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Abstract

Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study
examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five
years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth
forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012,
four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha–1 yr–1), P-addition
(150 kg P ha–1 yr–1) and N+P-addition (150 kg N ha–1 yr–1 plus 150 kg P ha–1 yr–1). We hypothesized that fine root growth in
the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N
additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root
biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by
64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly
increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased
live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root
growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P
ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in
the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger
forests.
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Introduction

Many tropical/subtropical regions, eastern Asia in particular,

are receiving high levels of atmospheric nitrogen (N) deposition,

with such increases projected to continue in the next decades [1,2].

This will add more new N to some lowland tropical forests and

may alter soil nutrient availability and carbon (C) balance of these

ecosystems. In general, humid tropical forests store approximately

10% of global soil C. Thus, it is crucial to know the current

nutrient status of these ecologically important forests and how

their structure and function may be altered by increased N

deposition [3].

Plant growth in lowland tropical forest is generally considered to

be limited by phosphorus (P), rather than N [4,5,6]. Further N

inputs from atmospheric deposition are likely to alter soil nutrient

conditions negatively, including increases in soil acidification,

losses of base cations, and Al mobilization [7,8,9,10], which

consequently may lower soil P availability [7,11]. These predic-

tions have been observed in some temperate forests where locally-

elevated N deposition contributes to a transition in nutrient

limitation to forest growth, i.e., driving forests from N limitation to

N saturation and P limitation [12,13,14]. However, such effects of

N deposition on ecosystem nutrient limitation have rarely been

investigated in tropical forests [15].

Responses of fine root growth to N or P limitation are inherently

different, due to the contrasting mobility of nitrate (NO3) and

phosphate (PO4) in soils [16]. NO3 is very mobile in the soil and

approaches the root via mass flow. Accordingly, new root

production may not be required for plants to absorb additional

N. Nitrogen limitation ceases when N availability increases beyond

N demand. Subsequently, less fine root biomass is needed,

according to the allocation theory proposed by Bloom et al.

1985 [17]. Decreases in fine root biomass are frequently observed

as N availability increases further [18,19]. In contrast, PO4 is fairly

immobile due to adsorption by organic matter and Al- and Fe-

oxides in highly weathered soils. Roots encounter P only by

growing through soil rather than having P delivered via diffusion

or water flow. As a result, fine roots growing in P-limited soils will

theoretically respond to additional P by more growth [20]. Thus,

less fine root biomass following N additions is generally expected,
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whereas more fine root biomass following P additions can imply P

limitation.

As indirect proxies for nutrient limitation, N and P concentra-

tions in fine roots have received less attention than those of leaves

[21]. It is suggested that leaves have a stronger homeostatic control

over N:P ratios than roots [22]. Thus, nutrient concentrations and

N:P ratios of fine roots should respond more sensitively to changes

in soil nutrient availability. In addition to fine root responses, acid

phosphatase, the dominant form of extracellular phosphatase in

acid organic-rich soils, has also been suggested to be a useful tool

to reflect soil N and P availability. Allocation to enzyme

production can increase the availability of nutrient to uptake

[23]. In the case of P, its availability in bulk soil depends on acid

phosphatase activity (APA), in which plants and microbes produce

acid phosphatase to hydrolyze organic P sources. APA has been

shown to be tightly coupled with soil P availability, with an

increase in APA typically indicating increased P limitation [24,25].

To investigate the effects of N deposition and the potential role

of P in mitigating N effects on forest ecosystem processes and

functioning, a field experiment employing additions of N and P in

a factorial design was initiated in 2007 in three lowland tropical

forests in the Dinghushan Biosphere Reserve (DHSBR) in

Southern China [26,27,28]. To our knowledge, there have been

but four fertilization experiments in lowland tropical forests

[29,30,31]. Our sites have lower available soil P (1.7 vs. 5 mg

kg–1) and more acidic soil (pH 3.7 vs. 5.2) compared to that of a

site in Panama [30], but similar to a Costa Rican forest [31]. The

three forests in our study (one old-growth, and two younger) have

contrasting soil N status, with the old-growth forest having larger

N capital than the two younger forests [32,33], allowing us to

determine whether and to what extent soil N status influences

ecosystem response to further N deposition and the role of P to

mitigate effects of added N.

