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Abstract

We consider the design and evaluation of short barcodes, with a length between six and eight nucleotides, used for parallel
sequencing on platforms where substitution errors dominate. Such codes should have not only good error correction
properties but also the code words should fulfil certain biological constraints (experimental parameters). We compare
published barcodes with codes obtained by two new constructions methods, one based on the currently best known linear
codes and a simple randomized construction method. The evaluation done is with respect to the error correction
capabilities, barcode size and their experimental parameters and fundamental bounds on the code size and their distance
properties. We provide a list of codes for lengths between six and eight nucleotides, where for length eight, two
substitution errors can be corrected. In fact, no code with larger minimum distance can exist.
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Introduction

Modern high-throughput techniques for DNA sequencing also

allow to sequence RNA of different independent samples during a

single run. For this purpose, the cDNA molecules of each sample

are tagged with a unique sequence, the code word, and then pooled

into one single library [1]. We refer to a set of such code words as a

barcode. Using the code words, the reads obtained by the sequencing

procedure can be demultiplexed afterwards, i.e., they are assigned to

the different samples.

Due to errors occurring during the library preparation and the

sequencing process a cross-talk event may occur, where reads are

assigned to the wrong sample. This is especially of importance

when a gene is very differently transcribed between two samples.

To avoid cross-talk, a careful design of the barcode is required.

Clearly, the design depends on the sequencing platform. For

example, on the Roche 454 [2] the predominant type of errors are

insertions and deletions (indels) [3], while on the Illumina

sequencing platforms [4] the most frequent errors are substitutions

(see for example [5]). Further constraints that need to be

considered for experimental reasons are, e.g., GC-content and

homopolymer lengths of the code words. Biased GC or long

homopolymers increase the error rates in the enzymatic processes

used.

Many Barcode designs are based on algebraic codes like binary

Hamming codes [1], codes over quaternary alphabets (over the

ring Z4) [6] or BCH-codes [7]. Such algebraic constructions are

not only providing a way to construct the codes, but they usually

also provide efficient techniques for decoding (or demultiplexing). But it

is interesting to note that many currently used barcodes have a

rather short length n, defined as the number of nucleotides used to

compose each single code word. For example, the barcode used in

some Illumina’s TrueSeq Kits has length n~6 (with a size of 48

code words). But for such short and small codes decoding can be

implemented in a simple table, providing a decoding algorithm

that is optimal (maximum likelihood decoding, see below), without

needing the algebraic structure of the code. Further it becomes

possible to employ search algorithms to construct codes for

example the barcrawl algorithm [8] which has a time complexity

exponential in n (but it is worth noting that searching through all

possible codes appears to be impossible as the number of possible

codes grows double exponentially with n).

In this work, we search for the best possible barcode for a given

set of experimental constraints. We propose two new construc-

tions, the first uses the database of the currently best known linear

codes [9] and the second is a simple random search strategy. We

compared them with currently known barcodes regarding their

error correction properties (such as minimum distance, distance

distribution, and error probabilities) and their experimental

parameters such as GC-content and homopolymer length. The

results are presented in a list of codes that can be readily used for

applications.

The outline of the paper is as follows: The Methods section

discusses multiplexing and demultiplexing and deals with barcode

design; in the Results section barcodes of different designs are

compared, and conclusions are given in the section Discussion and

Conclusions.

Methods

Parallel Sequencing
A schematic view on the protocol is shown in Figure 1 according

to protocols from Illumina. For each sample, the adapters are

ligated to the cDNA. These adapters include a unique code word

of length n nucleotides, chosen out of a predefined (barcode) set C,
which identifies the corresponding sample. Demultiplexing is

performed after bridge amplification and sequencing. Each read

obtained by the sequencer has to be assigned to one of the

samples.
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Errors are induced at any step of this process, for example

during

1. the PCR (amplification),

2. the bridge amplification, and

3. sequencing, since misreads occur.

For example, PCR can be employed using the Taq polymerase,

which induces reported single base substitutions at a rate of

1 : 9000, and one indel out of 49000 bases [10]. Other

polymerases with less errors exist, however, Illumina uses a

proprietary enzyme mix of unknown error rate.

The predominant errors after base calling are substitutions

occurring at a rate of roughly 10{2 to 10{3, whereas indels are

reported at rates of roughly 10{5 to 10{6, see [5,11] (this further

depends on the Q-value filters used [5]). It is known that the error

rate varies with the position in the read. Whether there is a higher

error rate in the context of certain motifs (e.g., GCC) remains

undecided, [5,12].

