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Abstract

Hydroxymethylcytosine in the genome is reported to be an intermediate of demethylation. In the present study, we
demonstrated that maintenance methyltransferase Dnmt1 scarcely catalyzed hemi-hydroxymethylated DNA and that
the hemi-hydroxymethylated DNA was not selectively recognized by the SRA domain of Uhrf1, indicating that
hydroxymethylcytosine is diluted in a replication-dependent manner. A high level of 5-hydroxymethylcytosine in
mouse embryonic stem cells was produced from the methylcytosine supplied mainly by de novo-type DNA
methyltransferases Dnmt3a and Dnmt3b. The promoter regions of the HoxA gene cluster showed a high
hydroxymethylation level whilst the methylcytosine level was quite low, suggesting that methylated CpG is actively
hydroxylated during proliferation. All the results indicate that removal and production of hydroxymethylcytosine are
regulated in replication-dependent manners in mouse embryonic stem cells.
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Introduction

Methylation of cytosine in CpG sequences is an important
epigenetic modification for the regulation of gene expression.
Global DNA methylation patterns are established by de novo-
type DNA methyltransferases Dnmt3a and Dnmt3b at an early
stage of embryogenesis [1]. Dnmt3a and Dnmt3b partly
compensate for each other during embryogenesis as the
phenotype is more severe in double knockout embryos [1].
Different from Dnmt1, these two enzymes show no preferential
DNA methylation activity towards hemi-methylated DNA [2,3].
Mouse embryonic stem cells (mESCs), which mimic embryonic
proper cells at a stage around implantation, highly express
Dnmt3a2, which lacks the N-terminal 219 amino acid residues
in mice, and Dnmt3b compared to differentiated somatic cells
[4,5]. Once the DNA methylation patterns are established, they
are faithfully propagated to the next generation by
maintenance-type DNA methyltransferase Dnmt1 in a cell
lineage-dependent manner [6]. Although Dnmt1 shows

maintenance methylation activity by itself in vitro [7], another
factor, Uhrf1 (Np95), is necessary for the maintenance
methylation in mESCs [8]. The SRA (SET and Ring finger
Associated) domain in Uhrf1 specifically binds hemi-methylated
DNA and flips the methylated cytosine out of the double-
stranded DNA [9-11].

On the contrary, the players in DNA demethylation have not
been completely elucidated yet [12,13]. Recently,
hydroxymethylcytosine (5hmC) produced from methylcytosine
(5mC) through DNA dioxygenase ten-eleven translocation (Tet)
was found to be an intermediate of demethylation [14,15].
Genome-wide analyses demonstrated that 5hmC is abundant
at promoters and transcription start sites (TSS) [16-20],
suggesting that 5hmC can be a sign of transcriptional
regulation. The 5hmC enrichment shows correlation with the
bivalent modifications on K4 and K27 methylation of histone H3
[17,21]. In agreement with this, many of the Tet1, one of the
three isoforms of Tet, target genes are occupied by polycomb
repressive complex 2 (PRC2) [18,21]. Tet1 and Tet2 are highly
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expressed in mESCs, and are rapidly down regulated upon
differentiation, while Tet3 is highly expressed in oocytes and
zygotes [22,23].

In the present study, we demonstrated that Dnmt1 scarcely
methylated hemi-hydroxymethylated DNA and that the SRA
domain of Uhrf1 could not specifically bind hemi-
hydroxymethylated DNA. As a result, 5hmC is diluted after
replication, indicating that global demethylation occurs
passively in mESCs. A high level of 5hmC in mESCs is
maintained through the cooperation of de novo-type DNA
methyltransferase, Dnmt3a (Dnmt3a2) and Dnmt3b, and Tet
dioxygenase. Turnover of 5hmC in mESCs is regulated in a cell
cycle-dependent manner.

Materials and Methods

Cell culture
All the mESCs, i.e. parent J1 [6], Dnmt1 [24], Dnmt3a [1],

Dnmt3b [1], Dnmt3a and Dnmt3b double [1], and Dnmt1,
Dnmt3a, and Dnmt3b triple knockout [25] ones, were kindly
provided by Dr. Masaki Okano (CDB, RIKEN, Kobe). J1 and
mutant mESCs were cultured in Glasgow minimum essential
medium supplemented with sodium pyruvate, non-essential
amino acids, 0.1 mM 2-mercaptoethanol, leukemia inhibitory
factor, and 15% (v/v) Knockout-Serum Replacement
(Invitrogen).

Isolation of cells at different stages of the cell cycle
Three different techniques, involving inhibitors, FACS, and

cell cycle synchronization, respectively, were employed for the
enrichment of cells at different stages of the cell cycle. To
arrest cells at the S-phase, they were treated with 5 μM
aphidicolin or 1 mM hydroxyurea. To arrest cells at the G1/G0-
phase, 15% (v/v) KSR was replaced by 1% (v/v) fetal bovine
serum (Intergen) as described elsewhere [26]. To arrest cells at
the G2/M-phase, 200 ng/ml of nocodazole (Sigma) was added
to the medium, followed by culturing for 24 h before
determination of 5hmC.