In the present study, we report responses of fine root biomass,

the proportion of live fine roots, fine root nutrient concentra-

tions, and APA in bulk soil to N and/or P treatments under the

background of chronically-elevated atmospheric N deposition.

Previous studies in the DHSBR from a long-term N addition

experiment demonstrated a net loss of 8–16 kg N ha–1 yr–1 from

the soil in the old-growth forest. In total, up to 60 kg N ha–1 yr–1

was leached from the old-growth forest, indicating that this forest

was N saturated from chronic N deposition and long-term N

accumulation [34]. Further N addition has been shown to

increase soil acidification, base cation losses, and Al mobilization

in this forest [9,10]. In contrast, the two younger forests exhibit

signs of N limitation, example.g., increased litter decomposition

[32], litterfall production [35] and microbial activity [36]

following N additions, although N leaching has also been

observed [33]. We hypothesize that the old-growth forests have

been facing strong P limitation due to long-term N accumulation,

whereas the two younger forests are still N limited due to large

plant N demand. If so, based on the allocation theory [17] and

empirical studies, we expect that (1) N addition would decrease

fine root biomass in all the three forests, through N-mediated soil

chemical changes in the old-growth forest and through release

from N limitation in the two younger forests, (2) P addition

would increase fine root biomass in the old-growth forest while

having no effects in the two younger forests.

Materials and Methods

Ethics Statement
No specific permits were required for the described field

studies. This research station (Dinghushan Biosphere Reserve)

belongs to South China Botanical Garden, Chinese Academy of

Sciences. This study was also supported by this institute. Data

will be made available upon request. We confirm that the

location is not privately-owned or protected in any way. We also

confirm that the field studies did not involve endangered or

protected species.

Study sites
The study was conducted in Dinghushan Biosphere Reserve

(DHSBR) (112u339E and 23u109N) in the central section of

Guangdong Province, southern China. The climate is warm and

humid, with annual precipitation of 1927 mm and mean annual

temperature of 21.0uC [37]. Soils are oxisols formed from

sandstone [38]. In this area, high atmospheric N deposition has

been on-going since 19909s. Nitrogen deposition was 36 kg N ha–1

year–1 in 1990 and reached to 38 kg N ha–1 year–1 in 1999

[39,40]. In 2004 and 2005, N deposition in rainfall measured was

34 and 32 kg N ha–1 year–1, respectively, 60% of which was in the

form of NH4
+-N [34].

Three forest types within the reserve (,2–4 km apart) were

used in this study: an old-growth (.400-yr-old) forest, considered

the regional climax type, a younger pine forest, and a similarly

younger mixed pine/broadleaf forest (,75-yr-old; Table 1). All

forest types are of similar elevation range (50–250 m above mean

sea level), slope aspect and degree [33]. The notable age of the

old-growth forest arises from long-term protection by monks

from any form of direct human disturbance. The two younger

forests originated from clear-cut harvesting and subsequent

planting of Pinus massoniana in the 1930s, during which time

the sites became badly eroded and degraded [10,32]. Sharply

contrasting intensity and frequency of litter and vegetation

harvesting during 1930–1998 resulted in contrasting tree species

composition. Pinus massoniana (P. massoniana) dominates the pine

forest, whereas several broadleaf species co-dominate with P.

massoniana the mixed forest. The three forest types differ greatly

in N status, with greater N accumulation in the mineral soil and

higher N leaching rates in the old-growth forest (Table 1).

Experimental design
A full 262 factorial was established in each forest type in

2007, with two levels (with and without addition) of each of two

nutrients (N and P). Specifically, four treatments (each with 5

replicates), including control, N-addition (150 kg N ha–1 yr–1), P-

addition (150 kg P ha–1 yr–1) and N+P-addition (150 kg N ha–1

yr–1 plus 150 kg P ha–1 yr–1) were set up in each forest. There

were a total of 20 plots of 5 m65 m in each forest and each plot

was surrounded by a 5-m-wide buffer strip. Field plots were laid

out randomly and were randomly selected to receive specific

treatments. Plot size and fertilizer levels were chosen to resemble

Cleveland and Townsend (2006) [41], who studied a tropical

forest of Costa Rica. NH4NO3 or/and NaH2PO4 solutions were

sprayed once every other month to the forest floor with a

backpack sprayer starting from February 2007 and continued

through July 2012. We considered our plots big enough to study

soil processes and fine root dynamics, considering that root

ingrowth core method is considered suitable to determine

nutrient limitation [12,14,20].