System Model and Coding
The design of schemes for multiplexing and demultiplexing

depends on the sequencing technique. As mentioned, we focus on

the most widely used technique employed by Illumina.

A Communciation Theoretic Model of Barcoding
In order to demultiplex, the code word is extracted from the

read and used to assign the read to one of the samples. In

communication theoretic notation, this can be interpreted as the

problem to transmit a message over a noisy channel (upper panel

of Figure 2). In particular, an integer number m, chosen from the

set of possible messages f1,2, . . . ,sg, where s is the number of

samples, should be communicated to the receiver as follows: The

number m is encoded with a word of length n chosen from a code C
and send over the noisy channel. For our purpose a block code is

defined as follows.

Definition 1. A (block) code C is a subset of fA,C,G,Tgn
, where n

is the code length, DCD is the code cardinality and k~ log4 DCD is the code

dimension. The ratio R~
k

n
is called the rate of the code.

The channel is a mathematical model of the sequencing process.

If we assume that only substitution errors occur (a valid

assumption, since indels occur about 10{2 to 10{3 less likely),

we can describe the process using the conditional probability to

receive r, given that a code word x was sent, i.e., by P(rDx) for

x,r[fA,C,G,Tgn
. On the receiver side the received word r is used

to give an estimate of the message which we denote m̂m. If we

assume that no error occurred, r is an element of the code C and

identifies the message m unequivocally. But if r =[ C, we need to

employ a rule for read assignment. In accordance with coding

theoretic notions, we will refer to such a rule as decoder, which will

be formally defined later.

Suppose, we have a given channel, the ultimate goal of the

design of the communication system is to provide a code and a

decoder that minimizes the error probability. To this end, we

consider different types of errors:

Definition 2. Assume that the probability to choose a message m out of

f1, . . . ,sg is P(m) and that cm is the corresponding code word. The

average decoding error probability is defined as

Pe~
Xs

m~1

P mð ÞPr m̂m=mjm was sentð Þ:

The maximum error is defined as

Pmax~ max
m~1...,s

Pr m̂m=mjm was sentð Þ:

In general, the error probabilities defined above depend on (i)

the channel, (ii) the code and (iii) the prior probabilities of the

messages. Shannon [13], in his seminal work, showed that the

average decoding error can be made arbitrarily small provided

that a sufficiently long code is chosen and that its rate is smaller

Figure 1. Schematic view. Illumina protocol for parallel sequencing
of RNA samples as example.
doi:10.1371/journal.pone.0082933.g001

Figure 2. Communication theoretic model. In the upper part of
the figure the general model is shown, while in the lower part an
example is depicted: In particular the messages consist of the numbers
1,2,3,4 which are encoded using the code shown in the green box. In
the example the number 2 is encoded with the code word CCC. On the
receiver side, CCA is received, which is decoded to the number 2.
Notice, that this decoding procedure is only rational if we assume that
one error is more likely than two errors.
doi:10.1371/journal.pone.0082933.g002
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than the so called capacity of the channel. The latter is a quantity

depending on the conditional probabilities describing the channel

only. Note that these (and other) results do not provide a lower

bound on the average error that can be reached with finite code

lengths (but see for example Gallagher [14] for results that provide

a connection between the rate of convergence of Pe and the code

length n).

However, it is important to note that the performance of

systems crucially depends on the channel, which guides the design

of the code and the decoder. In the following we will introduce the

channel model we use first, and discuss the possible decoding

principles next.

Channel Model. For the system design, a simplified channel

is employed to model the sequencing process of the Illumina

platform. First, we will design the system assuming that only

substitution errors occur, since indels occur about 10{2 to 10{3

less likely. Further, it is assumed that errors occur independently of

each other and independent of the position with rate p (although it

is known that the error rate is cycle dependent in general, but on a

short range of the barcodes such assumption appears to be

reasonable [5]). Finally, we assume that all possible substitutions

are equally likely, although different rates have been reported by

Kao et al. [15]. Nevertheless, as it will be shown later, a code

designed under the assumption of equally likely substitutions still

provides a good performance if used over the channel reported in

[15] (see also the Results part).

In coding theory such an error model is known as a 4-ary

symmetric and memoryless channel [9]. We formally describe the

channel by the probability to obtain a received word r given that a

code word c was chosen, i.e., with P(rDc)~PP (ri Dci).

