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Abstract

Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the
oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased
dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the
nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on
non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a
surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron
formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin
formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-
induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with
FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron
bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in
the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies
are warranted to characterize these interactions.
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Introduction

Evidence that simple sugars such as glucose and fructose affect

iron bioavailability first arose in the 1960s from work showing that

sugars were able to chelate inorganic iron and form stable, low

molecular weight soluble complexes [1]. These sugar-iron

complexes were readily absorbed across the intestinal mucosa of

rodent models [2,3]. Given that intake of fructose and sucrose has

increased dramatically worldwide in the past 40 years, especially in

the Western world, while at the same time iron deficiency and iron

excess remain significant public health concerns [4–6], under-

standing the nutritional implications of iron-sugar interactions is

particularly relevant.

Excess sugar is blamed for a myriad of modern health problems,

but whether sugars might actually be protective against iron

deficiency, or contribute to either total body or cellular iron

overload is unknown. Insufficient body iron levels are associated

with significant health consequences, and approximately 2 billion

people suffer from iron deficiency. Furthermore, iron overload

related to either primary (e.g. hereditary hemochromatosis) or

secondary (e.g. beta-thalassemia) abnormalities in iron metabolism

is prevalent in many populations [6,7]. There is also interest in the

role that disordered regulation of intracellular iron levels plays in

the pathogenesis of several non-communicable diseases including

non-alcoholic fatty liver disease (NAFLD) [8,9].

Absorption of non-heme iron begins with iron uptake into the

enterocyte by Divalent Metal Transporter 1 (DMT1); DMT1

takes up ferrous iron (Fe2+) ([10,11], reviewed by Montalbetti et al,

[12]). Non-heme iron, however, is primarily in the oxidized ferric

form (Fe3+) thus it must be reduced to be absorbed; reduction

occurs either via the apical membrane bound ferrireductase

Duodenal cytochrome b (Dcytb), or through reducing agents such

as ascorbate [13]. Dietary factors can change non-heme iron

bioavailability by altering iron solubility or oxidation state.

Non-heme iron is the main source of iron in the diet [14] and its

bioavailability is influenced by a range of dietary factors. Studies

investigating the influence of sugars on iron bioavailability have

yielded conflicting results; although a number of studies demon-

strated improved iron bioavailability [15–20], others found either

no effect [21,22], or decreased absorption [23,24]. Human studies

have been few, small (number of subjects ranged from 8–25 in the

above cited studies), of short duration [17,23], and with limited

information on iron status and hereditary iron metabolism defects

[15,22,23].

The most consistent finding regarding mono- and di-saccharides

and iron is that fructose increases dietary non-heme iron

absorption, possibly by chelating and/or reducing iron to the

ferrous form [25]. Whilst the dietary burden of fructose alone is

low, consumption of sucrose (a glucose-fructose disaccharide

cleaved into its constituent sugars prior to absorption), and high

fructose corn syrup (HFCS, a widely used liquid sweetener), is high

[26–28]; consequently fructose levels in both the gut and portal

vein may be elevated. It is thus vital to clarify the effect of sugars
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and sweeteners on iron bioavailability in the gut and liver, as this

could have an impact on iron status, particularly in population

groups at risk of iron overload.

The objective of the current study was to investigate the effects

of the sugars fructose, glucose and sucrose, as well as high fructose

corn syrup 55 (HFCS-55, a mixture of fructose and glucose

monomers in a 55:45 ratio), on non-heme iron bioavailability

using the Caco-2 cell in vitro digestion model. Furthermore, as the

modern diet delivers a loaded cocktail of sugars and iron to the

liver, and fructose may be used in studies to induce hepatic

metabolic changes, the effect of sugars on liver iron absorption was

evaluated using the liver-derived HepG2 cell line. The in vitro

digestion Caco-2 cell model is an established tool for assessing gut

iron bioavailability and has been validated by comparison with

data from human studies [29], and HepG2 cells have been used to

measure liver iron uptake [30]. Ferritin formation in both cell lines

correlates with increasing concentration of iron treatments [31–

33]. The use of ferritin as an indicator of iron availability was

pioneered by Glahn et al, [34] and it is now widely used as a

surrogate marker for iron uptake (for recent examples see [35–

38]).

