risk
We assessed discrimination and reclassification to evaluate the

contribution of CGS for predicting T2D risk. Firstly, AUC was

used to assess the discriminatory power of the model with and

without inclusion of CGS on top of clinical variables (sex, age and

BMI). The AUC was 0.75 (95% CI = 0.74–0.76) for the model

incorporating clinical variable alone, then increased marginally by

0.02 when both clinical variables and CGS were included (Figure

S3 and Table S2).

To directly compare the clinical impact of models with

and without CGS, net reclassification improvement (NRI)

was computed to indicate the proportion of subjects reclassified

correctly (NRI.0) or incorrectly (NRI,0) into various risk

categories. We conducted the analysis separately for T2D

patients and healthy controls and stratified them into five risk

categories (,5%, 5 to ,10%, 10 to ,15%, 15 to ,20% and

$20%) based on the clinical variables. When we included the

unweighted/weighted CGS in addition to the clinical variables,

Figure 1. Distributions and effects of unweighted (a–b) and weighted (c–d) CGSs on T2D risk.
doi:10.1371/journal.pone.0083093.g001
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22.0%/22.2% of T2D patients were correctly reclassified to higher

risk category and 16.6%/17.8% incorrectly reclassified to lower

risk category. Similarly, 15.4%/17.1% of healthy controls

correctly moved down to lower risk category and 9.8%/10.1%

incorrectly moved up to higher risk category. These reclassification

rates gave an estimated NRI of 11.0% (95% CI = 7.5–14.5,

P,0.001) and 11.4% (95% CI = 7.7–15.1, P,0.001) by including

the unweighted and weighted CGS, respectively (Table 4 and

Table 5).

To compare the predictive power between CGS based on 8

SNPs with P,0.05 and CGS based on 12 SNPs with P,0.1, ROC

analysis and calculation of NRI were repeated using CGS based

on 12 SNPs. However, the additional 4 SNPs with nominal

significance (0.05,P,0.1) did not improve the discriminatory

power (Figure S4 and Table S3 for ROC analysis, Table S4 and

Table S5 for NRI calculation).

Discussion

Genome-wide association studies have so far identified more

than 70 novel loci for T2D with modest effects (OR = 1.06–1.40)

[53]. Most of these associations had been replicated in European

and Asian populations [23,24,25,26,27,29,33,34,35,54,55,56,57].

In our previous meta-analysis, we reported both individual and

joint effects of 7 SNPs in IGF2BP2, CDKAL1, SLC30A8, CDKN2A/

B, HHEX, TCF7L2 and FTO on T2D risk in Chinese and Korean

populations [32]. Here we further genotyped 14 loci (6 of which

Table 3. Clinical features of subjects with type 2 diabetes (T2D) in each quartile of the unweighted (upper panel) and weighted
(lower panel) combined genetic score (CGS), respectively.

CGS quartile

Clinical features Q1 Q2 Q3 Q4 P

Unweighted CGS

Genetic score: median (min – max) 6 (2–6) 7 (7–7) 8 (8–9) 10 (10–14) –

N 1567 1290 2210 815 –

Sex (male %) 44.61% 45.58% 46.06% 45.64% 0.8504

Age (year) 57.63613.09 56.85613.18 56.23613.36 56.33613.5 1.961023

Age at diagnosis (year) 50.66612.69 50.04612.53 49.13612.54 48.62612.81 9.461027

Duration of T2D (year) 6.9766.71 6.8166.63 7.166.59 7.7266.94 0.0276

First degree family history of T2D (%) 39.12% 39.61% 42.4% 42.45% 0.0261

Body mass index (kg/m2) 25.4363.99 25.264.02 24.9563.83 24.5263.85 4.461029

Waist circumference (cm)

male 89.6269.81 88.469.59 88.0769.51 86.8469.33 5.061026

female 84.41610.14 84.32610.23 82.9569.52 82.7169.8 2.761024

Central obesity (%) 58.69% 55.33% 53.47% 50.75% 1.561024

HbA1c (%) 7.7661.82 7.6761.81 7.761.8 7.961.81 0.5295

Insulin therapy at baseline (%) 20.61% 20.39% 21.54% 23.31% 0.0332

Weighted CGS

Genetic score: median (min – max) 5 (1–5) 6 (6–6) 7 (7–7) 8 (8–13) –

N 2268 1440 1247 927 –

Sex (male %) 44.84% 45.69% 45.71% 46.6% 0.827

Age (year) 57.5613.23 56.39613.02 56.09613.55 56.37613.37 5.261023

Age at diagnosis (year) 50.62612.73 49.41612.31 48.94612.65 48.7612.74 5.661027

Duration of T2D (year) 6.8866.58 6.9866.66 7.1566.83 7.6766.77 0.0053

First degree family history of T2D (%) 39.15% 41.25% 42.18% 43.04% 0.0218

Body mass index (kg/m2) 25.3664.01 25.1763.97 24.9263.87 24.4363.66 2.3610210

Waist circumference (cm)