For evaluation purposes, we again assume a memoryless

channel, but this time we allow different transition probabilities

between different nucleotides, following the statistical analysis of

[15]. The transition probabilities are shown in Table 1.

Decoding Principles. For a certain channel model, we can

employ several decoding principles. In general, a decoder should

select a word ĉc which maximizes the posterior probability, i.e.,

ĉc~ arg max
c[C

P(cDr), ð1Þ

see [14]. Note that

P(cDr)~
P(rDc)P(c)

P(r)
,

and that P(r) is independent of the decoding rule. Further, if all

codewords are equally likely, i.e., P(c)~
1

DCD (this assumes that the

different samples have equal size after the PCR, since the cDNA

libraries with the different barcodes are mixed in equimolar

amounts), maximizing the right hand side of Eq. (1) is equivalent to

the maximum likelihood decoding rule (ML decoding)

ĉc~ arg max
c[C

P(rDc):

For the discrete memoryless q-ary symmetric channel consid-

ered here, the maximum likelihood decoding rule simplifies to the

so called minimum distance decoding. To this end, recall that the

Hamming distance d(x,y) of two sequences x and y with equal

length is defined as the number of differing positions. The

minimum distance decoding rule is given by

ĉc~ arg max
c[C

d(r,c),

i.e., maximum likelihood decoding is obtained by choosing the

codeword that is closest to the received word (see [17]).

It may happen that there are several codewords with the same

distance to the received word. In this case, there are different

possibilities to proceed. First, one of the possible codewords is

chosen at random. Second, so called list decoding procedures will

give a list of possible codewords. Here, we follow a third possibility

and declare a decoding failure if there is no unambiguous decision

possible. In NGS, millions of reads are obtained, and a decoding

failure causes the drop-out of only very few reads from the total

read amount. However, in the case of genes weak in one condition

and strong in another, decoding with random codeword replace-

ment would cause a possible substantial cross-talk. For later

reference, the decoder is denoted as the function

dec(r) : fA,C,G,Tgn?fA,C,G,Tgn|E,

where E denotes a decoding failure.

In general, implementing a ML or minimum distance decoding

rule is practically impossible. For a large number of code words it

is computationally prohibitive to check all possible code words.

However, in our case the number of code words is small, therefore,

it is possible to implement a minimum distance decoder, using a

table of all possible received words together with the closest code

word. We require a table of size roughly 4n, further, lookups can

be implemented using hash tables.

Constraints on Barcodes
The design of a barcode is governed by experimental, coding

theoretic, but also financial constraints. The cardinality and length

of the barcode is limited by the simple fact that all words in the set

have to be synthesised, which is a money consuming process.

Further, longer barcodes reduce the amount of useful read-lengths.

The barcode has to be designed with respect to the error model to

allow the correction of possible errors (this is discussed below in

more detail). In addition, we need to consider the experimentally

motivated constraints, like for example the GC-content or the

homopolymer length, see the discussion below.

Coding Theoretic Constraints. In general, the distance

between the code words should be as large as possible, but the

optimal distance measure is not obvious. As discussed in the

previous section, minimum distance decoding is the optimal choice

assuming a symmetric channel and messages equally likely.

Therefore, we will concentrate on codes with large minimum

Hamming distance, which we define as follows:

Table 1. Transition probabilities (76-cycle Ga-II, phiX173,
Bustard [15]).

A C G T

A 0.98896 0.00337 0.00296 0.00470

C 0.00877 0.97716 0.00336 0.01071

G 0.00485 0.00252 0.98617 0.00646

T 0.00289 0.00517 0.00665 0.98529

doi:10.1371/journal.pone.0082933.t001
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Definition 3. The Hamming distance d(x,y) between two words

x,y[C is the number of positions xi,yi that are different in two code words.

The minimum distance of a code C is the smallest Hamming distance between

any pair of two codewords, or more formally

dmin~ min
x,y[C,x=y

d(x,y):

The minimum distance is related to the number of substitution

errors which can be guaranteed to be corrected. Namely, using a

code with minimum distance dmin at least t
dmin{1

2
s substitution

errors can be corrected for each code word.