For sorting the cells by FACS, mESCs were EDTA- and
trypsin-treated, and suspended in Dulbecco’s phosphate-
buffered saline (PBS). The cells were fixed with 70% ethanol,
and then stained with propidium iodide [27] and sorted with a
BD FACSAria (Becton and Dickinson). Genomic DNA was
isolated from the cells at the G1, S, and G2/M phases, and
then the 5hmC contents were determined.

The mESCs were synchronized by the double thymidine
block method [27]. In brief, mESCs were treated with 2.5 mM
thymidine for 12 h and washed twice with PBS, and then the
culture was continued in the normal medium for 9 h. After that,
the cells were treated again with 2.5 mM thymidine for 14 h.
After washing the cells with PBS, the culture was restarted in a
normal medium. The cells were collected at the indicated
times, and then the DNA content in the cells was determined
by FACS, followed by determination of the 5hmC content.

DNA methylation activity
Recombinant mouse Dnmt1, Dnmt3a, and Dnmt3b were

prepared and determined the methylation activity as described
elsewhere [3,28]. In brief, 13.2, 39.3, or 41.1 nM recombinant
Dnmt1, Dnmt3a, or Dnmt3b, respectively, was incubated with
25 nM synthesized unmethylated, hemi-methylated, or hemi-
hydroxymethylated 35-bp DNA, and 2.2 μM [3H]-S-adenosyl-L-
methionine (SAM) (10 Ci/mmol; Perkin Elmer) in 25 μl of buffer
comprising 2.7 M glycerol, 5 mM EDTA, 0.2 mM DTT, 25 mM
NaCl, and 20 mM Tris–HCl, pH 7.4, at 37°C for the indicated
times. The synthesized DNAs, 5’-
GGCAATCAGTTCACTTCGAGCCCAGGTATTTAGCC-3’ and
5’-GGCTAAATACCTGGGCTXGAAGTGAACTGATTGCC-3’,
where X was C, 5mC, or 5hmC, were annealed and served for
DNA methylation activity measurements. The radioactivity
incorporated into DNA was determined with a scintillation
counter, and the amount of methyl-group transferred to the
DNA was calculated from the specific activity of [3H]-SAM.

RT-PCR
Using total RNA prepared with TRIzol (Invitrogen), a cDNA

library was prepared with Superscript II reverse transcriptase
(Invitrogen) and random hexamers. The optimized PCR
conditions, and the primer sets for Tet1, Tet2, Tet3, and Gapdh
are shown in Table S1. The amplified products were resolved
on 2% agarose gels and visualized by ethidium bromide
staining.

DNA-binding assay
The recombinant SRA domain, 405-613, of mouse Uhrf1 was

prepared as described elsewhere [9]. The oligonucleotides
used for the binding assay were of 12-bp in length with 5’-
CTACCGGATTGC-3’ and 5’-GCAATCXGGTAG-3’, where X
was C, 5mC, or 5hmC. These 12-bp oligonucleotides were
annealed to form unmethylated (CG/CG), hemi-methylated
(CG/5mCG), and hemi-hydroxymethylated (CG/5hmCG)
duplexes. To prepare 32P-labeled DNA for the competition
experiments, the first strand was 5’-end labeled with T4
polynucleotide kinase (Toyobo) and [γ-32P]-ATP (Muromachi
Kagaku, Tokyo) before the annealing.

For the gel mobility shift assays, 0-3 μM recombinant SRA
was incubated with 1 μM DNA in the presence of 250 ng of
poly (dI-dC)(dI-dC) duplex (Sigma) at 4°C for 30 min in a buffer
comprising 0.1 M NaCl, 0.1 mM TCEP, and 25 mM HEPES-
NaOH, pH 7.4. After the incubation, the mixtures were
electrophoresed in 7.5% native polyacrylamide gels in 1x TBE,
stained with GelGreen (Biotium, Inc.), and then visualized with
a BAS 7000 (Fuji Film). For the competition assays, 5 μM
recombinant SRA and 1 μM 32P-labeled CG/5mCG were
incubated with 0-10 μM un-labeled CG/CG, CG/5mCG, or CG/
5hmCG in the presence of 250 ng poly (dI-dC)(dI-dC) duplex at
4°C for 30 min. The samples were electrophoresed as above
and the radio-labeled bands were visualized with a BAS2000
phosphor imager (Fuji Film).

