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Abstract

Detecting biclusters from expression data is useful, since biclusters are coexpressed genes under only part of all given
experimental conditions. We present a software called SiBIC, which from a given expression dataset, first exhaustively
enumerates biclusters, which are then merged into rather independent biclusters, which finally are used to generate gene
set networks, in which a gene set assigned to one node has coexpressed genes. We evaluated each step of this procedure:
1) significance of the generated biclusters biologically and statistically, 2) biological quality of merged biclusters, and 3)
biological significance of gene set networks. We emphasize that gene set networks, in which nodes are not genes but gene
sets, can be more compact than usual gene networks, meaning that gene set networks are more comprehensible. SiBIC is
available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/miami/faces/index.jsp.

Citation: Takahashi K-i, Takigawa I, Mamitsuka H (2013) SiBIC: A Web Server for Generating Gene Set Networks Based on Biclusters Obtained by Maximal
Frequent Itemset Mining. PLoS ONE 8(12): e82890. doi:10.1371/journal.pone.0082890
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Introduction

A biologically significant interest would be to detect genes with

similar behavior under certain experimental conditions. SiBIC is a

web server, which, given an expression dataset, provides such gene

behavior information in a compact manner. The idea behind

SiBIC is to enumerate all possible gene behaviors as biclusters,

which are then summarized into gene set networks, in which each

node has a gene set with coexpressed genes under particular

experimental conditions. The procedure of SiBIC is as follows:

SiBIC first enumerates all biclusters in a given expression dataset

which are then merged together into a relatively smaller number

of rather unique biclusters, from which finally gene set networks

are generated. Gene set networks have a set of genes for nodes, by

which each node can have more than one genes. Thus gene set

networks are clearly more advantageous than usual gene networks,

because the network size can be kept smaller while genes at each

node are coexpressed.

Biclusters can be classified into several different types [1,2]. We

focus on one type, in which genes are coexpressed under each

experimental condition. Fig. 1 shows an example of such

biclusters, where values are similar in each column. More

concretely values in the first column are around one, while those

in the second column are around four to five. This bicluster reveals

genes which behave similarly under certain experimental condi-

tions, and so finding such biclusters from a given expression data

set can help capturing such genes. To enumerate this type of

biclusters exhaustively from a given expression dataset, SiBIC uses

frequent itemset mining (FIM), a well-established data mining

technique [3]. In data preprocessing, for each experimental

condition, SiBIC first generates items, each having one or more

genes with similar expression values. This process transforms a

given expression data matrix into a new matrix, where each

element (originally a gene expression value) is a set of items. SiBIC

then tries to find a set of items, i.e. an itemset, in which each item

is from one experimental condition (i.e. one column) and all these

items share the same set of genes. In particular, by using the idea

of FIM, SiBIC enumerates all itemsets, the number of items being

larger than a certain amount, and those itemsets are all biclusters,

each having genes with similar expression values under each

condition. One problem of these biclusters is that they are heavily

overlapped and redundant. Thus SiBIC merges biclusters if the

significance of biclusters is kept or improved. The first output of

SiBIC is these biclusters, being sorted by size or p-values regarding

the correlation significance of coexpression values. Fig. 2 (A)–(C)

are sample outputs of biclusters, where (A) is a heat map with

denser red for lower values, (B) is a chart showing the medium and

min-max range of each column, and (C) a matrix of real

expression values. However, the number of merged biclusters is

still large, and then SiBIC presents gene set networks, where nodes

are overlapped subclusters of the merged biclusters. Fig. 2 (D) is a

sample output of gene set networks. SiBIC further allows to

conduct GO (Gene Ontology) term enrichment analysis of each

merged bicluster by using DAVID [4].

There are many software for generating biclusters, while the

definition of biclusters is diverse, resulting in that the objective of

most bicluster software is different from SiBIC, by which they

cannot be necessarily compared with SiBIC. We here raise several

software for generating/visualizing biclusters which can be
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compared with SiBIC, and describe how SiBIC is different from

them.

DeBi [5] and BiModule [6] are two existing tools of using FIM

to generate biclusters from a gene expression dataset. A clear

difference of SiBIC from DeBi and BiModule is that they generate

a very small number, say five or seven, of items, by which

expression values in one item are not necessarily so consistent. On

the other hand, SiBIC generates as many items as possible,

satisfying the input range of coexpression values, by which

biclusters of SiBIC surely capture coexpressed genes. Moreover

SiBIC generates a network of gene sets as well as biclusters, and

this type of summary information cannot be provided by DeBi and

BiModule.