Fine root and soil sampling
We sampled fine roots from all plots in the three forests in July

2012 (about five years after the initiation of N and/or P

treatments). In each plot, three 5-cm diameter cores of mineral

soil were extracted randomly to a 10 cm in depth, then combined

to yield one composite sample. From these samples, live and dead

N Deposition on Nutrient Status of Tropical Forest
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fine roots were distinguished by root resilience, brittleness, and

color [42]. Roots were sorted, dried at 65uC, and weighed. Live

fine root biomass, dead fine root biomass, and live fine root

(biomass) proportion were determined. In July 2011, 0–10 cm

mineral soil was sampled for analysis of soil chemical properties

and APA. The soils were sieved to pass through 2 mm screen prior

to chemical analysis.

Chemical analysis
Acid phosphatase activity (APA) in one gram of fresh, sieved

soil was analyzed according to the modified procedure by

Scheneider et al. (2001) [43]. Concentration of NH4
+-N was

analyzed by the indophenol blue method followed by colorim-

etry, and NO3
–-N was analyzed after cadmium reduction to

NO2
–, followed by sulfanilamide-NAD reaction [44]. Soil

available P was extracted by acid-ammonium fluoride solution

(0.025 mol L–1 HCL +0.03 mol L–1 NH4F) [45]. Soil pH was

measured with soil: water ratio of 1:2.5 [44]. Oven-dried live fine

root samples from each plot were ball milled before analyzed for

total N concentration by EA-IRMS (EA1112 coupled with Delta-

XP, Thermo Fisher Scientific K.K., Yokohama, Japan), and

microwave digested with nitric acid before analyzed for total P

concentration (inductively-coupled plasma emission spectropho-

tometry, Optima 2000, Perkin Elmer, USA).

Statistical analysis
We calculated response ratios (RR) of all fine root and soil

variables to N, P treatments as the experimental mean divided by

the control mean, representing an index of response magnitudes;

LRR was calculated as the Ln of RR. Two-way analysis of variance

(ANOVA) was used to examine the effects of N and P treatments

and their interactions. Differences among forest types were

compared using one-way ANOVA. All analyses were conducted

using PASW STATISTICS 16.0 for Windows. Level of signifi-

cance was set at P,0.05 unless otherwise stated.

Results

Fine root biomass
In the old-growth forest, N addition significantly reduced live

fine root biomass (Fig. 1A; Table 2, 3) and significantly increased

dead fine root biomass (Fig. 1B; Table 2, 3), resulting in a

significant lower live fine root proportion, compared to respective

values in control plots (Fig. 1C; Table 2, 3). In the two younger

forests, compared to control plots, dead fine root biomass in N-

addition plots was 69% higher in the pine forest (108.0 g m–2 vs.

63.8 g m–2, Fig. 1; Table 2, 3), and 66% higher in the mixed forest

(240.6 g m–2 vs. 144.6 g m–2, Fig. 1). No significant effects of N

addition on live fine root biomass or live fine root proportion were

observed in the two younger forests, except that live fine root

proportion in the pine forest was significantly lower in N-addition

plots (Fig. 1A,C; Table 2, 3).

Plots with added P had elevated live fine root biomass in all

three forests. Specifically, P addition resulted in increases of 20%

in the old-growth forest (212.4 vs. 176.9 g m–2, Fig. 1A; Table 2,

3), of 35% in the pine forest (83 vs. 61.2 g m–2, Fig. 1A; Table 2, 3)

and of 76% in the mixed forest (207.8 vs. 117.8 g m–2, Fig. 1A;

Table 2, 3), compared to respective controls. Two-way ANOVA

showed that P treatments had no significant effects on dead fine

root biomass in any forest, but significantly altered live fine root

proportion in all three forests (Table 2, 3; Fig. 1B, C).