Materials and Methods

Reagents
Unless otherwise stated, reagents were purchased from Sigma-

Aldrich, UK. Glassware used in sample preparation and analyses

was treated with 10% (v/v) concentrated Nitric acid (68%) for 24 h

and rinsed with 18 MV purity water. All water used in

experiments was18 MV purity.

Cell culture
The Caco-2 TC7 cell clone, developed by Monique Rousset

and colleagues [39,40], was kindly gifted to the Sharp lab and was

used in experiments at passages 44 – 49. Cells were maintained in

cell culture treated T75 flasks (Corning Inc., Costar) and

subcultured every 5–7 days. Cells were grown in Dulbecco’s

Modified Eagle Medium (DMEM, Gibco, 41965) supplemented

with 10% v/v fetal bovine serum (LCG Standards, 30-2020), 1%

penicillin-streptomycin, 4 mmol/L L-glutamine, 1% non-essential

amino acids, and Plasmocin 5 mg/ml (Source Bioscience). For

experiments, Caco-2 cells were seeded at 16104 cells/cm2 in six-

well plates (Corning Inc., Costar) and used 13-15 days post seeding

as per the protocol used in the Glahn lab [34]; at this stage DMT1

protein levels and iron uptake are maximal in the Caco-2 TC7 cell

line [41].

HepG2 cells were obtained at passage 28 from American Type

Culture Collection and used in experiments at passages 30–40;

cells were maintained in cell culture treated T75 Tissue Culture

Flasks seeded at a density of 16105 cells/cm2 and sub-cultured

every 48 – 72 hours. Cells were grown in DMEM supplemented

with heat inactivated 10% v/v fetal bovine serum, 1% penicillin-

streptomycin, 2 mmol/L glutamine, 1% non-essential amino

acids. Experiments with HepG2 cells were carried out in cell

culture treated six-well plates seeded at 16105 cells/cm2 and used

24- 48h post seeding.

24 hours prior to all experiments (Caco-2 & HepG2) DMEM

medium was removed and the cell culture wells washed with

2.0 ml Minimal Essential Medium (MEM, Gibco, 31095); growth

medium was then changed to MEM supplemented with 10 mmol/

L PIPES (piperazine-N, N’-bis- [2-ethanesulfonic acid]), 1%

antibiotic/ antimycotic solution, 11 mmol/L hydrocortisone,

0.87 mmol/L insulin, 0.02 mmol/L sodium selenite (Na2SeO3),

0.05 mmol/Ltriiodothyronine and 20 mg/L epidermal growth

factor. Fetal bovine serum (FBS) free media was used because

different batches of FBS have differing levels of iron and other

factors that could add confounding variables; MEM was

supplemented to ensure optimal Caco-2 cell growth and differen-

tiation in the absence of FBS while maintaining iron levels , 8 mg

Fe/L [34] [42].

Caco-2 cell - in vitro digestion studies
Sugar solutions. All solutions were freshly made on the day of

the experiment. Stock solutions of 1 mol/L fructose, glucose or

sucrose were prepared in 140 mmol/L NaCl, 5 mmol/L KCl,

pH 2 solutions. In addition, HFCS-55 (a kind gift from Hanse-

land, Groningen, Holland) was diluted with water to produce a

1 mol/L fructose stock solution and then shaken with 4 g Chelex

100 resin (Bio-Rad Laboratories, 142-2832) for half an hour to

remove possible metal contaminants, followed by elution through

a 1.6 cm diameter filtration column (VWR). Iron levels in the

Chelex treated HFCS stock solutions were checked by Inductivity

Coupled Plasma-Optical Emission Spectrometer and were ,

5 mmol/L; iron levels in blank, no food digests were also ,

5 mmol/L. Sugar concentrations were selected to be within the

range that might occur in the gut after a meal (after dilution

through the in vitro digestion). All solutions were filter sterilized

prior to cell culture application.

The in vitro digestion followed a modified version of the

protocol developed by Glahn et al [43]. All digestion solutions

were prepared fresh for each experiment. On the first day of the

experiment the cells were washed with 2.0 ml MEM and 1.0 ml

supplemented MEM was added to each individual plate well.