BicAT [7] and BiVisu [8] are well-known visualization software

on biclusters. They however focus on visualization of biclusters

themselves rather than the relations between biclusters. They

further assume that biclusters are obtained by other methods or

generating biclusters using existing methods. A software, which

might be more related with SiBIC is BicOverlapper [9], which is

for visualization of overlapping biclusters, while this software

generates a graph, in which each node represents a gene or a

condition and edges are grouped by one or more biclusters. So

BicOverlapper shows each bicluster as a complete graph in the

whole graph. On the other hand, SiBIC uses another graph on

biclusters, where nodes are gene sets. This enables the graph to be

more compact than that of BicOverlapper, because each node is a

set of genes (which share a similar expression pattern), instead of a

single gene or a single condition.

Figure 1. Biclusters of four coexpressed genes under five
different conditions. Each bicluster can be defined by three
parameters: MIN_ROW, MIN_COL and MAX_DIFF, where MIN_ROW is
the minimum number of rows, MIN_COL is the minimum number of
columns and MAX_DIFF is the maximum difference in values of each
column.
doi:10.1371/journal.pone.0082890.g001

Figure 2. A found bicluster is shown in three formats and overlapping biclusters are converted into a gene set network. (A) a heat
map, (B) a line chart, (C) a matrix of expression values, and (D) a sample gene set network, where nodes are clickable to show the corresponding
genes or biclusters.
doi:10.1371/journal.pone.0082890.g002

Generating Gene Set Networks from Microarray Data
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We evaluated SiBIC from a variety of viewpoints. We first

compared the performance of SiBIC with two FIM-based

biclustering methods, DeBi and BiModule, in terms of GO term

enrichment analysis and correlation of coexpression values, by

using major two benchmark datasets. SiBIC clearly outperformed

the two compared methods in the two datasets. We then evaluated

our procedure of merging biclusters by using a dataset in GEO,

comparing with the original, unmerged biclusters, in terms of GO

term enrichment analysis. The result showed that merged

biclusters were enhanced more than unmerged biclusters,

confirming the validity of merging biclusters. We finally checked

the validity of generating gene set networks. Again GO term

enrichment analysis was conducted over 1) densely connected

subnetworks and 2) the subnetwork containing the hub gene and

neighboring genes, both results revealing the validity of repre-

senting gene set networks.

Results and Discussion

We have evaluated each of the main three steps of SiBIC: 1)

generating biclusters, 2) merging biclusters, and 3) generating gene

set networks.

Evaluation on biclusters
We evaluated the performance of biclusters generated by SiBIC

with respect to two aspects: biological and statistical significance.

The performance was compared with two methods, DeBi [5] and

BiModule [6], which are based on FIM, and the performance

advantage of these two methods over a number of representative

biclustering algorithms such as Bimax [10], OPSM [11], ISA [12]

and SAMBA [13] are already shown.

For biological and statistical evaluation, we conducted GO term

enrichment analysis and empirical p-value computation on the

correlation of row vectors of biclusters, respectively. These

evaluation using a human and a yeast dataset have confirmed

that 1) biclusters by SiBIC are enriched by GO terms more

significantly than those by DeBi and BiModule and 2) correlation

in row vectors of biclusters by SiBIC was more significant than

those by DeBi and BiModule.

Biological significance: GO term enrichment

analysis. Coexpressed genes in one bicluster are supposed to

be all functioning on related regulatory mechanisms. For example,

coexpressed genes may be controlled by the same transcription

factors or involved in the same biological pathways. That is, an

obtained bicluster should be connected to some biological

function, by which genes in a bicluster must be well-enriched by

some GO terms. GO term enrichment analysis is commonly used

in evaluation of biclustering methods [10]. For example, DeBi [5]

outperformed five methods: Bimax [10], OPSM [11], ISA [12],

SAMBA [13] and QUBIC [14] in GO term enrichment analysis

on a yeast dataset. Similarly BiModule [6] outperformed six

methods: Bimax, OPSM, ISA, SAMBA, CC [15] and xMotif [16]

Figure 3. GO term enrichment analysis for biclusters generated
by a yeast dataset. SiBIC outperformed DeBi and BiModule at any
significance level from 0.01% to 5%.
doi:10.1371/journal.pone.0082890.g003

Figure 4. GO term enrichment analysis for biclusters generated
by a human dataset. Again SiBIC outperformed DeBi and BiModule at
all significance levels from 0.01% to 5%.
doi:10.1371/journal.pone.0082890.g004

Figure 5. p-values of biclusters from a yeast dataset. The results
clearly show that p-values by SiBIC are all almost zero, while the
distribution of those of DeBi ranges from zero to 0.2 and that of
BiModule was further higher.
doi:10.1371/journal.pone.0082890.g005

Figure 6. p-values of biclusters from a human dataset. The p-
values of SiBIC were in the range from zero to 0.05, while those of DeBI
and BiModule were distributed in wider ranges, including 0.1 to 0.4.
doi:10.1371/journal.pone.0082890.g006

Generating Gene Set Networks from Microarray Data
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on another yeast dataset. These results indicate that if SiBIC

outperforms DeBi and BiModule, SiBIC can outperform totally

seven methods for detecting biclusters.