male 89.1369.89 89.0869.4 87.6169.31 86.5569.41 4.561027

female 84.36610.07 83.84610.01 82.7769.88 82.5169.2 9.761025

Central obesity (%) 57.17% 57.33% 51.21% 50.49% 6.961025

HbA1c (%) 7.7361.83 7.6961.79 7.761.76 7.8761.86 0.3552

Insulin therapy at baseline (%) 20.24% 21.67% 21.17% 23.41% 0.0249

Data are shown as N, %, mean6SD or median (minimum to maximum). Between-group comparisons of clinical characteristics were performed by x2 test or logistic
regression analysis for categorical variables, and one-way ANOVA or linear regression analysis for continuous variables, as appropriate. Analysis for age at diagnosis was
adjusted for sex, body mass index (BMI) and HbA1c. Analysis for BMI and central obesity were adjusted for sex and age. Analysis for waist circumference (stratified by
sex) was adjusted for age. Analysis for HbA1c was adjusted for sex, age and BMI. Analysis for insulin therapy was adjusted for sex, age, smoking status, HbA1c, baseline
eGFR and drug usages (lipid lowering, blood pressure anti-hypertensive, ACE inhibitor and oral glucose lowering). Q1, quartile 1; Q2, quartile 2; Q3, quartile 3; Q4,
quartile 4; T2D, type 2 diabetes.
doi:10.1371/journal.pone.0083093.t003
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were included in the previous study) relating to impaired beta-cell

function in a larger cohort consisting of 5882 T2D patients and

2569 healthy controls in the Chinese population.

Consistent with earlier studies in Caucasians

[13,14,15,16,18,19,20,58], we replicated the associations of T2D

with 8 SNPs in IGF2BP2, WFS1, CDKAL1, SLC30A8, CDKN2A/B,

Table 4. Reclassification of predicted risk with the addition of unweighted combined genetic score (CGS) including 8 variants
(P,0.05) in T2D subjects (upper panel) and healthy controls (lower panel).

Reclassified predicted risk (with CGS) % (N) of subjects reclassified with

Predicted risk (without CGS) ,5%
5 to
,10%

10 to
,15%

15 to
,20% $20% increased risk decreased risk

Net correctly
reclassified (%)

T2D patients (N = 5820)

,5% 248 106 0 0 0 22.0% 16.6% 5.38%

5 to ,10% 129 679 290 73 0 (1280) (967)

10 to ,15% 0 278 500 316 134

15 to ,20% 0 34 240 307 361

$20% 0 0 61 225 1839

Healthy controls (N = 2560)

,5% 1151 41 0 0 0 9.8% 15.4% 5.63%

5 to ,10% 100 224 64 5 0 (250) (394)

10 to ,15% 0 118 132 68 13

15 to ,20% 0 11 79 80 59

$20% 0 0 20 66 329

Net reclassification improvement (95% CI) 11.0 (7.5–14.5)

P,0.001

CGS: combined genetic score. Each cell refers to the number of subjects in the predicted risk categories. Subjects with higher predicted risk were more likely to be
classified as cases. Similarly, subjects with lower predicted risk were more likely to be classified as controls. T2D subjects and healthy controls classified in the shaded
cells indicated that they were correctly reclassified to higher and lower risk categories, respectively. The total number of subjects reclassified is 2,891 and the
improvement classification rates are 5.38% and 5.63% for T2D subjects and healthy controls, respectively with a total improvement rate of 11.0% (5.38% +5.63%).
doi:10.1371/journal.pone.0083093.t004

Table 5. Reclassification of predicted risk with the addition of weighted combined genetic score (CGS) including 8 variants
(P,0.05) in T2D subjects (upper panel) and healthy controls (lower panel).