Food samples were prepared as follows: 25 mg of Fe (added as

Fe solubilized in 1% HCL, High-Purity Standards, 100026-2) and

1.0 mL of stock sugar solutions were added to 10 ml 140 mmol/L

NaCl, 5 mmol/L KCl pH 2 solutions in sterile 50 ml polypro-

pylene centrifuge tubes. The ratio of iron:sugar < 1:2000 was

based on expected relative values of the two nutrients in the gut.

Reference control samples of 25 mg Fe added to 11 ml 140 mmol/

L NaCl, 5 mmol/L KCl, pH 2 solutions alone, as well as positive

controls consisting of 25 mg Fe added to 11 ml 140 mmol/L NaCl,

5 mmol/L KCl, pH 2 solutions containing 265 mmol/L ascorbate

were performed with each replication. The positive controls’

iron:ascorbate ratio was chosen to reflect typical relative levels that

might occur in a meal. To ensure no iron contamination of the

system ‘‘no food digest’’ samples consisting simply of 140 mmol/L

NaCl, 5 mmol/L KCl, pH 2 solutions were included with each

experiment. Finally, solutions of 140 mmol/L NaCl, 5 mmol/L

KCl, pH 2 containing 1 ml of stock sugar solutions without

extraneous iron were tested to ensure that sugars alone did not

increase ferritin formation. In some experiments, known inhibitors

of iron bioavailability, phytic acid and tannic acid, were added to

the food digests.

The peptic phase of digestion was initiated by the addition of

0.5 ml pepsin solution (Chelex purified) to each food sample

(herein referred to as digests or food digests). The pH was

readjusted to pH 2.0 with 1 mol/L HCL and the samples were

shaken in a New Brunswick Orbital shaker at 376C, 200 RPM, for

75 minutes. This phase was terminated with the addition of

1 mol/L NaHCO3 and subsequent pH increase to , pH 5.5.

The intestinal digestion phase was initiated with the addition of

2.5 ml Chelex-purified bile/pancreatin solution with subsequent

adjustment of the pH to pH 6.9 – 7.0 with 1 mol/L NaHCO3. All

food digests were then brought to a final volume of 15 ml by the

addition of 140 mmol/L NaCl, 5 mmol/L KCl solution, pH 6.9.

1.5 ml aliquots of digests were gently pipetted into the upper

chamber of each cell culture plate well; the upper chamber was
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created by the fitting of a 15,000 Da molecular weight cutoff

dialysis membrane (Tubing Spectra/Por 7 dialysis membrane,

Fisher Scientific) to a Transwell tissue culture treated insert ring

(Fisher Scientific; the necks of the rings were shortened by 0.1 mm

to remove the original filter and prevent excessive pressure on the

cell monolayer) held in place with a silicone ring (Parker 2-023

S0613, WebSeal Inc.). Plates were then covered and placed on a

platform fitted Multi-function 3D rotator (Fisher Scientific PS-

M3D) set at 6 oscillations per minute in a 376C incubator with a

5% CO2/95% air atmosphere at constant humidity for 120

minutes.

After the 120 min incubation the inserts were removed and an

additional 1.0 ml of supplemented MEM was added to each cell

culture plate well. Plates were returned to the incubator for a

further 22 hours; after this period cells were harvested for analysis

of cell ferritin content.

Six replicates of each sugar were tested per experiment, and

each experiment was repeated at 3 separate times.

Fructose Analysis. Levels of fructose in prepared fructose

solutions and HFCS-55, before and after Chelex treatment, were

determined using high performance liquid chromatography

(HPLC) with refractive index detection using water/methylated

spirit extraction method with modifications for high salt levels.

Premier Analytical Services, accredited by the United Kingdom

Accreditation Service (UKAS), Buckinghamshire, UK, carried out

the analysis.

Measurement of iron in blank no-food-digests and HFCS-
55 by ICP-OES

Aliquots of the HFCS-55 Chelex treated stock solutions and

blank digests were subjected to microwave digestion using an

accelerated reaction system (CEM MARS 5H with XP-1500

vessels). 0.5 ml of the solutions (in triplicate) was added to 5.0 ml

concentrated 68% trace analysis grade nitric acid (Fisher). The

samples were heated for 20 minutes at 400-psi pressure and 1200-

W power. Iron levels were quantitatively analyzed by Inductivity

Coupled Plasma-Optical Emission Spectrometer (ICP-OES,

Perkin Elmer Optima 4300 DV).