To compare SiBIC with DeBi and BiModule, we used two

datasets. The first dataset, which was used in [5], is the

compendium of gene expression profiles with 300 different

experimental conditions of S. cerevisiae. We ran SiBIC with the

default parameter settings: MIN_ROW = 30, MIN_COL = 3,

BIN = 7 and SD_COEFF = 0.7. BiModule was executed with

Mg = 30, Mc = 3 and L = 7, where Mg, Mc and L correspond to

MIN_ROW, MIN_COL and BIN, respectively. As for DeBi, we

used the resultant biclusters given in [5] which were obtained by

running DeBi over the same yeast data set. In order to make a fair

evaluation, we applied a similar procedure of DeBi to the resultant

clusters of SiBIC and BiModule. That is, the procedure is to filter

out biclusters being overlapped with other biclusters. More

concretely, if more than 50% of one bicluster is overlapped with

another larger bicluster, we removed the smaller cluster. We

finally selected top 100 biclusters by their size for each method.

We used a GO term enrichment tool, FuncAssociate, which

computes the p-value of how significantly one gene set is enriched

by one or more GO terms, using Fisher’s exact test and multiple

testing correction [17]. Figure 3 shows the ratio of biclusters

enriched by at least one GO terms to all 100 biclusters at different

levels of significance. SiBIC achieved the best performance among

the compared three methods at each level of significance. In

particular it is noteworthy to raise that 96% of biclusters by SiBIC

were enriched by at least one GO terms at the significance level of

0.01%.

The second dataset is a human dataset, ‘diffuse large B-cell

lymphoma’ (DLBCL), which is also assessed in [5]. DLBCL has

661 genes and 180 conditions. We ran SiBIC with MIN_-

ROW = 20, MIN_COL = 3, BIN = 7 and SD_COEFF = 0.7.

BiModule was executed with Mg = 10, Mc = 3 and L = 7 (because

BiModule could not produce any biclusters with Mg = 20). For

DeBi, we again used the experimental results in [5]. Again we

removed overlapped clusters, as done for the yeast dataset in the

same way, resulting in 4,350, 192 and 53 biclusters, for SiBIC,

DeBi and BiModule, respectively. We then selected top 50

biclusters by size for each of the three methods. Figure 4 shows the

ratio of biclusters enriched by at least one GO terms to all 50

biclusters at different significance levels. This result clearly

indicates that SiBIC generates a larger number of biclusters

enriched by GO terms than those by DeBi and BiModule.

Statistical significance. We checked the statistical signifi-

cance of each bicluster by how significantly row vectors (genes) in

each bicluster are correlated with each other. We computed the

significance score (empirical p-value) by using test statistic T in Eq.

(1) which will be described in the Method and Materials section.

We used two experimental datasets, yeast and human (DLBCL),

which were used for checking biological significance. Also we kept

the same parameter setting as in the GO term enrichment analysis.

Fig. 5 shows the box and whisker charts, showing the

distribution of empirical p-values for yeast. We computed

empirical p-values for the top 100 biclusters by size for each

method. Each black box in Fig. 5 indicates the p-values of the top

25 to 75 of 100 biclusters. This figure shows that all p-values by

SiBIC were almost zero, by which biclusters by SiBIC had the

distribution of clearly lower p-values than DeBi and BiModule.

Fig. 6 shows the box and whisker charts of empirical p-values for

human (DLBCL). This figure shows that all p-values by SiBIC

were less than 0.05, while most p-values of the other two methods

Figure 7. Performance variation in GO term enrichment analysis by changing values of parameters, (A) MIN_ROW and (B)
SD_COEFF. In (A), blue, red, green, purpose, light blue and orange show the ratio of enriched biclusters to all biclusters at the significance level of
0.01%, 0.05%, 0.1%, 0.5%, 1% and 5%, respectively. The values along with the X-axis are the parameter values of MIN_ROW. In (B), blue, red, green and
purple show the ratio of enriched biclusters to all biclusters at SD_COEFF = 0.7, 0.8, 0.9 and 1.0, respectively. The values along with the X-axis are the
significance level of p-values.
doi:10.1371/journal.pone.0082890.g007

Table 1. The number of maximum frequent itemsets (MFI)
and the number of merged biclusters (MB) when we changed
MIN_ROW from 15 to 45.

MIN_ROW 15 20 25 30 35 40 45

# MFI 993,757 236,314 67,151 22,255 8,874 4,380 2,760

# MB 23,774 4,350 760 160 30 2 3

doi:10.1371/journal.pone.0082890.t001

Table 2. The number of maximum frequent itemsets (MFI)
and the number of merged biclusters (MB) when we changed
SD_COEFF from 0.6 to 1.0.