It is quite obvious that for a given length n and a code

cardinality DCD (or equivalently, given the code dimension k), the

Hamming distance can not be arbitrarily large. In fact, there are

several bounds on the cardinality of a code given its minimum

distance. The maybe simplest one is the following:

Fact 1 (Singleton bound). Let C be a code with length n and

minimum distance dmin. Then

DCDƒ4n{dminz1:

The following limit gives a bound on the code cardinality. It

depends on the numbers of error that can be guaranteed to be

corrected:

Fact 2 (Hamming bound (for alphabet size 4)). Let C be a

code with length n and t~tdmin{1
2

s, which is the number of substitution errors

that can be guaranteed to be corrected. Then

DCDƒ
4n

Pt
m~0

n

m

� �
3m

:

Different codes having the same minimum distance can have

different error correction capabilities, as they may have different

distance distributions, e.g. [16]. To this end we give the following

definition.

Definition 4. For a code C with length n, the distance distribution

(B0,B1, . . . ,Bn)[Rnz1 is defined by

Bi~
1

DCD
: #of ordered pairs u,v[C such that d(u,v)~ið Þ:

Notice that B0~1 and
Pn

i~0 Bi~DCD, and that the number Bi,

quantifies the number of code words at distance i for an average

code word. The effect of the distance distribution on the error

correction capability is illustrated in Figure 3.

Experimental Constraints. Beside the coding theoretic

constraints discussed, a barcode has to be designed with respect

to experimental constraints, like GC-content and homopolymer

length. The GC-content of a code word quantifies the number of

G and C in the sequence. GC-rich parts like to form secondary

structures if they are present in a single strand and do not open

(melt) in a double strand easily. Both phenomena cause enzyme

stalling or drop-off at GC-rich sequences. The homopolymer

length, denoted with hmax, is the longest uninterrupted repetition

of the same base in a given sequence. Homopolymers cause

enzyme slipping, thus indels. Indeed, in [5] an increase of the

insertion probability with a growing homopolymer length is

reported.

Construction of Codes
In the following we will discuss two different methods to

construct barcodes. The first is based on the currently best linear

code, while the second uses a simple random construction. The

second method allows to directly include the experimental

parameters into the construction process, while the first method

does not allow this. Hence, in the latter case the constructed code

has to be adapted to the experimental parameters by expurgating

code words that do not match the constraints.

Linear Codes. Linear codes appear to be quite popular for

barcodes, e.g., [1,7]. In order to give a formal definition, we need

to map the nucleotide letters to the elements of a finite field GF (4)
to define an addition and multiplication operation. For conve-

nience, we will skip the technical details here and define addition

and multiplication on fA,C,G,Tg according to Table 2. For

vectors in fA,C,G,Tgn
addition is defined by a point wise

application of the addition defined above, namely

(x1, . . . ,xn)z(y1, . . . ,yn)~(x1zy1, . . . ,xnzyn):

Now we can define a linear code as follows:

Figure 3. Influence of distance distribution. Illustration of codes
having the same minimum distance but different distance distributions.
The red dot represents the word sent, the black dot the received word
r, the blue dots are other codewords. In both cases, there is at least one
code word with distance d1 (hence the minimum distance). On the right
hand side r can be correctly decoded and assigned to c, while on the
left hand side r is assigned to the wrong codeword (the closest blue dot
below r).
doi:10.1371/journal.pone.0082933.g003

Table 2. Addition and multiplication defined on {A,C,G,T}.

+ A C G T

A A C G T

C C A T G

G G T A C

T T G C A

? A C G T

A A A A A

C A C G T

G A G T C

T A T C G

doi:10.1371/journal.pone.0082933.t002
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Definition 5 (Linear code). A linear code C of length n and

dimension k is block code (Definition 1) over fA,C,G,Tg such that for any

codewords c1,c2[C

c1zc2[C

and for any c~(c1,::,cn)[C and any a[fA,C,G,Tg

a:(c1, . . . ,cn)~(a:c1, . . . ,a:cn)[C

where addition and multiplication on fA,C,G,Tg are defined

according to Table 2.

The algebraic structure of the code can be exploited to design

efficient decoding algorithms, e.g. [17]. In fact, much work in the

last decades has focused on the construction and design of

decoding algorithms for linear codes.

In important property of linear codes is that the distance

distribution coincides with its weight distribution, which is defined as

follows (e.g. [16]).

Definition 6. For a code C with length n, the weight distribution

(W0,W1, . . . ,Wn)[Rnz1 counts the number of code words Wj with weight

j, where the weight of a code word is the number of nonzero elements.