Hydroxymethylcytosine Turnover
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Quantification of 5hmC and 5mC
The determination of 5hmC was performed as described

elsewhere [29] with slight modifications. The cDNA of β-
glucosyltransferase (β-GT) used in the procedure was isolated
by PCR using T4 phage genomic DNA as the template. The
cDNA of β-GT was subcloned into pET28, expressed in BL21-
CodonPlus(DE3)-RIL Escherichia coli, and purified with Ni-NTA
Sepharose. In brief, 200 ng of genomic DNA was incubated
with 0.4 μM β-GT and 33.4 μM [3H]-UDP-glucose (60 Ci/mmol,
Perkin Elmer) at 25°C for 1 h in 25 μl of reaction buffer
comprising 50 mM potassium acetate, 10 mM magnesium
acetate, 1 mM DTT, and 20 mM Tris-acetate, pH 7.9. At the
end of the incubation, 20 μg of Proteinase K was added to the
mixture, followed by incubation in 1% (w/v) SDS at 55°C for 30
minutes. After the incubation, the reaction mixture was spotted
onto a DE81 filter disc (GE Healthcare). The disc was washed
as described elsewhere [3], and radioactivity incorporated into
DNA was determined with a scintillation counter. The relative
hydroxymethylation levels were calculated from the standard
curve of 200 ng of non-hydroxymethylated DNA with 0-1 ng of
hydroxymethylated DNA added (Figure S1A). Unmodified or
hydroxymethylated DNA was prepared by PCR, using the
histone H3 gene in pBlueScript as the template in the presence
of dCTP or deoxy-hydroxymethyl CTP (5hmCTP) with the
specific primer set complementary to the multi-cloning site of
pBlueScript, respectively.

For determination of the 5mC content, 200 ng of genomic
DNA was incubated with 2 units of M.SssI (Fermentas, Thermo
Fisher Scientific) and 2.8 μM [3H]-SAM (10 Ci/ mmol; Perkin
Elmer) at 37°C in 20 μl of reaction buffer comprising 50 mM
NaCl, 10 mM MgCl2, 1 mM dithiothreitol, 10 mM Tris-HCl, pH
7.9. After 1 h incubation, the radioactivity incorporated into the
genomic DNA was determined with a scintillation counter. The
relative methylated DNA contents were calculated from the
standard curve (Figure S1B). Fully methylated DNA was
prepared by M.SssI treatment of the unmodified DNA as
above. The methylation efficiency with M.SssI was more than
95%.

Enrichment of 5mC- or 5hmC-containing DNA
Cells (1x 107) were treated with 100 μg Proteinase K in a

buffer comprising 0.5% SDS, 0.1 M EDTA, and 10 mM Tris-
HCl, pH 8.0, at 50°C overnight. Genomic DNA was purified by
phenol/chloroform extraction and precipitation with ethanol as
described elsewhere [30]. Purified DNA was dissolved in 1x
TE, and then fragmented into 200-1000 bp fragments by
sonication (on 15 sec, off 15 sec, and total 20 min) with a
Bioruptor (Cosmobio, Tokyo).

Selective precipitation of the DNA fragments containing
5hmC was performed as described elsewhere [31]. In brief, 10
μg of sonicated DNA was treated with 0.2 μM β-GT and 250
μM UDP-6-N3-glucose at 37°C for 1 h. Glucosylated DNA was
reacted with 150 μM dibenzocyclooctyne-modified biotin by
click chemistry. Biotinylated DNA was captured with
Dynabeads M-280 streptavidin (Invitrogen). The hydroxylated
histone H3, which was prepared as described under
“Quantification of 5hmC and 5mC”, was biotinylated by click
chemistry. The efficiency of pull-down of the biotinylated DNA

(2 pg) from the mixture with genome DNA (10 μg) was 43%, as
determined by q-PCR.

Precipitation of the DNA fragments containing 5mC was
performed as described previously [32] with a slight
modification. In brief, 10 μg of sonicated DNA was incubated
with 1.2 μg of recombinant His-GST-MBD1 coding 1-75 of
MBD1 [33] and MagneGST beads (Promega) at 4°C overnight.
Bound DNA was eluted by proteinase K treatment at 50°C for 3
h. The eluted DNA was further purified by phenol-chloroform
extraction followed by ethanol precipitation, and then dissolved
in 1x TE. The efficiency of pull-down of the methylated histone
H3 DNA fragments (2 pg) prepared as described under
“Quantification of 5hmC and 5mC” from the mixture with
genome DNA (10 μg) was 90%, as determined by q-PCR.

The DNA fragments enriched with 5mC or 5hmC DNA were
hybridized with mouse 2x 105 k CpG island microarrays
(Agilent, #G4811A). The DNA fragments of 500 ng or after
amplification by in vitro transcription using 50 ng as the starting
material as described elsewhere [34] were labeled with either
Cy3 or Cy5. The labeled materials were hybridized according
to the supplier’s protocol. The log ratios of the signals of input
fragments (Cy3-labeled) and the fragments after precipitation
enriched with 5mC or 5hmC (Cy5-labeled) were analyzed for
murine CpG islands. The Gene Expression Omnibus accession
number for the 5mC and 5hmC reported in this paper is
GSE51473.