N and P treatments had no interactive effects on neither live

nor dead fine root biomass, or on live fine root proportion in any

forest (Table 3). N+P treatment in the two younger forests

significantly increased live fine root biomass relative to control

(by 74% in the pine forest and by 87% in the mixed forest,

Fig. 1A; Table 2), similar to the effects of P addition alone.

Higher live fine root proportion in N+P-addition plots comparing

to control was also observed in the mixed forest (Fig. 1C;

Table 2).

Table 1. General characteristics of the three study forests.

Old-growth Pine Mixed References

Aboveground

Age (year) .400 ,75 ,75 [57]

Stem density (stems ha–1, DBH.2cm) 1013 767 1933

Basal area (m2 ha–1) 26 14.0 13.8

Litter production 7.1 6.0 6.1 [31]

(Mg ha–1 year–1) in 2009

Mineral soil (0–10 cm)

Bulk density (g cm–3) 1.0 1.2 1.2 [34]

Organic matter (%) 7.3 5.2 3.7

Total N concentration (%) 0.2 0.12 0.1

C:N 21 28 24

Total P concentration (%) 0.05 0.04 0.04

Net N mineralization 6.7 8.2 3.9

(mg kg–1 month–1 of N)

Net nitrification (mg kg–1 month–1 of N) 6.1 7.8 1.1

Inorganic N leaching in 2006 41.4 20.3 8.9 [35]

(kg ha–1 year–1 of N, 20 cm below the organic layer)

doi:10.1371/journal.pone.0082661.t001

N Deposition on Nutrient Status of Tropical Forest
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Fine root nutrient concentrations
The old-growth forest had significantly higher fine root N

concentrations and N:P ratios than the two younger forests

(Fig. 2A, C). Fine root P concentration was highest in the pine

forest (Fig. 2B). N treatments did not alter N or P concentrations in

any forest (Fig. 2; Table 2, 3). P treatments had no significant

effects on fine root N concentrations (Fig. 2A; Table 3), but

significantly elevated fine root P concentrations in all three forests,

by 2 to 4 folds (Fig. 2B; Table 2, 3). N:P ratios of fine roots were

significantly lower in P-addition and NP-addition plots in all three

forests, compared with those in control (Fig. 2C). There were

interactions between N and P treatments on fine root P in the old-

growth forest (Fig. 2B; Table 3).

Soil chemical properties
Soils in all the three forests were acidic (pH ,4.0), with the

lowest pH in the old-growth forest (Fig. 3A). The old-growth forest

was significantly higher in soil NH4
+-N and NO3

–-N than the

other two forests, whereas soil available P concentrations did not

vary among the three forests (Fig. 3B–D).

Soil pH was lower in N-addition plots than in control in the old-

growth forest, but not in the two younger forests (Fig. 3A; Table 2,

3). N treatments had no significant effects on soil available P or

available N (NH4
+-N and NO3

–-N) in any forest, except that in the

old-growth forest, NO3
–-N in N-addition plot was significantly

higher than in control (Table 2, 3; Fig. 3B–D). In contrast, P

treatments significantly increased soil pH in the old-growth forest

and the mixed forest (Table 2, 3; Fig. 3A), but not in the pine

forest. Soil available P increased significantly following P addition

by 16-, 31-, and 14-fold, and following NP additions by 13-, 26-,

and 12-fold in the old-growth, pine, and mixed forests, respec-

tively, compared with respective controls (Fig. 3B). P treatments

decreased NO3
2 in the old-growth forest and decreased NH4

+-N

in the mixed forest (Table 3). Interaction between N and P only

existed for soil pH in the mixed forest (Table 3).

APA in bulk soil
APA in control plots was significantly lower in the pine forest

than in the other two forests (Fig. 4). Effects of nutrient treatments

on APA varied with forest type. Significantly higher APA in N-

Figure 1. Live, dead fine root biomass and live fine root proportion after five years of nitrogen and phosphorus additions. Data from
July 2012. Different letters indicate significant differences among forests (P,0.05). * indicates significant differences between each treatment and
control (P,0.05). Error bars show SE (n = 5).
doi:10.1371/journal.pone.0082661.g001

Table 2. Response ratios of fine root and soil variables to N and P treatments.