HepG2 cell studies
HepG2 cells were treated for 24 h with MEM containing

1 mmol/L ferric ammonium citrate (FAC) and either 15 mmol/L

glucose (inclusive of the 5 mmol/L glucose contained in MEM) or

1 – 15 mmol/L fructose. Cells treated with MEM with 1 mmol/L

FAC alone served as a reference in each experiment; in addition,

1 mmol/L FAC + 100 mmol/L ascorbate, and MEM alone treated

cells were positive and negative controls, respectively. HepG2 cells

were also treated with fructose in the absence of any added iron to

ensure that fructose alone did not increase ferritin formation

unrelated to iron uptake. After 24 hours cells were harvested for

analysis of cell ferritin content.

Ferritin analysis
At the end of each experiment, medium was removed from the

wells and cells were rinsed twice with ice cold Phosphate Buffered

Saline (PBS). 200 ml ice cold CelLytic with 1% protease inhibitor

was added to each well, and cell monolayers were removed with a

cell scraper and placed in 1.8 ml Eppendorf tubes. Tubes were

shaken for 15 minutes on a Stuart microtitre plate shaker at 1250

RPM and then spun at 6,000 g for 6 minutes in a 5804R

Eppendorf centrifuge. The supernatant was aspirated and stored

at –806C until analysis.

Ferritin analysis using SpectroFerritin MT Enzyme Linked

Immunoassay (ELISA; RAMCO) was carried out on cell

extraction supernatants. Absorption readings were performed at

492 nm with subtraction for background at 620 nm in a Thermo

Multiscan Ascent Spectrophotometer.

Protein concentration in each sample was measured using the

Pierce Protein BCA Assay (Fisher Scientific, 23227). Using this

method protein concentrations were consistently 5.0–6.5 mg/ml

or 1.0–1.3 mg/well; these are the levels typically found in our lab

on day 14 with an initial Caco-2 cell seeding density of

16104 cells/cm2 (as recommended by ATCC).

Effect of sugars on iron reduction in vitro
The ferrozine assay is generally used to measure ferrous iron

levels in biological samples, and has specifically been used to

measure iron in cell extracts [44]. It may also, in adapted form, be

used to measure ferrous iron in non-biological samples such as

intravenous iron sucrose solutions (Venefor) [45]. In our studies

the ferrozine assay was adapted to measure ferrous iron formation

in solution after incubation of ferric chloride with fructose, or

glucose, or sucrose. The lower limit of detection of the assay is

10 mmol/L; to ensure that production of Fe2+ was within the

detection limits of the assay we increased levels of iron and sugar in

the test tube by a factor of 10 (i.e. 100 mmol/L FeCl3; 500 mmol/

L sugar) while maintaining the same molar ratio (1:50).

Carbohydrate solutions containing 500 mmol/L glucose, fructose,

or sucrose were prepared in PBS; ferric chloride was added to give

a final concentration of 100 mmol/L Fe3+. 150 ml ferrozine

reagents (containing 32 mg ferrozine, 32 mg neocuprine and

3.8 g ammonium acetate dissolved in 10 ml water) were mixed

with 400 ml carbohydrate solutions. The samples were incubated

for two hours at 376C degrees in a 96 well culture plate. The

standard calibration curve was made up with freshly prepared

ferrous ammonium sulfate. Absorption readings were performed

at 550 nm on a Bio-TekSynergy HT Spectrophotometer.

Statistical analysis
Statistical analysis of the data was performed using GraphPad

Prism (v.6.0 GraphPad Software, San Diego, CA). Statistical

analysis was conducted according to the methods of Motulsky

[46]. Where noted data from separate experiments were

normalized to the relevant reference control. To compensate for

unequal variance, GraphPad Prism was used to log transform

data. Data are presented as means 6 S.E.M. Except as otherwise

noted, data were analyzed by one-way ANOVA followed by

Tukey’s post-hoc test for pairwise comparisons of experimental

groups. Differences between means were considered significant at

p # 0.010.