The specific genome regions enriched with 5mC and 5hmC
were quantified by qPCR with Thunderbird SYBR qPCR Mix
(Toyobo). A list of the primer sets used for qPCR is presents as
Table S2. For HoxA7 and Oct4, the primer sequences were
taken from elsewhere [35].

Chromatin immunoprecipitation (ChIP) and qPCR
ChIP was performed as described previously [36] with slight

modifications. In brief, cells were fixed in 1.0% or 1.5%
formaldehyde for the precipitation of Tet and Dnmt1 or Dnmt3a
and Dnmt3b, respectively, for 10 min at room temperature,
which was terminated with 125 mM glycine. The DNA was
fragmented into 200-1,000 bp fragments by sonication.
Solubilized chromatin was incubated with mouse monoclonal
IgG (Cat No. 12-371, Millipore), rabbit IgG (Cat No. 12-370,
Millipore), anti-Dnmt1 mouse monoclonal Dnmt1 (clone:
60B1220.1, Cat No. IMG-261A, Imgenex), anti-Dnmt3a/3a2 [5],
anti-Dnmt3b [2], anti-Tet1 (Cat. No. 09-872, Millipore), anti-
Tet2 (Cat No. R1086-6b, Abiocode), or anti-Tet3 (Cat. No.
61395, Activemotif) antibodies at 4°C overnight. The DNA-
protein complexes were purified with Dynabeads Protein G
(Invitrogen) or Dynabeads anti-mouse IgG (Invitrogen). Cross-
linking was reversed by overnight mixing in a Thermomixer
(Thermo) at 65°C, and then the DNA was treated with RNaseA
and Proteinase K. DNA was purified by phenol-chloroform
extraction and ethanol precipitation, and then dissolved in 1x
TE. Enrichment of the immuno-precipitated Dnmt1, Dnmt3a/
3a2, Dnmt3b, Tet1, Tet2, and Tet3 was quantitated by qPCR
with Thunderbird SYBR qPCR Mix. A list of the primer sets is
presented as Table S2.
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Results

5-Hydroxymethylcytosine is efficiently diluted during
replication in mESCs

Recent reports suggest that 5-hydroxymethylcytosine
(5hmC) is an intermediate of demethylation. There are two
possible models; one is active demethylation coupled with
base-excision repair machinery [37], and the other is
replication-dependent passive demethylation. According to the
reports, hemi-hydroxymethylated DNA is not a good substrate
for Dnmt1 [38,39]. As shown in Figure 1A, Dnmt1 scarcely
methylated hemi-hydroxymethylated DNA (CG/5hmCG)
compared to hemi-methylated DNA (CG/5mCG). The reaction
rate for CG/5hmCG was calculated to be less than 1/10 of that
for CG/5mCG from the slopes of the linear fitting curves. Two
de novo-type DNA methyltransferases, Dnmt3a and Dnmt3b,
showed almost identical DNA methylation activities towards un-
methylated, hemi-methylated, and hemi-hydroxymethylated
DNA (Figure 1A).

In addition to Dnmt1, Uhrf1 is a prerequisite factor for the
maintenance methylation during replication [8]. Recently,
Frauer et al. reported that the SRA domain of Uhrf1 can
specifically bind hemi-hydroxymethylated DNA with similar
affinity to that for hemi-methylated DNA [40]. However, the
pocket for binding 5mC is too narrow to accommodate 5hmC
[9] (see Figure S2). In our case, though the SRA domain could
bind to hemi-hydroxymethylated DNA, the affinity was lower
than that for hemi-methylated DNA (Figure 1B). This was
confirmed by the observation that an excess amount of hemi-
hydroxymethylated DNA could not effectively compete with
hemi-methylated DNA (Figure 1B, compare with the
competition with hemi-methylated DNA). The SRA domain
distinguishes hemi-5hmC DNA from hemi-5mC DNA. This
finding is consistent with the report by Hashimoto et al. [39].
Assuming that flipping of 5mC and its binding to the binding
pocket in the SRA domain of Uhrf1 are necessary steps for the
maintenance methylation function, together with the
observation that hemi-hydroxymethylated DNA is not a good
substrate for Dnmt1, 5mC with the hydroxyl modification is not
efficiently recognized as a substrate for the maintenance DNA
methylation machinery during DNA replication. This may thus
cause dilution of 5mC and 5hmC during DNA replication.
Recently, it was reported that hydroxymethylcytosine is further
oxidized to formylmethylcytosine and then to
carboxymethylcytosine by Tet, and eventually demethylated
through the base excision repair (BER) system [41]. However,
the present study indicates that hydroxymethylcytosine can be
passively demethylated during replication without further
oxidization.