Forests/Treatments Old-growth Pine Mixed

N-addition P-addition NP-addition N-addition P-addition NP-addition N-addition P-addition NP-addition

Live fine root
biomass

20.38* 0.18* 0.13 20.06 0.30* 0.43* 0.36 0.57* 0.62*

Dead fine root
biomass

0.70* –0.04 0.35 0.53* 20.12 0.37 0.51* 0.14 20.11

Live
proportion

20.44* 0.06 20.05 20.34* 0.20 0.07 20.14 0.22 0.31*

Fine root N 0.05 20.24 20.12 0.01 20.2 0.02 0.02 0.08 0.01

Fine root P 0.29 1.09* 0.85* 0.22 0.92* 1.01* 0.41 1.39* 1.39*

N:P 20.09 21.17* 20.73* 0.12 20.98* 20.78* 20.52 21.47* 21.57*

pH 20.02* 0.03* 0.01 0.01 20.01 20.02* 0.01 0.03* 0.02

Available P 0.11 2.85* 2.65* 0.56 3.47* 3.29* 20.25 2.72* 2.60*

NH4
+-N 20.48 0.25 20.40 20.44 20.20 20.17 20.01 20.34 20.56

NO3
2-N 0.46* 20.43 20.43 20.10 20.35 20.27 20.31 20.61 20.41

APA 0.21* 20.40* 20.37* 0.01 20.16 20.26 20.05 20.30* 20.95*

Values are Ln(treatment mean/control mean). A positive response ratio indicates positive effects of fertilization, whereas a negative one indicates negative effects.
* indicates significant difference at P,0.05.
doi:10.1371/journal.pone.0082661.t002
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addition plots compared with that in control was only observed in

the old-growth forest (Fig. 4; Table 2). In contrast, P and N+P

treatments resulted in declines in APA in the old-growth and the

mixed forests, but not in the pine forest (Fig. 4; Table 2). N+P

treatments had interactive effects on APA only in the mixed forest,

exhibiting synergistically inhibitive effects (Table 3).

Discussion

Contrasting responses of fine roots to N additions in
three tropical forests

The main purpose of this study was to examine the nutrient

status of three lowland tropical forests in southern China by

quantifying the response of fine roots and APA to five years of N

and P additions. Based on the different ages of these forests and

their responses to N addition in another N manipulation

experiment in DHSBR [8,32], we hypothesized that the old-

growth forest was N saturated, whereas productivity in the two

younger forests was still N limited, despite chronically elevated N

deposition. Thus, we expected N addition to decrease fine root

biomass and live fine root proportion (vitality) in the old-growth

forest through deleterious changes in soil properties (e.g., increased

soil acidification and Al mobilization) [9,10], and in the two

younger forests through less carbon allocation to fine roots driven

by additional N [18,19].

The results from the old-growth forest support our expectation,

in that five years of N addition at 150 kg N ha–1 yr–1 significantly

decreased live fine root biomass and increased dead fine root

biomass, resulting in decreased live fine root proportion (vitality).

Whereas a decrease in total fine root biomass following two years

of N additions had been observed in another N manipulation

experiment in DHSBR [8], our results added further evidence of

the adverse effects of N on fine root growth in this forest, i.e.,

different directions of changes in live and dead fine root biomass,

and a decreased live fine root proportion, indicative of damage to

fine roots [46].

Elevated N input can lead to soil acidification [7,10], which

has been associated with significantly lower fine root vitality (live

fine root proportion) than that from less acidified soils [47]. In

Norway spruce stands in Sweden, acidification caused by

addition of ammonium sulfate resulted in faster rates of root

death [48,49]. Our results from the old-growth forest supported

this observation, with soil pH decreasing significantly following N

additions (Fig. 3A). A decline of live fine root biomass and a

Table 3. Summary of results of two-way ANOVA. Significant effects indicated by *, ** and ***, representing probability at the 5%,
1% and 0.1% levels, respectively; ns, not significant.