SD_COEFF 0.6 0.7 0.8 0.9 1.0

# MFI 803,634 236,314 64,062 18,692 6,458

# MB 16,426 4,350 704 170 26

doi:10.1371/journal.pone.0082890.t002

Generating Gene Set Networks from Microarray Data
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were larger than 0.05, indicating that p-values by SiBIC were

clearly smaller than those by DeBi and BiModule.

These results indicate that SiBIC can generate biclusters with

the most significant correlation in gene coexpression among the

three competing methods. This is because: 1) BiModule generates

only seven items per column, which is too coarse to capture gene

coexpression, and 2) Similarly DeBi transforms expression values

into only three types, which is also too coarse, making hard to

capture gene coexpression for each column.

Performance variation by parameter setting. We further

checked the performance variation of SiBIC by changing values

of parameters, particularly MIN_ROW and SD_COEFF,

using DLBCL. The parameter setting we used so far was

MIN_ROW = 20 (or 30) and SD_COEFF = 0.7, which generates

a relatively large number of biclusters, and if we decrease these

values, we have a further larger number of biclusters (in fact

23,774 and 16,426 biclusters obtained when MIN_ROW = 15 and

SD_COEFF = 0.6, respectively, even after biclusters are merged

together, removing overlapped ones), for all of which we cannot

run any GO enrichment analysis tool. Thus we checked the

performance of SiBIC when the values of MIN_ROW and

SD_COEFF were larger, meaning that the number of biclusters

was decreased (See Tables 1 and 2 for the number of biclusters,

respectively). We note that in this evaluation, we removed

overlapped biclusters, according to the procedure we mentioned

already. Fig. 7 (A) and (B) show the results obtained by increasing

the value, i.e. 20 to 45 for MIN_ROW and 0.7 to 1.0 for

SD_COEFF, respectively. These two figures indicate that as

increasing with the parameter value, the ratio of biclusters

enriched by GO terms to all biclusters increased.

Evaluation on merging biclusters
We used GDS3513 in GEO (Gene Expression Omnibus) which

is a human dataset of embryonic stem cell-derived cardiomyocytes.

Under appropriate conditions, vivo embryonic stem cells are

supposed to be differentiated into beating cardiomyocytes via an

embryoid body intermediate. This dataset is measured to obtain

insight into the mechanism underlying the differentiation of

embryonic stem cells into cardiomyocytes. GDS3513 has 16

samples of 45,220 probes with four cell types. We used the average

values over sample replicates.

We run SiBIC over this dataset under the parameter settings of

MIN_ROW = 10, BIN = 7, MIN_COL = 3, SD_COEFF = 1.0

and ALPHA = 0.01, resulting in 474 biclusters, which were then

merged into 53 significant biclusters.

In order to assess the effect of merging biclusters, we conducted

GO term enrichment analysis using a software called DAVID,

which allows to check the enrichment of coarser-level (upper-level)

biological categories (than that of FuncAssociate), such as

biological process terms (BP), molecular function terms (MF) and

cellular component terms (CC), by which biclusters can be

evaluated with respect to the entire, upper-level categories. Fig. 8

shows the ratio of enriched biclusters to all obtained biclusters for

two cases: the original all enumerated biclusters and merged

biclusters, for each of the three upper level functions (A)–(C) and

usual, lower-level GO terms (called FAT) (D). For all four cases,

the ratio of enriched biclusters was larger than the case of original

Figure 8. Comparison in terms of GO term enrichment analysis between merged and unmerged (original) biclusters. (A) BP (biological
process), (B) CC (cell component), (C) MF (molecular function), (D) FAT (lower level GO terms).
doi:10.1371/journal.pone.0082890.g008

Generating Gene Set Networks from Microarray Data
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biclusters for all significance levels. This result shows that merging

biclusters can reduce redundant biclusters, without losing biolog-

ical qualities of the obtained biclusters.

Evaluation on gene set networks
In order to assess the quality of generated gene set networks, we

used the same dataset as that used for evaluating merging

biclusters. We first obtained four connected gene set networks

from the 53 merged biclusters. Fig. 9 shows the resultant four

networks.

We then conducted two types of GO term enrichment analysis

on: 1) part of gene set networks with weights of more than or equal

to two, and 2) part of gene set networks with the hub and

connected nodes.

In the first experiment, our goal is to check the beneficial of

network representation. In order to do this, we focused on edges

with weights of more than or equal to two, by which six gene set

networks were obtained. We then run DAVID again over the six

networks to perform GO term enrichment analysis. Fig. 10 shows

the ratio of biclusters (or networks) which has at least one GO

terms to all biclusters (or networks), changing the significance level.