If the 5hmC removal is a replication-dependent event, the
5hmC content in mouse embryonic stem cells (mESCs) must
be affected by cell cycle arrest due to the balance between the
production and replication-dependent dilution of 5hmC.
Therefore, the level of 5hmC in mESCs was determined in the
presence of aphidicolin and hydroxyurea, which arrest cells at
the S-phase, serum-free medium, which arrests cells at the
G1/0-phase, and nocodazole, which arrests cells at the G2/M-
phase, respectively (Figure 2A). Neither serum-free medium

nor nocodazole affected the content of 5hmC as to that of
proliferating mESCs. On the other hand, aphidicolin- or
hydroxyurea-treated cells exhibited an about two-fold increase
of the 5hmC level in the genome.

To avoid the side effects of the inhibitors, the cells were
sorted as to the G1-, S-, and G2/M-phases by FACS, and then
the 5hmC contents were determined. The 5hmC contents were
high at the G1- to S-phases and decreased at the G2/M-phase
(Figure 2B). This is consistent with the results obtained in the
effect of cell cycle inhibitor experiment. However, the 5hmC
contents at the G1- and S-phases were about 1.4 and 1.2 fold
higher, respectively, than that at the G2/M-phase, which was
not as prominent as in Figure 2A. This can be due to that the
FACS-sorted cells comprised a mixture of the broad range of
the cells at the cell cycle stages, and thus the 5hmC content
was averaged. To sort the cells more accurately, we next
synchronized the cell stages by arresting the cells at the G1/S-
phase with double thymidine block, released the cell
proliferation, recovered the genome DNA after the indicated
times, and then determined the 5hmC contents. As shown in
Figure 2C, the level of 5hmC at time 0 (G1/S-phase) and after
2h culture (S-phase entered) had increased to 1.4 and 1.6 fold,
respectively, compared to that without synchronization (w/o S).
This finding supported the idea that 5hmC is diluted during
replication.

5mC produced by de novo-type DNA methyltransferses
Dnmt3a and Dnmt3b is the major substrate for
hydroxymethylation in mESCs

5hmC is produced from 5mC by Tet enzymes [14,15]. Since
5hmC accumulated in the genome decreased during
replication, as described above, the level of 5hmC in mESCs is
expected to decrease as the cells proliferate. However,
contrarily, the steady state content of 5hmC remains high [29].
This indicates that 5mC, which is a substrate for
hydroxymethylation, is actively produced during one round of
the cell cycle. We expected that not the 5mC sites maintained
by Dnmt1 but 5mC newly produced by Dnmt3a and/or Dnmt3b
is the target of hydroxylation.

To determine which DNA methyltransferase is responsible
for producing 5mC as the substrate for Tet to generate 5hmC
in mESCs, we determined the levels of 5mC and 5hmC in
Dnmt1, Dnmt3a, or/and Dnmt3b-knockout mESCs (Figure 3A
and B). Since triple-knockout mESCs (TKO) lack substrate
5mC [25], 5hmC was below the detection level in mESCs [29]
(see Figure 3B). Although the Dnmt1-knockout mESCs (1-KO)
were impaired in the maintenance methylation, and thus the
DNA methylation level was significantly decreased after 10
passages, the reduction in the level of 5hmC was not so
prominent compared to that of 5mC. Knockout of either
Dnmt3a (3a-KO) or Dnmt3b (3b-KO) did not affect either the
5mC or 5hmC level compared to those in the parental mESCs.
Surprisingly, however, knockout of both Dnmt3a and Dnmt3b
(3-DKO) [1] significantly decreased the 5hmC level to almost
below the detection level. In such cells, about half the 5mC
level in the parent mESCs remained, which was the result of
maintenance methylation by Dnmt1 (Figure 3A and B). The
levels of transcripts produced from the Tet1, Tet2, and Tet3
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 genes were not significantly changed compared to those in
Dnmt1, Dnmt3a, or/and Dnmt3b knockout mESCs (Figure 3C).
Ectopic expression of Dnmt3a or Dnmt3a2, a short form of
Dnmt3a and expresses dominantly in mESCs [4], with a TAP-
tag added to their C-termini, restored the 5hmC level in 3-DKO
mESCs (Figure 3B). These results clearly indicate that de
novo-produced 5mC is a selective substrate for hydroxylation
by Tet in mESCs.

5: hmC-enriched regions in mESs
Analyses of 5hmC and 5mC in 3-DKO cells demonstrated

that the 5mC produced by Dnmt3a or Dnmt3b is selectively 5-
hydroxylated in mESCs. Recent genome wide analysis of
5hmC demonstrated that 5hmC is enriched at the transcription
start sites and gene bodies in mESCs [17,18]. To determine
the regions of hydroxymethylation, we performed microarray
analysis to identify the regions enriched with 5hmC. Both
5hmC- and 5mC-containing DNA fragments were selectively