Results

Effect of sugars on cell ferritin formation
The effect of sugars on iron bioavailability was assessed by

incubating Caco-2 cells with digests of sugar solutions containing

iron. Fructose increased iron-induced ferritin formation in Caco-2

cells by approximately 40% (Figure 1). In contrast, ferritin levels

were not altered in cells exposed to iron plus either glucose or

sucrose. In addition, incubation with digests of HFCS-55 increased

iron-induced ferritin levels by approximately the same amount as

fructose (Figure 2). Incubation with sugars alone (i.e. in the

absence of iron) did not increase ferritin formation (data for

glucose and sucrose not shown). Fructose levels in stock fructose

solutions, and in stock HFCS-55 solutions after Chelex treatment,
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were on average 1 mol/L 6 0.01 (SEM) and 0.99 mol/L 6 0.04

(SEM), respectively.

Effect of inhibitors of iron bioavailability on sugar-
induced ferritin formation

To determine whether known inhibitors of iron bioavailability

could influence the enhancing effect of fructose and HFCS-55 on

iron-induced ferritin formation, cells were incubated with either

tannic acid (TA) or phytic acid (PA). Incubation with TA or PA

alone did not alter basal cell ferritin levels (Figures 3 & 4). TA

(1Fe:1TA molar ratio; Figure 3) and PA (1Fe:10PA molar ratio;

Figure 4) both decreased iron bioavailability. Furthermore,

addition of TA (Figure 3) or PA (Figure 4) to fructose- and

HFCS-55-iron digests significantly decreased the sugar-iron-

induced increase in ferritin formation to the level of ‘‘no food

digests.’’

Effects of sugars on ferrous iron formation in vitro
It has been reported previously that sugars may have weak iron

reducing and chelating activity [1,25]. Therefore, to determine

whether sugar solutions increased iron bioavailability via in vitro

reduction of Fe3+ to Fe2+, we used the ferrozine assay that

selectively detects ferrous iron. Fructose significantly increased

ferrozine-chelatable ferrous iron levels by approximately 300%

(Figure 5). There was no effect of glucose, sucrose or mannitol on

Fe2+ formation. FeCl3 alone in MEM gave rise to the lowest levels

of ferrozine-chelatable ferrous iron, with levels only 22% of those

formed in the presence of fructose.

Effect of fructose on HepG2 cell ferritin formation
To determine whether fructose or glucose might also influence

hepatic iron-induced ferritin formation HepG2 cells were exposed

to increasing concentrations of fructose, or glucose, and iron. In

Figure 1. Sugar digests effects on iron-induced ferritin.
Measurement of Caco-2 cell ferritin formation from digests of Fe and
solutions of sucrose (Sucrose+Fe) or glucose (Glucose+Fe) or fructose
(Fructose+Fe) at an iron:sugar ratio of < 1:2000. Equal amounts of iron
(25 mg) were combined with sugar solutions (1.0 mL) and subjected to
the Caco-2 in vitro digestion process. Digests with fructose alone and
no added Fe (No Food Digest) were used as negative controls; digests
with Fe alone (Fe) and Fe plus ascorbic acid (Fe + AA) were used as
reference controls and positive controls, respectively. Values are means
of data normalized to 10 ng of ferritin/mg protein in the reference
control (Fe) 6 SEM, n$15. Based on an ANOVA (p,0.0001) with Tukey’s
multiple comparisons test post-hoc analysis done on an all-pairwise
basis, bar values with no letters in common are significantly different (p
# 0.010).
doi:10.1371/journal.pone.0083031.g001

Figure 2. Effect of high-fructose corn syrup (HFCS) digests on
iron-induced ferritin. Measurement of Caco-2 cell ferritin formation
from digests of Fe and fructose (Fructose+Fe), or Fe and HFCS-55
(HFCS+Fe) at an iron:fructose ratio of < 1:2000. Equal amounts of iron
(25 mg) were combined with fructose solutions (1.0 mL) and subjected
to the Caco-2 in vitro digestion process. Digests with HFCS alone and
no added Fe (No Food Digest) were used as negative controls; digests
with Fe alone (Fe) and Fe plus ascorbic acid (Fe + AA) were used as
reference controls and positive controls, respectively. Values are means
of data normalized to 10 ng of ferritin/mg protein in the reference
control (Fe) 6 SEM, n $ 18. Based on an ANOVA (p,0.0001) with
Tukey’s multiple comparisons test post-hoc analysis done on an all-
pairwise basis, bar values with no letters in common are significantly
different (p # 0.010).
doi:10.1371/journal.pone.0083031.g002