This figure shows that already half of the six networks were

enriched by GO terms at the significance level of 0.05% and all six

networks were covered at the significance level of 5%. From this

result, we can say that gene set networks can represent the

connection of biclusters (or gene sets) well enough, keeping the

biological quality of the obtained information.

In the second experiment, we first chose the largest network,

which consists of 44 overlapped biclusters with 128 nodes and 735

edges, including 1,761 genes in total. We can expect that

biclusters, which have the maximally connected node, i.e. the

node with the largest degree, must have the most important role in

Figure 9. Four gene set networks obtained from GDS3513. Each node represents a gene or a set of genes. The size of a node represents the
number of genes in the corresponding node.
doi:10.1371/journal.pone.0082890.g009

Figure 10. Comparison in terms of GO term enrichment
analysis among original biclusters, merged biclusters and
gene set networks.
doi:10.1371/journal.pone.0082890.g010

Generating Gene Set Networks from Microarray Data
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the whole network. The node with the largest degree was a gene

set with only one gene, COL2A1 (collagen, type II, alpha 1), which

is known as a gene related to heart morphogenesis. There were 46

nodes, which are all adjacent to COL2A1, under the condition

that the edge weight is more than or equal to two. These 46 nodes

have totally 156 genes. Fig. 9 shows these 46 nodes in the lower-

left side. We enriched the 157 genes (156 genes plus COL2A1) by

using DAVID, focusing on the category of biological process (BP),

and obtained 125 BP terms. Table 3 shows the top 20 BP terms

with the lowest p-values. GO terms in this table include several

terms, such as ‘heart’, ‘cardio’ and ‘cardiac’, which are all closely

related with cardiomyocytes, i.e. the main topic of the dataset. In

particular the top GO term with the lowest p-value of 8.32E-06

was heart development.

We finally conducted an experiment of mapping a gene set

network over metabolic pathways and checked whether the

obtained pathways are related with each other. We focused on a

relatively small network among the four connected network, since

genes in such a small network might be all closely related with

some particular function or pathway. So we used a network with

44 nodes, and extracted the node with the maximal degree and its

neighboring nodes which are connected by edges with weights of

more than or equal to two. The node with the maximal degree has

only one gene, DDX43 (DEAD box polypeptide 43) encoding an

ATP-dependent RNA helicase in the DEAD-box family. We then

mapped the genes in these nodes over the KEGG pathways by

using DAVID functional mapping tool [4]. Table 4 shows the

pathways with p-values of less than 0.05. This table shows that the

pathways obtained are related with cell proliferation, differentia-

tion and apoptosis, each other, which implies validity of the

obtained pathways and a given gene set network.

Conclusion
We have presented our software, SiBIC, which generates gene

set networks by summarizing biclusters, which are first exhaus-

tively enumerated based on maximal frequent itemset mining. We

emphasize that gene set networks are more compact and

comprehensible than usual gene networks, because each node

has a set of coexpressed genes, by which the network size can be

reduced. We evaluated each of our three steps of generating gene

set networks: 1) enumerating biclusters, 2) merging biclusters and

3) generating gene set networks, mainly by using GO term

enrichment analysis. Our evaluation results revealed that 1) our

enumerated biclusters are biologically and statistically more

significant than the compared two methods, 2) merging biclusters

reduces the number of biclusters significantly, keeping the

biological quality of the entire biclusters and 3) gene set networks

are generated from merged biclusters, realizing compact repre-

sentation of gene sets and at the same time again keeping/

improving the biological quality. Overall SiBIC presents compact

and comprehensible gene set networks which would be surely

useful to biologically understand gene expression data.

Materials and Methods

SiBIC has roughly five steps: 0) transforming a given original

expression dataset into a matrix of itemsets, 1) enumerating all

biclusters as frequent itemsets by using the idea of mining maximal

frequent itemsets, 2) merging biclusters to remove redundancy in

exhaustively enumerated biclusters, 3) generating a network of

gene sets which are those overlapped among merged biclusters and

4) analyzing gene functions by using the generated network of gene

sets. Figure 11 A) to D) show a schematic flow of the above 1) to 4),

respectively.

Data preprocessing and mining frequent itemsets

1) Data preprocessing (generating items): Given a gene expres-

sion matrix, we first generate items for each column

(experimental condition). That is, for one column, we slide a

window with a certain range (specified by MAX_DIFF. See

below) over genes, which are already sorted by their

expression values, meaning that genes in a window have

similar expression values. A set of genes in each window is one

item, by which one gene can be in multiple items. Repeating

Table 3. Top 20 GO terms obtained by GO term enrichment
analysis over genes in a hub network.