In order to construct linear codes over GF (4) with good

minimum distance, we use the database of the currently best

known linear codes [9,18]. To access the database and to construct

the corresponding code, we use the computer algebra system

MAGMA [19]. An overview of the algorithms used to determine

code tables is given in [18].

Randomized Construction of Codes. To construct a

barcode of length n the barcrawl algorithm [8] starts from the

complete list of all 4n possible code words and then it successively

removes code words that do not match the experimental

constraints and minimum distance properties. In contrast, our

algorithm starts with an empty code and successively adds new

code words in a greedy way (regarding the distance): Suppose a

code with prescribed length, cardinality, maximal homopolymer

length hmax, and upper and lower bounds on the GC-content

should be constructed. Assume for now that the code should have

minimum distance d ’. We first create a list L of all possible words

of length n, that match the homopolymer length and the GC-

content limits. For this list, we compute the Hamming distances

d(x,y) for all pairs x,y (this has to be conducted only once). Both,

L and d, are passed to Table 3. We obtain a potential barcode C,
and, if its cardinality is large enough, the process is stopped.

Otherwise, the algorithm is repeated, or, if no code can be found,

d ’ is lowered by 1 to search for a code with a smaller minimum

distance.

Let us note, that the algorithm has an exponential complexity in

n. We need to store the Hamming distances between all words

matching the experimental constraints (which requires to store 4n

entries, due the symmetry of the Hamming distance) and in line 4

of Table 3 we have to make exponentially many comparisons (in

the order of 4n). Hence, similar to the barcrawl algorithm, we may

use this approach only for small n.

Results

In the following, we compare our randomly drawn barcodes,

RN(n; DCD; dmin) (each code is the best found in 1000 trials) with

published barcodes. First, we compare with barcodes included in

Illumina’s TrueSeq Kits (Oligonucleotide sequences 2007–2011

Illumina, Inc. All rights reserved.) with size 48 and length 6, which

we denote with IL(6; 48; 2). We further consider the codes

proposed by Bystrykh (see Information S1 Table S2 (Pages 5{6)

in [6]) of different lengths which are denoted with BY(n; DCD; dmin)

and the codes obtained by barcrawl with BC(n; DCD; dmin). Finally,

we consider the best known linear codes, BL(n; DCD; dmin) over

GF (4) of different lengths n and sizes DCD. Note that the dimension

is k§3 in order to get enough codewords.

Basic code properties
For each code length n and minimum distance dmin, we fixed

the experimental constraints on the homopolymer length hmax and

the GC-content range of the code words. We are now interested in

the largest possible set size that can be determined if all code words

are deleted that do not fit the constraints. The basic code

properties are summarized in Table 4. The last column assesses

the different code sizes. For a fairly realistic evaluation of the

different barcodes, we evaluated the codes using a channel with

the transition probabilities shown in Table 1 [15], where we

consider the average (Pe) and the maximum error (Pmax) specified

in Definition 2.

Codes with length n~6
The barcode properties for length n~6 are summarized in

Table 4. The Illumina barcode has the lowest minimum distance,

the largest homopolymer length and the widest range of GC-

content. All other codes show an improvement in their properties.

Comparing the best linear code with our RN(6; 48; 3), we see that

BL(6; 60; 4) has a larger set and a better minimum distance but

worse experimental parameters. If we relax the experimental

constraints, the set size is enlarged for RN(6; 91; 3).

The largest minimum distance for n~6 is dmin~4. In fact, this

minimum distance can not be improved as shown by the Singleton

bound. If we assume a minimum distance of 5, the code size is

upper bounded by 16 (see Fact 1).

If we compare average error during the transmission over a

non-symmetric channel (Pe in Table 4) codes with a cardinality of

DCD§48 show a comparable performance. Interestingly, the

increased minimum distance of four does not provide a significant

improvement in comparison with codes having minimum distance

three. Also, the Illumina barcode, having only a minimum

distance of two, shows only a slightly worse error probability

compared to all other codes. But, if we take a closer look at the

maximum error Pmax of the Illumina set IL(6; 48; 2) it is a magnitude

worse in comparison with all other codes of length 6. This is due to

the fact that there are pairs of codewords that are quite close,

which becomes clear if we compare the distance profiles (specified

Table 3. Algorithm RndBarcode.

1: RndBarcode L, d ’, d(x,y)

2: C/ list containing a random chosen c from L
3: remove c from L
4: while maxy[L minx[C d(y,x)f g§d ’do

5:

c~arg maxy[L minx[C d(y,x)f g

6: remove c from L and add c to C

7: end while.