Figure 1.  5hmC content is diluted during replication.  A. Hemi-hydroxymethylated DNA (CG/5hmCG) is not a good substrate for
Dnmt1. The DNA methylation activity of mouse Dnmt1, Dnmt3a, and Dnmt3b towards 35-bp unmethylated (CG/CG), hemi-
methylated (CG/5mCG), or hemi-hydroxymethylated (CG/5hmCG) DNA was determined. B. Gel mobility shift assaying of the SRA
domain of mouse Uhrf1. The indicated concentrations of SRA were incubated with either 12-bp CG/5mC, CG/5hmCG, or CG/CG,
followed by electrophoresis (left panel). The complex of the SRA and 32P-labeled CG/5mCG was competed with the indicated
amounts of non-labeled CG/5mCG, CG/5hmCG, or CG/CG DNA (right panel). DNA bound to SRA (B) and free DNA (F) are
indicated.
doi: 10.1371/journal.pone.0082961.g001
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precipitated by the chemical labeling method [31] and with the
recombinant methylated DNA-binding domain of MBD1 [32],
respectively, and then were hybridized with mouse CpG island
arrays. A list of the genes containing 5hmC and 5mC, with
annotations, is presented as Table S3. Gene ontology analysis
demonstrated that most of the genes containing 5hmC were
related to the developmental process (Figure S3), which is
consistent with previous reports [17,18]. Consistent with other
genome wide analyses, we found that Pcdha and Hoxa gene
clusters are enriched with 5hmC [17,42]. We also found that
the promoters of Pcdha genes and some maternally imprinted

genes (Mest, Peg3, Nnat, Ndn, Peg13, Napl15, and Plagl1) are
enriched with both 5hmC and 5mC. The promoters of Igf2 and
Dlk1 were poor in 5mC and rich in 5hmC (Figure 4A-C). The
promoters of HoxA genes are reported to be enriched with
histone H3 tri-methylated at K27 (H3K27me3) and poor in 5mC
[43,44]. As 5hmC is generated from 5mC as a substrate, it is
reasonable to speculate that the 5mC in HoxA cluster regions
is susceptible to Tet catalysis, and thus hydroxylated as soon
as the regions are methylated.

The 5hmC-positive promoters of five genes, i.e. Mest,
Pcdha1, HoxA7, Shank2, and Pgf, which are reported to have

Figure 2.  Cell cycle-dependent change in the 5hmC content.  A. The 5hmC content in mESCs treated with aphidicolin,
hydroxyurea, serum depletion, or nocodazole was determined by β-GT assaying. The values represent the fold change normalized
as to that without treatment. The values for each treatment are averages ± SD (n=3). B. The 5hmC content in mESCs sorted by
FACS (left panel) was determined (right panel). The values are averages ± SE (n=3). C. The non-synchronized (w/o S) and
synchronized mESCs were collected after the indicated times and the 5hmC contents were determined. The left panels show the
results of FACS analyses and the right panel the 5hmC content.
doi: 10.1371/journal.pone.0082961.g002
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high 5hmC contents [17,42], were chosen and quantitated as to
5hmC and 5mC enrichment by qPCR. The depletion of not
Dnmt1 but both Dnmt3a and Dnmt3b selectively reduced 5hmC
in all the promoters of the genes examined in mESCs except
for Mest (Figure 5A). In Mest, not only double-knockout of
Dnmt3a and Dnmt3b (3-DKO), but also Dnmt1 knockout (1-KO)
reduced the 5hmC level. Despite the exception of Mest, the
results support the idea that the sites of de novo DNA
methylation by Dnmt3a and Dnmt3b are the major target of
hydroxylation, and that the methylated sites maintained by
Dnmt1 limitedly contribute to the production of 5hmC. As both
Dnmt1 knockout (1-KO), and Dnmt3a and Dnmt3b knockout (3-
DKO) mESCs exhibited a drastically decreased 5mC level in
these examined regions, these sites are susceptible to
maintenance and de novo methylation (Figure 5B). However,

not Dnmt1 knockout, but only Dnmt3a and Dnmt3b knockout
significantly reduced the 5hmC level (Figure 5A). The results
further support that Dnmt3a and Dnmt3b-methylated CpGs are
the major target for hydroxylation in mESCs.

Dnmt3a and Dnmt3b are localized in 5hmC-enriched
regions

In the present study, we have shown that Tet in mESCs
selectively hydroxylates the 5mC produced by Dnmt3a and
Dnmt3b. We next examined whether or not Dnmt3a/Dnmt3a2
and Dnmt3b are localized in 5hmC-enriched regions in mESCs.
To this end, we performed ChIP-qPCR analyses to quantitate
the enrichment of Dnmt1, Dnmt3a/3a2, and Dnmt3b in the
promoters of the five 5hmC-positive genes shown in Figure 5.
As expected, both Dnmt3a/Dnmt3a2 and Dnmt3b were