Rank GO.ID GO.term P.value

1 GO:0007507 heart development 8.32E-06

2 GO:0003012 muscle system process 5.88E-05

3 GO:0045664 regulation of neuron
differentiation

9.26E-05

4 GO:0003013 circulatory system process 1.20E-04

5 GO:0008015 blood circulation 1.20E-04

6 GO:0051960 regulation of nervous
system development

1.49E-04

7 GO:0006936 muscle contraction 2.21E-04

8 GO:0003007 heart morphogenesis 2.28E-04

9 GO:0050767 regulation of neurogenesis 3.64E-04

10 GO:0048568 embryonic organ development 4.51E-04

11 GO:0042127 regulation of cell proliferation 4.92E-04

12 GO:0048562 embryonic organ morphogenesis 6.80E-04

13 GO:0048598 embryonic morphogenesis 7.77E-04

14 GO:0001755 neural crest cell migration 7.80E-04

15 GO:0035150 regulation of tube size 8.33E-04

16 GO:0050880 regulation of blood vessel size 8.33E-04

17 GO:0048704 embryonic skeletal system
morphogenesis

0.001096

18 GO:0003018 vascular process in circulatory
system

0.00117

19 GO:0008217 regulation of blood pressure 0.001219

20 GO:0060284 regulation of cell development 0.001269

doi:10.1371/journal.pone.0082890.t003

Table 4. Pathways with p-values of less than 0.05, obtained
by mapping a gene set network to KEGG by using DAVID
functional mapping tool.

pathways #genes p-value

Cytokine-cytokine receptor interaction 17 1.3E-7

NOD-like receptor signaling pathway 8 1.3E-5

Hematopoietic cell lineage 5 4.9E-3

Apoptosis 6 5.1E-3

Cell adhesion molecules 6 6.4E-3

Intestinal immune network for IgA production 4 2.4E-2

Toll-like receptor signaling pathway 5 3.9E-2

doi:10.1371/journal.pone.0082890.t004

Generating Gene Set Networks from Microarray Data
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this over all experimental conditions (columns), the input

matrix can be another matrix (of the same size), in which each

element (originally gene) is a set of items. We note that items

in one column are totally independent of those in another

column.

2) Mining frequent itemsets: Out of the generated new matrix,

the idea is to find a set of items (itemset) over multiple

columns, where each item is from a different column and the

same genes are shared by these items. This itemset is exactly a

bicluster, since genes in this bicluster have similar expression

values (because of an item) under each condition. A frequent

itemset is a bicluster in which the number of contained genes is

larger than or equal to a certain input parameter value

(specified by MIN_ROW. See below). A maximal frequent itemset

is the largest frequent itemset among all itemsets which hold

inclusive relations each other (See below).

Parameters in preprocessing and mining
SiBIC captures a particular type of biclusters, in which genes

are regulated coherently in the same directions (up or down) with

different magnitudes under specific experimental conditions. To

define this type of biclusters, we use the following parameters,

partially shown in Fig. 1.

1) MAX_DIFF: This parameter specifies the range of expression

values of one item (Fig. 1A). We note that MAX_DIFF varies

from one condition to another condition depending on the

distributions of expression values. MAX_DIFF is not a direct

input of SiBIC, and instead BIN is an input to compute

MAX_DIFF by MAX_DIFF = (MAX{MIN)/BIN, where

MAX and MIN are the maximum and minimum expression

values in each column, respectively.

2) MIN_COL and MIN_ROW: MIN_COL and MIN_ROW

are the minimum number of columns (experimental condi-

tions) and rows (genes) of biclusters to be outputted,

respectively. That is, out of the generated new item matrix,

we retrieve a submatrix with a larger number of columns than

MIN_COL and a larger number of rows than MIN_ROW.

SiBIC exhaustively detects those biclusters which can be

arbitrary positioned and overlapped in the input expression

matrix. MIN_ROW specifies the minimum number of genes,

which is important, while this can be relaxed, by merging

biclusters which generates larger biclusters.

3) SD_COEFF: This parameter is used to remove expression

values (of each column) that are little differentiated and

biologically insignificant. That is, expression values are

removed if they are within SD_COEFF6SD, where SD is

the standard deviation.

Another issue is outliers, which cause a problem of expanding

the distributional tails. To avoid this problem, for each column, we

first compute the mean (Mean) of all expression values, and

expression values, which are not within the Mean63SD, are set at

the Mean63SD, indicating that MAX = Mean+3SD, MIN = -

Mean - 3SD, by which MAX_DIFF is always 6SD/BIN.