Reclassified predicted risk (with CGS) % (N) of subjects reclassified with

Predicted risk (without CGS) ,5%
5 to
,10%

10 to
,15%

15 to
,20% $20% increased risk decreased risk

Net correctly
reclassified (%)

T2D patients (N = 5820)

,5% 252 93 9 0 0 22.2% 17.8% 4.36%

5 to ,10% 139 678 250 87 17 (1290) (1036)

10 to ,15% 0 307 460 292 169

15 to ,20% 0 25 261 283 373

$20% 0 0 69 235 1821

Healthy controls (N = 2560)

,5% 1151 41 0 0 0 10.1% 17.1% 6.99%

5 to ,10% 114 207 64 8 0 (258) (437)

10 to ,15% 1 128 122 66 14

15 to ,20% 0 19 73 72 65

$20% 0 0 34 68 313

Net reclassification improvement (95% CI) 11.4 (7.7–15.1)

P,0.001

CGS: combined genetic score. Each cell refers to the number of subjects in the predicted risk categories. Subjects with higher predicted risk were more likely to be
classified as cases. Similarly, subjects with lower predicted risk were more likely to be classified as controls. T2D subjects and healthy controls classified in the shaded
cells indicated that they were correctly reclassified to higher and lower risk categories, respectively. The total number of subjects reclassified is 3,021 and the
improvement classification rates are 4.36% and 6.99% for T2D subjects and healthy controls, respectively with a total improvement rate of 11.4% (4.36% +6.99%).
doi:10.1371/journal.pone.0083093.t005
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HHEX, TCF7L2 and KCNQ1 (P,0.05), as well as trends of

associations in NOTCH2, JAZF1, KCNJ11 and HNF1B

(0.05,P,0.1). Their moderate effect sizes (ORs = 1.07–1.45) are

similar to those of other studies [13,14,15,16,18,19,20,58], except

for TCF7L2 which had a high OR of 2.09 albeit a low MAF in

Chinese population (0.026 vs 0.279 for Hapmap CHB and CEU,

respectively).

To better understand the mechanisms of genetic factors

involved in the pathogenesis of T2D, glucose homeostasis and

beta-cell function, the Meta-Analyses of Glucose and Insulin-

related traits Consortium (MAGIC) has conducted a meta-analysis

of GWAS on glycemic quantitative traits [59,60,61]. Although

most of the susceptibility loci were shown to affect insulin secretion

and beta-cell function [62], we only observed the effect of variants

in SLC30A8 and CDKN2A/B on glucose-related traits in our

Chinese populations. While our findings were concordant with

that reported by Wu et al. [56] and Ruchat et al. [63], there were

also negative reports in other Asian studies [23,24,34]. Interest-

ingly, Hu et al. [34] reported that the C-allele of rs13266634 in

SLC30A8 was associated with higher FPG, in our study, the same

allele was associated with lower beta-cell function. On the other

hand, while the T-allele of rs10811661 in CDKN2A/B was

reported to be associated with reduced 2-hour insulin [34] and

HOMA-b levels [23], we found an association with increased FPG

level. Although association of reduced beta cell function with

TSPAN8/LGR5 had been reported [22], we were not able to

confirm these findings in our Chinese population. These

discrepant findings might be due to differences in genomic

structures, sample size, variability of outcome measures, effect

sizes, ethnicity, cultural and environmental factors. For example,

we observed remarkable differences of the allele frequencies for

most of the examined SNPs between the Chinese and European

populations (Table S6). Besides, our sample size only had 66% and

59% power to detect T2D risk with an OR of 1.09 for ADAMTS9

and TSPAN8/LGR5 at significance level of 0.05, respectively, thus

a larger cohort will be needed to confirm these associations.

Early studies suggested the predictive power of genetic markers

for T2D can be improved by using a cumulative number of risk

alleles [26,31,35]. Therefore, we constructed two CGSs, un-

weighted and weighted, based on 8 susceptibility loci relating to

beta-cell function. Compared to carriers with #4 (#3) alleles, each

additional allele increased the odds of T2D by 1.24-fold (1.29-fold)

for unweighted (weighted) CGS. These values were similar to

those reported by Hoek et al. [33], Miyake et al. [35], and Wu et al.