Figure 3.  Dnmt3a and Dnmt3b mainly provide 5mC for the hydroxymethylation in mESCs.  The 5mC, 5hmC, and Tet mRNA
contents of J1 parent, Dnmt1 (1-KO), Dnmt3a and Dnmt3b (3-DKO), Dnmt3a (3a-KO), Dnmt3b (3b-KO), and Dnmt1, Dnmt3a and
Dnmt3b (TKO) knockout mESCs, and ectopically expressed TAP-tagged Dnmt3a (3a-TAP) or Dnmt3a2 (3a2-TAP) in 3-DKO
mESCs were determined. A. The 5mC contents (%) were determined as M.SssI methylation ability from a standard curve (Figure
S1A). B. The 5hmC contents were determined from the standard curve obtained on β-GT assaying (Figure S1B). The values are the
averages ± SD determined for three independent genomic DNA samples. C. Relative mRNA expression of Tet1, Tet2, and Tet3 was
evaluated by semi-quantitative RT-PCR. (-) indicates the product of PCR without the template.
doi: 10.1371/journal.pone.0082961.g003
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localized in all the examined regions where 5hmC was
enriched (Figure 6A), while Dnmt1 was not significantly
localized to the promoters of the five selected genes. On the
other hand, not Tet2 and Tet3, but only Tet1 was positively
accumulated in the regions examined for 5hmC (Figure 6B).

Figure 4.  Enrichment of 5mC and 5hmC in specific
promoters.  5hmC (blue bars) and 5mC (red bars) were
determined by DNA microarray analysis in the promoters of the
Pcdha gene cluster (A), maternal imprinting genes (B), and
HoxA gene cluster (C). The abscissas indicate enrichment of
5hmC or 5mC on a log2 scale.
doi: 10.1371/journal.pone.0082961.g004

This could be a reflection of the different expression levels and
target genes of Tet1, Tet2, and Tet3 in mESCs [29].

Discussion

Dnmt1- and Uhrf1-dependent passive demethylation
In the present study we have confirmed that maintenance-

type DNA methyltransferase Dnmt1 scarcely methylates hemi-
hydroxymethylated DNA using highly purified Dnmt1 [28]
(Figure 1A). In addition, we have shown that hemi-methylated
DNA binding domain SRA of Uhrf1, which is a prerequisite

Figure 5.  Dnmt3a and Dnmt3b-dependent 5mC are
responsible for the production of 5hmC.  The 5hmC (A) and
5mC (B) contents of J1 (blue bars), Dnmt1 (1-KO, red bars),
and Dnmt3a and Dnmt3b (3-DKO, light green bars) knockout
mESCs were determined by q-PCR in the promoters of five
representative 5hmC-enriched genes. The values are the
averages + SD determined for three independent genomic
DNA samples.
doi: 10.1371/journal.pone.0082961.g005
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factor for maintenance DNA methylation in mESCs [8], less
effectively recognized hemi-hydroxymethylated DNA than
hemi-methylated DNA (Figure 1B). The present results are
consistent with those reported by Hashimoto et al. [39].
However, this observation is contrary that of Frauer et al. [40],
who reported that the SRA domain of Uhrf1 selectively binds
hemi-hydroxymethylated DNA as well as hemi-methylated
DNA. Recently, Uhrf1 was reported to be the reader for 5hmC
in mESCs [45]. The reason for this discrepancy is not clear,
however, our present finding does not eliminate that Uhrf1 is
the reader of 5hmC but indicates that the affinity of Uhrf1
(SRA) towards 5hmC is low. The difference in the sequences
and/or the lengths of the DNA used may partly be the reason
for the discrepancy.

Due mainly to the substrate recognition of Dnmt1 and
possibly by the binding selectivity of Uhrf1, the 5hmC position
cannot be methylated in the daughter strand after replication,
and thus the replicated DNA is demethylated. Recently,
replication-dependent depletion of 5hmC in mouse primordial
germ cells [46] and in the male pronuclei of fertilized eggs [47]
was reported. Our present findings that Dnmt1 cannot
methylate hemi-hydroxymethylated DNA, and that Uhrf1 cannot

Figure 6.  Dnmt1, Dnmt3a, Dnmt3b, and Tet1 are recruited
to 5hmC-enriched promoters.  The occupancy of Dnmt1,
Dnmt3a, and Dnmt3b (A), and Tet1, Tet2, and Tet3 (B) was
determined by ChIP-qPCR in the promoters of the 5hmC-
enriched genes shown in Figure 4. The values are the
averages + SD determined for three independent DNA
samples.
doi: 10.1371/journal.pone.0082961.g006

bind 5hmC provides the molecular basis of this genome-wide
passive demethylation.

De novo methylated sites are selectively hydroxylated
in mESCs

We have shown that the major substrate, 5mC, for
hydroxylation is supplied through de novo DNA methylation by
Dnmt3a (Dnmt3a2) and Dnmt3b in mESCs (Figure 3). Since
5hmC seems to be diluted to half during replication, the
reduced level of 5hmC must be supplied in a single round of
the cell cycle, i.e. after replication to the next replication. It is
reasonable that the expression of high levels of Dnmt3a2 and
Dnmt3b, compared to in ordinary somatic cells, in mESCs [4,5]
supplies 5mC for hydroxylation. These observations indicate
that the removal and generation of 5hmC are cell cycle-
dependent, and this idea is illustrated in Figure S4.