Figure 11. A flow diagram of SiBIC. (A) Enumerating all biclusters exhaustively by mining maximal frequent itemsets. Insignificant biclusters are
filtered out by empirical hypothesis testing. (B) Merging overlapping biclusters with the same experimental conditions if they keep significance. (C)
Generating gene set networks from overlapping biclusters. (D) Analyzing gene functions by using the obtained networks.
doi:10.1371/journal.pone.0082890.g011
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The procedure of generating frequent itemsets can be once

again reviewed by using the above parameters as follows: For each

experimental condition (column) of the input gene expression

matrix, genes are sorted by expression values, and a window with a

range of MAX_DIFF is slided over the genes in a gene-wise

manner to generate so-called items. So then the number of items

are the same as the number of genes. We can then represent the

original input matrix by using the items. That is, each element of

the new matrix is a set of items. Out of this matrix, we can

generate a submatrix with two or more genes which share the

same item for each of two or more columns (experimental

conditions), and this submatrix (being an itemset) is exactly a

bicluster with coexpressed genes under multiple conditions. So if

we find frequent itemsets, which share a larger or equal number of

rows than MIN_ROW, they are biclusters with a larger or equal

number of genes than MIN_ROW. That is why we use frequent

itemset mining for finding biclusters with coexpressed genes under

multiple conditions.

Mining maximal frequent itemsets
To reduce the redundancy of frequent itemsets, we use maximal

frequent itemsets, which are those that do not have any larger

frequent itemsets. SiBIC uses MAFIA [18], a software for mining

maximal frequent itemsets which can output frequent itemsets

keeping the number of rows (genes) larger than or equal to

MIN_ROW, while the number of columns is not considered in

FIM. Thus we further filter out the output of MAFIA to output

only biclusters with a larger or equal number of experimental

conditions than MIN_COL.

Computing empirical p-values
In order to rank biclusters and filter out nonsignificant ones,

SiBIC computes empirical p-values in terms of how significantly

row vectors in biclusters are correlated, as follows: For a bicluster

with N genes and M experimental conditions, matrices with the

same size are randomly generated 100,000 times out of the input

gene expression matrix. SiBIC then computes the following test

statistic T over each generated matrix:

T~
1

N

XN

i~1

corr(vi,�vv), where �vv~
1

N

XN

i~1

vi ð1Þ

where vi is a M-dimensional row vector of expression values and

corr(:,:) is Pearson correlation coefficient. SiBIC then computes

the ratio of how many matrices among 100,000 trials have smaller

T values than the T value of the bicluster we consider, resulting in

the empirical p-value of the bicluster. Finally SiBIC outputs the

sorted biclusters with lower p-values than a certain significance

level, which is 0.05 for the default setting.

Merging biclusters
While FIM enables us to robustly enumerate all possible

biclusters, it may produce too many biclusters for a user to check.

In order to avoid this, we use maximal frequent itemsets, which

are the largest frequent itemsets, which do not have larger frequent

itemsets. However even maximal frequent itemsets also can be

similar to each other. When we reduce the number of redundant

biclusters without loss of the significance in coexpression, we need

to have larger but still significant biclusters. SiBIC merges all

biclusters, which have the same experimental conditions and

partially share genes, into one bicluster, keeping the empirical p-

value of Eq.(1) smaller than a threshold (the default value is 0.05).

Figure 12. Pseudocode of merging biclusters. p-value(B) is the
empirical p-value of bicluster B, expression(g) is the vector of expression
values of gene g, avgg[G (expression(g)) is the vector, each value is the
average of the corresponding values of vector expression (g) over all
g[G, and correlation(t, t’) is Pearson correlation coefficient between two
vectors, t and t’.
doi:10.1371/journal.pone.0082890.g012

Figure 13. Construction of a gene set network. (A) Three overlapping biclusters: blue Bp , orange Bo and purple Bp biclusters are overlapped
with each other. (B) Gene set network generated from the three biclusters in (A).
doi:10.1371/journal.pone.0082890.g013
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We note that this is an original point of SiBIC, which has not been

considered in both DeBi and BiModule.

Fig. 12 shows a pseudocode of our merging algorithm, which is

based on binary search to efficiently add as many genes as possible

in a small number of iterations. The inputs are a bicluster Bin and

a set of biclusters B including Bin. The output is a merged

bicluster, Bout, over B. Here we write a bicluster B by 2-tuple

(G,C), where G is a gene set and C is an experimental condition

set in bicluster B. The first step of the algorithm is as follows: We

generate a set of biclusters O, which are all overlapped with Bin,

and a set of genes A which has all genes of the biclusters in O. We

then check the p-value of each bicluster of O and take the bicluster

with the minimum p-value as Bopt, to which genes are to be added.

We then, from Bopt, generate a vector t of expression values by

taking the average of all row vectors of expression values in Bopt.

We then remove genes in Gopt from A, and in the main iteration of

the algorithm, check to see what genes in A should be added.

In the main iteration, our addition of genes in A is a greedy

manner in the sense that we make a list L by sorting genes in A
according to the (high) correlation to t and we just think about the

first part of L only. (The first part means, for example, the first to

third genes of all ten genes in L.) That is, we repeat adding the first

part of L to Gopt unless Bopt with the new Gopt is insignificant. So

now the problem is to find the first part of L, and this problem is

solved by binary search in our algorithm.