Two-way ANOVA

Forests/Treatments Old-growth Pine Mixed

N P N6P N P N6P N P N6P

Live fine root biomass * ** ns ns ** ns ns * ns

Dead fine root biomass ** ns ns ** Ns ns ns ns ns

Live fine root proportion ** ** ns ** ** ns ns ** ns

Fine root N ns ns ns ns Ns ns ns ns ns

Fine root P ns ** ** ns ** ns ns ** ns

N:P ns *** ns ns *** ns ** *** ns

pH *** *** ns ns Ns ns ns ** *

Available P ns *** ns ns *** ns ns *** ns

NH4
+-N ns ns ns ns Ns ns ns * ns

NO3
2-N ns ** ns ns Ns ns ns ns ns

APA * *** ns ns Ns ns ns *** **

doi:10.1371/journal.pone.0082661.t003

Figure 2. Nutrient concentration in live fine roots after five years of nitrogen and phosphorus additions. Data from July 2012. Different
letters indicate significant differences among forests (P,0.05). * indicates significant differences between each treatment and control (P,0.05). Error
bars show SE (n = 5).
doi:10.1371/journal.pone.0082661.g002

N Deposition on Nutrient Status of Tropical Forest
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concurrent increase of dead fine root biomass after N additions

have also been observed in other wet tropical forests [50,51],

with authors attributing these results to either direct effects of N

on belowground root growth/turnover, or to a secondary effect

of N fertilization on belowground plant dynamics (e.g. decline in

soil pH [50]).

Contrary to our expectations, we failed to observe decreases in

fine root biomass following N additions in the two younger forests.

Instead, we found increased dead fine root biomass and reduced

live fine root proportion in N-addition plots in the two younger

forests, which were similar to the observation in the old-growth

forest. It appeared that five years of N additions may have moved

these forests toward N saturation, when negative secondary effects

of N on fine root growth started to emerge. Previous disturbance

before the 19909s through understory vegetation and litter

harvesting lowered the ecosystem N capital relative to the

undisturbed old-growth forest [32]. Furthermore, N additions

failed to alter fine root N or P concentrations in any of these three

forests, consistent with other studies in tropical forests [16].

The pattern of APA response to N in the three forests paralleled

the response of live fine root biomass, with significant increase of

APA observed only in the old-growth forest (Fig. 4). Increase of

APA suggests further demand for P driven by N addition to the N

saturated forest [24,52]. Elevated APA stimulated organic P

mineralization and released inorganic P, which in turn likely

compensated the low soil P availability. This may explain why

available soil P in N-addition plots did not vary significantly from

control in the old-growth forest, albeit both were of very low levels

(Fig. 3B). In the two younger forests, N addition had no effects on

APA or soil pH, suggesting addition of 150 kg N ha–1 yr–1 did not

drive P demand to the extent to induce APA. Thus, they may not

be limited by P as the N-saturated old-growth forest. Lower N

status may also have constrained phosphatase production, which is

highly N-consumptive [25]. Collectively, these results suggest that

initial soil N status of the study forests largely influenced fine root

responses to increased N inputs.

Variation in P limitation for fine root growth among
forests

Following the criteria to assess nutrient limitations stated by

Vitousek et al. (2010) [15], we further address P limitation for fine

root growth and alleviation of P limitation by P fertilization at the

three study forests by combining direct and indirect measurements

of (1) fine root growth in response to P fertilization, (2) fine root

nutrient concentrations, and (3) nutrient availability and APA in

bulk soil.

Contrary to expectation, fine root growth responded positively

to P treatments in all three study forests, albeit to a larger extent in

old-growth forest and mixed forests, suggesting P limitation to fine

root growth in these forests. This pattern corresponded well with

Figure 3. Soil pH, available P and N (NH4
+-N and NO3

2-N) after four years of nitrogen and phosphorus additions. Data from July 2011.
Different letters indicate significant differences among forests (P,0.05). * indicates significant differences between each treatment and control
(P,0.05). Error bars show SE (n = 5).
doi:10.1371/journal.pone.0082661.g003

Figure 4. Acid phosphatase activity (APA) in bulk soil after four
years of nitrogen and phosphorus additions. Data from July 2011.
Different letters indicate significant differences among forests (P,0.05).
* indicates significant differences between each treatments and control
(P,0.05). Error bars show SE (n = 5).
doi:10.1371/journal.pone.0082661.g004