Dnmt3a and Dnmt3b are reported to be necessary for
embryo development and terminal differentiation of mESCs
[1,48], which may yield the methylation state of the genome for
proper terminal differentiation. Recombinant Dnmt3a and
Dnmt3b, on the other hand, preferably methylate the linker
portion of nucleosomes when that region is naked and exposed
[49,50]. Dnmt3a2 and Dnmt3b in mESCs may methylate rather
naked or euchromatic regions of the genome, most of which
are undesirable as to maintenance of pluripotency and/or
terminal differentiation, during the cell cycle. The
hydroxymethylation by Tet could be a protection tool for
preventing aberrant methylation of the genome in mESCs.

Interestingly, many of the HoxA genes in the HoxA gene
cluster were found to be highly hydroxymethylated, whilst the
region was quite poor in 5mC (Figure 4C). It is well known that
their expression is not regulated by DNA methylation but
positively and negatively regulated by TrxG and PcG through
K4 and K27 trimethylation of histone H3, respectively [51].
Although a negligible amount of 5mC was found in the HoxA
gene cluster and individual HoxA7 genes, the 5hmC level was
significantly high (see Figures 4C and 5). This suggests that
the sites of aberrant methylation by Dnmt3a2 or/and Dnmt3b
are hydroxylated in mESCs to keep the sites hypomethylated.
Actually, in somatic fibloblasts and monocytes, the HoxA gene
cluster is heavily methylated and silent [43]. Pcdh genes are
highly expressed in neurons and determines the properties of
neurons, and their expression is regulated by DNA methylation
[52]. Since there is a high level of 5hmC in the brain [29], it is
reasonable that the promoters of Pcdha genes are rich in both
5mC and 5hmC. The methylation and hydroxymethylation in
Pcdha genes must be dynamically regulated in mESCs and for
terminal differentiation. Neurons, however, are post-mitotic,
and thus instead of passive demethylation via replication, the
base excision repair mechanism may be used for
demethylation [15,41]. The genes related to development and
differentiation are enriched in 5hmC, as found on gene
ontology analysis (Figure S3), which supports that Tet
enzymes protect such genes from DNA methylation to maintain
the pluripotency of mESCs.

Dnmt3a2 and Dnmt3b were significantly localized in 5hmC-
enriched regions. On the other hand, however, only Tet1,
which is the major Tet expressed in mESCs [27], was positively
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enriched in the examined regions, however, its amount was not
prominent. Recent genome-wide analysis showed that Tet
seems to be absent from 5hmC-enriched regions [13,37]. One
possible explanation is that Tet leaves its target soon after
converting 5mC to 5hmC to prevent further oxidation.

Supporting Information

Figure S1.  Calibration curves for the determination of 5mC
and 5hmC. A. M.SssI methylation activity towards 200 ng of
standard DNA mixed with 0:1, 1:4, 2:3 and 4:1 of um-
methylated and full-methylated DNA. B. Glucosyltransferase
activity of β-GT towards 200 ng of un-hydroxylated DNA with 0,
0.1, 0.4, and 1 ng of fully-hydroxylated DNA.
(PDF)

Figure S2.  The binding pocket for 5mC of the SRA domain
of Uhrf1 cannot accommodate hemi-5hmC. The figure
demonstrates the tight recognition of 5mC by the crystal
structure of the SRA domain of Uhrf1 in a complex with CG/
5mCG (PDB code; 2ZKD). The flipped 5mC base and the
protein side chains that are critical for 5mC recognition are
shown as stick models in purple and green, respectively. The
yellow dotted lines represent van der Waals contacts (3.5 - 4.1
Å) with the methyl group of 5mC.
(PDF)

Figure S3.  Gene ontology analysis of 5hmC- and 5mC-
enriched genes. The 5hmC- (A) and 5mC- (B) enriched genes
were analyzed using DAVID functional annotation tools
(Huang, D. W., Sherman, B. T., & Lempicki, R. A. Systematic
and integrative analysis of large gene lists using DAVID
Bioinformatics Resources. Nature Protoc. 4, 44-57, 2009). The
X-axes indicate p-values.
(PDF)

Figure S4.  Cell cycle-dependent hydroxylation in mESc.
DNA-methylated sites created by Dnmt3a and Dnmt3b during
proliferation were actively hydroxylated and were diluted during
replication, as hemi-hydroxymethylated DNA is not a good
substrate of the maintenance methylation machinery, Dnmt1
and the SRA of Uhrf1.
(PDF)

Table S1.  Primer sets for the semi-quantitative PCR and
the amplification conditions.
(DOCX)

Table S2.  Primer sets for qPCR.
(DOCX)

Table S3.  List of the genes precipitated by click chemistry
(5hmC) and MBD1 (5mC). 5hmC-containing DNA fragments
were precipitated without amplification (5hmC Direct) or after
amplification (5hmC IVT).
(XLSX)
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