Generating gene set networks
Genes in a bicluster are supposed to have similar biological

behavior. If two biclusters are overlapped, the behavior of the

genes corresponding to the overlapped submatrix may be different

from the other genes. Thus SiBIC represents such gene behavior

difference in terms of overlapping biclusters by generating a gene

set network, as follows: All genes are first decomposed into disjoint

gene sets in the way that genes fall into the same set if they share

the same biclusters; otherwise they are in different sets. SiBIC then

generates a weighted network of gene sets, where one node is a

gene set, one edge shows that the connected two nodes are in the

same bicluster and the weight on an edge shows how many

biclusters have the connected nodes. This means that nodes from

the same bicluster generate a complete graph. We stress that a

Figure 14. Graphical user interface of a gene set network (See the main text for details).
doi:10.1371/journal.pone.0082890.g014

Generating Gene Set Networks from Microarray Data

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e82890



gene set network is more compact and visually more comprehen-

sible than a gene network in which nodes are genes.

Fig. 13 shows an explanatory example of the conversion from

(A) overlapping biclusters to (B) a gene set network. In (A), three

biclusters are overlapped with each other: a blue bicluster

Bb~(f1,2,3,4,5g,fa,b,c,dg), an orange bicluster

Bo~(f3,4,5,6,7g,fb,c,d,e,f g) and a purple bicluster

Bp~(f5,6g,fc,d,e,f ,gg). The whole genes f1,2,3,4,5,6,7g can

be disjointly divided into sets f1,2g, f3,4g, f5g, f6g and f7g,
according to the biclusters having genes. Concretely speaking,

gene set f1,2g appears only in Bb, gene set f3,4g appears in Bb

and Bo, gene set f5g appears in all three biclusters, f6g appears in

Bo and Bp, and f7g appears in Bo. Thus each gene set has

different biclusters. We can consider these sets as nodes, to be

linked by edges if the corresponding gene sets are in the same

biclusters. This means that one bicluster generates a complete

subgraph. For instance, nodes V1, V2 and V3 compose a

complete subgraph corresponding to a blue bicluster Bb. Each

edge weight shows how many biclusters share the nodes connected

by the corresponding edge. For example, edge (V2,V3) is

weighted by two because V2 and V3 are shared by two biclusters

Bb and Bo.

As shown in Fig. 13 (B), nodes have experimental conditions of

biclusters, indicating that each node also represents one bicluster

with an expression pattern over the experimental conditions of the

input biclusters.

Graphical user interface of gene set networks
Fig. 14 shows an example of graphical user interface of SiBIC,

by which users can manipulate gene set networks, i.e. the final

results of SiBIC. The GUI is a Java applet which can be obtained

from the result page of SiBIC and run in a web browser. We

developed the GUI using Java 6 Swing and JUNG (Java Universal

Network/Graph Framework) library 2.0. As shown in Fig. 14, the

GUI has the left and right panes. The GUI allows users to conduct

GO term enrichment analysis in a more flexible manner than the

case of using only a single bicluster. For example, a user can pick

up genes in the node with the maximum degree and its

neighboring nodes or genes in the most significant bicluster. After

selecting genes, users can run DAVID, a third-party tool for GO

term enrichment analysis. We here explain the left and right panes

more in detail.

Left pane: The left pane has the drawing controller on the top

and the network viewer on the bottom. In the top, a user can select

the network ‘LAYOUT’ out of five types: ‘Circle’, ‘KK’, ‘FR’,

‘Spring’ and ‘ISOM’. A user can further choose ‘MODE’ of the

network viewer, where ‘Picking’ allows a user to pick and drag the

vertices of interest, while ‘Transforming’ enables a user to drag the

whole network by using a mouse. A user can filter out subnetworks

by ‘VERTEX SIZE’ or ‘EDGE WEIGHT’. By unchecking the

‘CONNECTED’ box in the top, the network viewer can show

unconnected networks. Clicking a vertex under the ‘Picking’ mode

updates the information of the right pane. A helpful function of

this side is that a user can choose (click) multiple nodes at the same

time by dragging a mouse to make a rectangle so that it

encompasses the multiple nodes and clicking one of the selected

nodes.

Right pane: The right pane has four tabs: ‘SELECTED’,

‘BICS’, ‘GENES’ and ‘NODES’. The ‘SELECTED’ tab shows

the information on the selected nodes in the left pane, where a lot

of features such as gene names, experimental conditions, and heat

maps are shown. The other three tabs, ‘BICS’, ‘GENES’ and

‘VERTICES’ provide the information on the entire network in the

left pane. The ‘BICS’ tab shows a table of all biclusters of the

network. The ‘GENES’ tab shows a table of all genes in all nodes

in the network. The ‘NODES’ tab shows a table of features of all

nodes, such as the degree and weighted degree.
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