Figure 3. Effect of tannic acid (TA) and fructose, or TA and
high-fructose corn syrup (HFCS), on iron-induced ferritin
formation. Measurement of Caco-2 cell ferritin formation from digests
of Fe and fructose (Fructose+Fe), or HFCS-55 (HFCS+Fe), at an
iron:fructose ratio of < 1:2000, plus tannic acid at a 1:1 molar ratio of
Fe:TA. Equal amounts of iron (25 mg) were combined with sugar
solutions (1.0 mL) and TA and subjected to the Caco-2 in vitro digestion
process. Digests without TA are shown with lighter shading and digests
with TA added are shown with darker shading. Values are means of data
normalized to 10 ng of ferritin/mg protein in the reference control (Fe)
6 SEM, n(Fe+AA+TA) = 4, n(TA alone) = 6, all other n = 18. Analysis of
Figure 3A was based on a two-factor ANOVA (p,0.0001) with Tukey’s
multiple comparisons test post-hoc analysis done on an all-pairwise
basis, bar values with no letters in common are significantly different (p
# 0.010). Analysis of Figure 3B was based on a one-factor ANOVA
(p,0.0001) with Tukey’s multiple comparisons test post-hoc analysis
done on an all-pairwise basis, bar values with no letters in common are
significantly different (p # 0.010).
doi:10.1371/journal.pone.0083031.g003
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Figure 4. Effect of phytic acid (PA) and fructose, or high-fructose corn syrup (HFCS), on iron-induced ferritin formation. Measurement
of Caco-2 cell ferritin formation from digests of Fe and fructose (Fructose+Fe), or HFCS-55 (HFCS+Fe), at an iron:fructose ratio of < 1:2000, plus phytic
acid at 1:1, 1:5 or 1:10 Fe:PA molar ratios. Equal amounts of iron (25 mg) were combined with sugar solutions (1.0 mL) and PA and subjected to the
Caco-2 in vitro digestion process. Digests of the above without the addition of PA are provided for reference. Digests with Fe alone (Fe), PA alone (PA
Alone), and Fe plus PA (1Fe:10PA) were used as controls. Values are means of data normalized to 10 ng of ferritin/mg protein in the reference control
(Fe) 6 SEM, n(Fe+PA1:10) = 3, all other n $ 6. Analysis of Figure 4A was based on a two-factor ANOVA (p,0.0001) with Tukey’s multiple comparisons
test post-hoc analysis done on an all-pairwise basis, bar values with no letters in common are significantly different (p # 0.010). Analysis of Figures 4B
and 4C was based on a one-factor ANOVA (p,0.0001) with Tukey’s multiple comparisons test post-hoc analysis done on an all-pairwise basis, bar
values with no letters in common within Figure 4B are significantly different (p # 0.010) and similarly bar values with no letters in common within
Figure 4C are significantly different (p # 0.010).
doi:10.1371/journal.pone.0083031.g004

Figure 5. Carbohydrate effect on release of ferrozine-
chelatable ferrous iron (Fe2+) in vitro. 50 mmol/L solutions of
glucose, fructose, sucrose or mannitol were prepared with the addition
of FeCl3 at a final concentration of 0.1 mmol/L. Solutions with iron
alone and iron plus ascorbate were used as controls. Analysis for
ferrozine-chelatable ferrous iron was performed after 2 hours incuba-
tion. Data in each column are presented as the mean 6 SEM, n = 12 per
group. Analysis was based on a one-factor ANOVA (p = 0.0001). Post-
hoc analysis was done versus control. Fructose at a concentration of
50 mmol/L significantly increases ferrous iron levels in comparison to all
other tested carbohydrate solutions; p , 0.0001, compared with
0.1 mmol/L FeCl3 alone.
doi:10.1371/journal.pone.0083031.g005