8: end procedure.

doi:10.1371/journal.pone.0082933.t003
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in Definition 4) in Figure 4. Actually, IL(6; 48; 2) has a

comparable distance distribution as BY(6; 48; 3) and

RN(6; 48; 3). Closer inspection of the distribution reveals that B2

(see Definition 4) is only 0.083.

Codes with length n~7
For barcodes of length n~7, the best experimental parameters

together with the largest set size, are achieved for BC(7; 134; 3). It

is guaranteed that the codes with length n~7 and dmin~(3,4) can

correct one substitution error, the same as for n~6. Regarding the

minimum distance, there maybe room for an improvement.

Namely, the Singleton bound allows a minimum distance of five,

and, inspecting the Hamming bound, also shows that the

guaranteed correction of two errors might be possible, which

implies that dmin is equal to five.

Codes with length n~8
If we extend the length of the code to n~8, the improvement of

the code properties are apparent. BC(8; 97; 4) results in the largest

set, together with perfectly matched experimental properties, but it

can still correct only one substitution error. If we relax the

experimental constraints slightly, two substitution errors are

correctable, e.g., for BL(8; 58; 5) together with an acceptable set

size.

Table 4. Properties of barcode sets with fixed experimental constraints. The average (Pe) and the maximum error (Pmax) are
obtained over a non-symmetric channel defined in the Channel Model part.