N Deposition on Nutrient Status of Tropical Forest
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notably elevated soil P availability in these forests, indicating that

fine roots likely accessed elevated P by increasing growth into the

surface soil (0–10 cm) [12]. Significantly higher fine root biomass

and fine root N uptake following P additions had been observed in

an N-saturated Mediterranean-fir (Abies pinsapo) forest in southern

Spain which exhibited symptoms of P limitation [53]. A trend

toward higher fine root biomass after two years of N+P additions

was also observed in the ongoing fertilization experiment in

lowland tropical forests in Costa Rica [31]. Fine root biomass

represents a balance between fine root production and decompo-

sition. Fine root decomposition, which is microbially mediated

[16], may have been stimulated in our study forests, because

microbial activities were found to be significantly higher in P-

addition plots in the old-growth and the mixed forests [27]. Thus,

the observed increases of live fine root biomass and no changes in

dead fine root biomass indicate the likelihood of enhanced fine

root production following P additions in these forests, which has

also been shown in other tropical forests. In an old site (.4 million

years) in Hawaii where aboveground net primary production was

P-limited, both root net primary production and root turnover

(decomposition) increased following P fertilization [16]. In a

montane tropical forest, moderate N and P additions enhanced

fine root production and turnover at the same time, resulting in a

reduced fine root biomass [51]. A meta-analysis research which

synthesized data from N and P gradients showed that in lowland

tropical forests, fine root production was positively associated with

both natural and artificial P gradients [54].

P addition improved fine root nutrient condition. Plant nutrient

imbalance can be expected in these forests, with higher fine root N

(average 13 vs. 11 g kg–1), but much lower P (average 0.3 vs. 0.9 g

kg–1) compared with the global average values compiled by

Gordon and Jackson (2000) [55]. Fine root N:P ratios are as high

as 43, 28, and 30 in the old-growth, pine and mixed forests,

respectively, suggesting high demand of P for tree growth. These

ratio values are much higher than the averaged value of 12 from

the compiled data set [55], than the values of 26, 17, and 23 of live

fine roots in the 300 yr-, 20000 yr- and .4 million yr-old forests

along the geologic chronosequence in Hawaii [16], and also higher

than the threshold of foliar N:P ratio of 20 beyond which P

limitation is suggested [56]. Notably, substantial improvement of

fine root nutrient conditions by P addition was observed, i.e., fine

root N:P ratios were altered by P addition from high levels of 43,

28, and 30 to 13, 10, and 12 in the old-growth, pine and mixed

forests, respectively, which were largely contributed by elevated

fine root P concentrations (Fig. 2B, C).

Notably, in spite of high fine root P uptake after P fertilization

in all three forests, fine root N concentrations showed no

response to P additions. This contrasts with results of Blanes

et al. (2012) [53], who found that P addition to an N-saturated

Mediterranean-fir (Abies pinsapo) forest increased the competitive

ability of tree roots for soil N. In our experiment, however,

higher microbial N was found following P addition in the old-

growth forest [28], implying potentially higher microbial

immobilization of P and N. Available soil P in our sites

(,2 mg kg–1) was much lower than in the soil of Mediterranean-

fir (Abies pinsapo, 7.8 mg kg–1), suggesting that the competition

between tree roots and free-living microbes for available P may

be greatly enhanced in our study sites.

Conclusions

Five years of N and P treatments in relatively high amounts

(150 kg ha–1 yr–1) substantially altered fine root biomass, nutrient

concentrations, APA of bulk soil, and other soil chemical

properties in the three study forests. As hypothesized, these

forests exhibited diverse responses to N and/or P treatments,

largely reflecting contrasting N status. In contrast, fine root

growth appeared to be P-limited in all three forests, with the N

saturated old-growth forest being more P-limited than the other

two forests, based on its APA responses to N addition. These

patterns suggest that initial soil nutrient status have large impact

on potential responses of belowground structure to further

nutrient inputs in these ecosystems. While high N deposition in

this region keeps adding N to these tropical forests, P limitation

emerges and becomes a key factor to influence ecosystems

processes.
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