Figure 6. HepG2 iron-induced ferritin in response to carbohy-
drate treatments. Measurement of HepG2 cell ferritin formation
following treatment for 24 hours with 1 mmol/L ferric ammonium
citrate (FAC) and one of the following: 15 mmol/L glucose (Glucose+
FAC); 15 mmol/L glucose and 15 mmol/L fructose (Fructose
+Glucose+FAC); 15 mmol/L fructose (Fructose+FAC). Cells treated with
MEM alone (MEM), or fructose alone (Fructose Only), without the
addition of FAC, were used as negative controls. Cells treated with
0.1 mmol/L ascorbate and 1 mmol/L FAC were used as positive controls.
Values are means of data normalized to 400 ng of ferritin/mg protein in
the reference control (MEM+FAC) 6 SEM, n(MEM) = 4, n(Fructose
Only) = 6, all other n $ 12. Based on an ANOVA (p,0.0001) with
Tukey’s multiple comparisons test post-hoc analysis done on an all-
pairwise basis, bar values with no letters in common are significantly
different (p # 0.010).
doi:10.1371/journal.pone.0083031.g006
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the presence of iron, liver ferritin levels were unaffected by co-

addition of glucose; however, fructose increased iron-induced

HepG2 cell ferritin by approximately 35% - maximal ferritin

formation was observed with 15 mmol/L fructose (Figures 6 &7).

There was no effect of fructose alone on ferritin formation (Figure

6).

Discussion

Non-heme iron bioavailability is influenced by many dietary

factors. This study suggests that fructose increases iron bioavail-

ability in our in vitro cell models of the gut and liver. These results

are consistent with previous work in rodent models in which iron-

fructose solutions increased both gut iron absorption [18] and liver

iron deposition [47].

Recent human intervention trials looking at the effects of

fructose on iron uptake are lacking, but there have been several

epidemiological studies that analyzed fruit intake and iron status.

Fruit is a dietary source of fructose; observational studies of fruit as

a modifier of iron status have yielded conflicting results. Milward

et al carried out a study in subjects with hereditary hemochro-

matosis (HH), which found that non-citrus fruit intake was

protective against iron overload [48]. In contrast, Fleming et al

found that fruit intake was associated with an increased risk for

elevated iron stores in the Elderly Framingham Heart Study

cohort [49]. The different results are most likely secondary to

several factors. The study by Milward et al differentiated between

citrus fruits (which are rich sources of citric and ascorbic acid,

known enhancers of iron uptake), and non-citrus fruit; Fleming et

al did not differentiate between fruit types. In addition, Milward et

al only studied subjects with HH, whereas HH was one of the

exclusion criteria for the Framingham study. Another possible

confounding factor is that fruits have varying levels of phytates and

polyphenols; the results of our study suggest that fructose in fruit

would not alter iron bioavailability as both phytate and the

polyphenol tannic acid inhibited the effects of fructose on iron

bioavailability.

In Western diets and increasingly worldwide, however, the

major source of fructose in the diet is not fruit, but sucrose and

high-fructose corn syrup, and in particular HFCS-55 [27,50]. In

the United States of America HFCS represents 15–20% of total

energy intake, the majority coming from sugar sweetened

beverages (SSB) [51]. Here, we investigated the effect of HFCS-

55 on iron bioavailability, and demonstrated increased ferritin

formation in the Caco-2 cell system. Few studies have investigated

the effects of sugars from SSB on iron bioavailability. A small study

by Hallberg et al found that a low pH cola drink increased iron

absorption; however, this was attributed to the low pH of the

beverage and data on the carbohydrate composition of the

beverage is unavailable [52]. A more recent study, which

specifically looked at the effect of beverage carbohydrate on iron

bioavailability by comparing regular cola with artificially sweet-

ened diet cola, found no effect on iron absorption from either

source [53]. However, cola drinks contain between 0.5 –

0.7 mmol/L caffeine [54], a polyphenol shown to decrease non-

heme iron bioavailability in multiple studies and thus a possible

confounding factor when assessing SSB sugar effects on iron

bioavailability [55,56]. In our study HFCS-55, used at a

concentration comparable to that found in sweetened beverages,

significantly increased iron bioavailability and the effect was

comparable to that observed with fructose.

The other sugars tested in this study did not influence iron

bioavailability and this is consistent with previous work showing no

effects of sucrose or glucose on iron absorption [18]. One might

have predicted that the fructose released from digestion of sucrose

would increase iron uptake. However, there are suggestions in the

literature that sucrose-derived fructose is taken up by the

enterocyte immediately upon hydrolysis; it would therefore not

be available to interact with iron, in comparison with HFCS which

upon ingestion yields free fructose monomers in the intestinal

lumen [57].