(n; DCD; dmin) n dmin GC [%] hmax Pe Pmax Comment

IL(6;48;2) 6 2 0–83.3 4 0.003720 0.024100

BY(6;13;3) 6 3 50 1 0.00115744974058 0.00152675606062 DCDv48

RN(6;48;3) 6 3 50 1 0.00293720069404 0.00372112063192 Largest set size

BC(6;45;3) 6 3 50 1 0.00293934865265 0.00433319686588 DCDv48

BY(6;48;3) 6 3 33.3–66.7 2 0.00287479186204 0.00344409742315

RN(6;91;3) 6 3 33.3–66.7 2 0.00336953649051 0.00498588334159 Largest set size

BC(6;90;3) 6 3 33.3–66.7 2 0.00333779055118 0.00479221839011

BL(6;0;4) 6 4 50 1 not calc. not calc. DCDv48

RN(6;20;4) 6 4 50 1 0.00160381775190 0.00193212583882 DCDv48

BC(6;21;4) 6 4 50 1 0.00170852113961 0.00223078114371 DCDv48

BL(6;60;4) 6 4 33.3–66.7 2 0.00350044276484 0.00415971952076 Largest set size

RN(6;22;4) 6 4 33.3–66.7 2 0.00154681909096 0.00257664771207 DCDv48

BC(6;27;4) 6 4 33.3–66.7 2 0.00213145291469 0.00308957132629 DCDv48

BY(7;52;3) 7 3 42.9–57.1 1 0.00243615939854 0.00317400700813

BL(7;34;3) 7 3 42.9–57.1 1 0.00145478099500 0.00234874403316 DCDv48

RN(7;131;3) 7 3 42.9–57.1 1 0.00398044428796 0.00512316866215

BC(7;134;3) 7 3 42.9–57.1 1 0.00409145276126 0.00585134792272 Largest set size

BL(7;29;4) 7 4 42.9–57.1 2 0.00088948621485 0.00192453915606 DCDv48

RN(7;61;4) 7 4 42.9–57.1 2 0.00218757478563 0.00410906150349

BC(7;67;4) 7 4 42.9–57.1 2 0.00246956732624 0.00427006271525 Largest set size

BL(7;41;4) 7 4 28.6–71.4 2 0.00122876771354 0.00234288468511 DCDv48

RN(7;63;4) 7 4 28.6–71.4 2 0.00215726162765 0.00325896653775

BC(7;71;4) 7 4 28.6–71.4 2 0.00270966900931 0.00398044085558 Largest set size

BL(7;62;4) 7 4 14.3–85.7 3 0.00188935248825 0.00299764003488

RN(7;68;4) 7 4 14.3–85.7 3 0.00229868424521 0.00375703185561

BC(7;78;4) 7 4 14.3–85.7 3 0.00291964205936 0.00482760240470 Largest set size

BY(8;52;4) 8 4 50 1 0.00138438837587 0.00174725711803

BL(8;8;4) 8 4 50 1 0.00017211463306 0.000435829557311 DCDv48

RN(8;90;4) 8 4 50 1 0.00174036590003 0.00250377449382

BC(8;97;4) 8 4 50 1 0.00208718229848 0.00348552721763 Largest set size

BL(8;50;5) 8 5 37.5–62.5 3 0.000164930826698 0.000271101846767 Largest set size

RN(8;46;5) 8 5 37.5–62.5 3 0.000151706895645 0.000246945726731 DCDv48

BC(8;50;5) 8 5 37.5–62.5 3 0.000164977426615 0.000263832223954 Largest set size

BL(8;58;5) 8 5 25–75 3 0.000185250799755 0.000305507449322 Largest set size

RN(8;48;5) 8 5 25–75 3 0.000161049267064 0.000239630273434

BC(8;56;5) 8 5 25–75 3 0.000175939065403 0.000277667990980

doi:10.1371/journal.pone.0082933.t004

Short Barcodes for Next Generation Sequencing

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e82933



Inspecting our upper bounds on the code size reveals that codes

with even larger distance, might exist. According to the Singleton

bound for n~8 and dmin~6, the upper bound on the code size is

64. But this already indicates, that we can never construct a code

of size §48 and length 8 that can guarantee to correct three

errors, since in this case the upper bound on the code size is 16.

This actually coincides well with the Hamming bound, which, for

t~3 and n~8, gives an upper bound on the code size of 14. Note

that the random code RN(8; 48; 5) minimizes the error probabil-

ities (Pe and Pmax).

Additional results on the distance distributions and error

probabilities for equal set sizes, are presented in the Supporting

Information S1. Selected barcodes (list of code words) can be found

in the ZIP file S1.

Discussion and Conclusion

It is shown, that compared to published barcodes, codes with

similar length, larger cardinality and better error-correction

capabilities (regarding substitution errors) exist, while retaining

the experimental parameters of the Illumina barcode (which has

length six and cardinality 48). The latter may already be a

reasonable choice for many applications, as, for example, the

mean error introduced by the channel given by [15] is roughly

10{3, hence, one out of 1000 reads is wrongly demultiplexed.

However, the maximum error of the Illumina barcode over this

channel is very poor compared to even short codes of length 6. For

applications being sensitive for such errors, much better short

codes exist. For example, using a code of length n~8, wrong

demultiplexing occurs with one magnitude less. This rate of 10{4

now approaches the rate at which indels occur. Consequently, in

order to further increase the reliability of demultiplexing, codes

have to be designed that are also able to correct indels. This means

that considering the Hamming distance only and increase of the

code length is not sufficient. Hence, the construction methods

discussed in this paper can not be applied any more, as our

randomized construction method has an exponentially increasing

computational complexity.

As mentioned, we focused on the construction of codes with

large cardinality given experimental constraints. It is quite

interesting to note that for code lengths n~6 and n~8, no codes

with the comparable cardinality and better minimum distance can

exist even if the experimental constraints are relaxed. For n~6 we

present codes with minimum distances 3 and 4. The latter is based

on the currently best linear code, while the former was found by

the randomly construction providing perfect experimental param-

eters. For slightly worse experimental parameters, our randomly

constructed code provides the largest barcode set. Regarding the

minimum distance the construction based on linear codes is

optimal as the cardinality of a code with minimum distance 5 can

not be larger than 16 (by the Singleton bound). For n~7 there is

possibly room for an improvement as both Hamming and

Singleton bound allow codes with a minimum distance of five,

while the best codes we found have only minimum distance four.

For all investigated experimental constraints barcrawl results in the

largest barcode sets. Perfect experimental parameters and large

barcode sets can be achieved for codes of length n~8 at the cost of

a smaller minimum distance. At this point the user has to balance

set size against error correcting capabilities.

Finally, let us note that both, design and decoding, assume a

memoryless and symmetric channel. Since real applications

deviate from this behaviour, we compared our barcodes using a

non-symmetric channel.

In this paper we compared published barcodes with our own

codes and presented advantages and disadvantages of the different

sets. It is now up to the biological user to choose the best barcode

set for each individual application.

Supporting Information

Information S1 Additional Data and Figures. Comparison

of barcode sets with different lengths and experimental constraints.

Each set is reduced to an equal set size of DCD~48.

(PDF)

ZIP file S1 File of barcode sets. This file contains a list
of all barcodes considered in the paper.
(ZIP)
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