[56], despite differences in ethnicity, study design and selection of

genetic variants. Quartile analyses of CGS further showed that

subjects carrying more risk alleles were less obese, had earlier

AAD, a trend of higher FPG and lower HOMB-b levels, and were

more likely to be insulin-treated. Taken together, our findings and

those of others [24,64], strongly support the notion that these

genetic variants increase T2D risk through pancreatic beta-cell

dysfunction.

The utility of genetic markers in the prediction of common

diseases can be substantially improved by identifying the

interactions between genetic and environmental factors. [65].

For instance, Linder et al. [66] suggested that the association

between impaired glucose tolerance and genetic risk score was

modulated by gender, obesity status and insulin sensitivity. To

better understand the underlying causal pathways, we examined

for possible heterogeneity of T2D risk with CGS between

overweight and non-overweight subjects. We observed that the

risk association in the non-overweight group showed larger effect

size than that in the overweight group (OR 1.26 vs 1.17). Our

findings echoed similar findings in a Japanese study where the

CGS predicted T2D in non-obese but not obese/overweight

subjects [27]. Similarly, the risk association of insulin resistance

related loci with T2D risk showed larger effect size in obese

individuals while that of insulin secretion related loci showed

larger effect in non-obese individuals [67]. In this analysis, we

selected 8 SNPs implicated in beta-cell function, which might

explain the larger effect of the CGS in the non-overweight

subjects.

We used two different approaches, discrimination and reclas-

sification to evaluate whether the addition of CGS improved

the prediction of T2D risk above and beyond clinical variables.

In ROC analysis, AUC was commonly used to measure

the discriminatory ability of a model correctly classifying subjects

with or without disease. In many studies, the additional

contribution attributed to genetic variants detected by ROC

curve has been minimal [25,26,29,33,34,35]. Consistent with

this, our results showed that the addition of genetic information

only increased the AUC by 2% for both unweighted and

weighted CGSs, despite the strong and independent association

of CGSs with T2D in the logistic regression analysis. This might

be in part due to the confounding effect of BMI on the

association between CGS and T2D and the insensitivity of

ROC analysis to small changes in risk. For clinical risk

prediction, it is important to evaluate whether a new model

can correctly classify individuals into higher or lower risk

categories [68]. Recently, Pencina et al. introduced a measure

named NRI to quantity the degree of correct reclassification [52].

By using this approach, we demonstrated that the addition of

genetic information to clinical variables (sex, age and BMI) was

significant and provided .11% net reclassification improvement

(P,0.0001).

To our knowledge, this is the first study confirming the utility of

genetic factors for predicting T2D risk using the NRI approach.

However, several limitations need to be considered. Firstly, our

control cohort consisted of adolescents who might develop

diabetes in the future. In our sensitivity analysis, removal of either

all subjects in the adolescent cohort or adolescents aged ,16 years

resulted in similar effect sizes as compared to Table 2 (data not

shown). In addition, only a few potential common genetic variants

were tested for association with T2D risk in this study. Also, we

have not interrogated the gene structure and the possibility of

closely linked causal variants, gene-gene and/or gene-environ-

mental interactions, as well as possible ethnic differences in gene

expression. More genes and their interactions have to be detected

and incorporated into the computation of genetic scores. Thirdly,

the results for risk prediction should be interpreted with caution in

a case-control study. In general, data from population-based

studies is preferred for evaluation of risk prediction models because

they incorporate information of true disease prevalence. Hence,

we performed the NRI analysis separately among cases and

controls, as well as adjusted the case-control intercept using the

T2D incidence of 10% in the Chinese population to obtain the

meaningful predicted risks from logistic regression model. The

representative nature of our cohort and robustness of our analysis

was also evident by comparing the odds ratios to that of other

cohort studies (OR = 1.00–1.36 for individual SNPs, OR = 1.18–

1.20 for CGS) [26,27,29]. Finally, our prediction model included

the commonly used clinical variables (sex, age and BMI) but did

not include the other risk factors for T2D such as blood pressure

and lipid profiles. Additional studies are warranted to verify our

findings.

In Chinese, the use of a CGS comprising 8 reported

susceptibility loci, modestly but significantly, improved the

predictive ability for T2D risk above and beyond that attributed

Use of NRI and Genetic Score to Predict T2D
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to clinical variables (sex, age and BMI). The discovery of

additional variants through large-scale GWAS and whole genome

sequencing will further improve the robustness of these predictive

tools to identify high risk subjects for early intervention, in addition

to providing novel pathways for personalized care.
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