It has been proposed that fructose increases iron bioavailability

by increasing ferrous iron formation [25]. Our observation that

fructose significantly increased ferrozine-chelatable ferrous iron

levels is consistent with this mechanism. Fructose is a reducing

sugar giving positive tests for both Benedicts and Fehlings

reagents; in solution it exists primarily in the furanose form but

is in equilibrium with the straight chain and pyranose forms [58].

Interestingly, in basic solution fructose is a stronger reducing agent

than aldoses such as glucose [59]. Sucrose is not a reducing sugar

because neither of its carbonyl groups are available to participate

in redox reactions [60].

Work by Stitt et al looking at sugar effects on iron bioavailability

analyzed iron levels in the liver, as well as gut iron uptake; iron co-

administered with fructose resulted in both increased iron

absorption and liver iron deposits [47]. In addition, a recent

study using mice found that a high-fructose/high-fat diet increased

iron liver levels [61]. These observations are consistent with our

findings that HepG2 ferritin levels increased in cells treated with

iron and fructose. Data on human blood fructose levels are limited,

and there is even less information on human portal vein fructose

concentrations to which the liver would be exposed. However, a

recent study using an enzyme-based assay, validated by gas

chromatography-mass spectroscopy, reported circulating serum

post-prandial fructose levels up to 16 mmol/L [62]; if these values

are correct then portal vein fructose levels would be predicted to

be in the order of 27 - 53 mmol/L as the liver extracts 40–70% of

portal vein fructose [63]. Older studies in animals, and several

small studies in humans, have reported portal vein fructose levels

Figure 7. Fructose dose response on HepG2 cell iron-induced
ferritin. Measurement of HepG2 cell ferritin formation following
treatment for 24 hours with 1 mmol/L FAC and one of the following:
1 mmol/L fructose (1 mM Fruc+FAC); 5 mmol/L fructose (5 mM Fruc +
FAC); 15 mmol/L fructose (15 mM Fruc + FAC), to determine dose
response of HepG2 cell ferritin relative to fructose concentration. Values
are means of data normalized to 400 ng of ferritin/mg protein in the
reference control (MEM+FAC) 6 SEM, n $ 6. Based on an ANOVA
(p,0.0001) with Tukey’s multiple comparisons test post-hoc analysis
done on an all-pairwise basis, bar values with no letters in common are
significantly different (p # 0.010).
doi:10.1371/journal.pone.0083031.g007
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varying from 1 – 2.2 mmol/L [63–67]. The fructose concentra-

tions used in our studies lie somewhere in the middle of these two

extremes of possible post-prandial portal circulation levels.

A number of studies have used either high fructose or HFCS

diets to augment the effects of a high fat diet on liver metabolism,

in order to study the development of fatty liver. Given that liver

iron loading is a common feature in human fatty liver disease [8],

the observations that fructose and HFCS increased iron uptake in

our in vitro models of both gut and liver suggests that these

carbohydrates may have an important pathological role.

Under normal conditions the majority of circulating iron is

bound to the plasma iron transport protein transferrin [68],

however blood levels of 0 – 1mmol/L non-transferrin bound iron

(NTBI) may occur post-prandially [69]. Furthermore, NTBI levels

may reach 1 – 20 mmol/L in iron overload disorders as well as in

other chronic diseases such as liver cirrhosis [70]. NTBI is a

heterogeneous mix of compounds; studies suggest that the main

form of plasma NTBI is iron(III)citrate [71], for this reason FAC is

an appropriate model for plasma NTBI. Interestingly, hepatocyte

uptake of NTBI, as opposed to transferrin iron uptake, does not

appear to be inhibited by increasing levels of liver iron [72,73];

fructose mediated liver NTBI uptake may thus escape regulation.

In conclusion, we have shown that fructose and HFCS-55

increase iron bioavailability in human intestinal epithelial cells

and, furthermore, that fructose increases iron-induced hepatic

ferritin levels. Given that substantial amounts of these carbohy-

drates are present in the modern diet, and also their use in

experimental models, these effects may be important in the context

of iron homeostasis. Further studies are warranted to examine if

these in vitro effects translate into (patho)physiologically relevant

changes in animal and human iron status.
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