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1 Instituto de Oceanografı́a y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 2 Spanish Bank of Algae (BEA), Telde,

Spain, 3 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America, 4 GRC Geociències Marines, Facultat de
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Ciències del Mar, CMIMA-CSIC, Barcelona, Spain, 7 Mediterranean Institute for Advanced Studies (IMEDEA), Esporles, Spain

Abstract

It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of
the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory
results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward
understanding the complex mechanisms that control export of material within eddies, we present here results from a
sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year
period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a
relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than
observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal
phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our
biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is
either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would
disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance
carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent,
highlighting the important role of eddies and their different biological communities on the regional carbon cycle.
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Introduction

Understanding the mechanisms that control carbon export to

the deep ocean is a major outstanding concern in oceanography.

Sinking particulate organic carbon (POC) fluxes measured with

current techniques (sediment traps and thorium approaches) are

not consistent with the oxygen utilization rates measured in the

deep ocean [1,2]. This apparent imbalance indicates either the

existence of unknown sources of organic carbon, an overestima-

tion of the metabolic activity in the dark ocean, or an

underestimation of the vertical particle flux.

One possible mechanism to supply some of the ‘‘missing

carbon’’ locally would be intermittent and undersampled carbon

pulses by mesoscale eddies. Nevertheless, model results and field

studies that address the effects of eddies on organic matter fluxes

have shown conflicting results [3]. A limited number of studies

have shown direct evidence of enhanced carbon export mediated

by mesoscale eddies [4–6]. However, recent interdisciplinary

programs that focused on the effects of eddies on carbon export (E-

Flux in the North Pacific and EDDIES in the North Atlantic) have

shown different results. Surprisingly, both programs concluded

that the studied eddies did not enhance carbon flux, although they

increased the flux of biogenic silica [7,8]. More recently, a study

conducted in the Canary Current region reported new results that

further fuel this controversy [9]. These authors found that the eddy

field generated south of the Canary Islands more than doubled the

POC export below the mixed layer compared to stations outside

the influence of the eddy field. Data from that work were obtained

from free floating sediment trap deployments during a short period

characterized by warm and stratified waters, but also intense winds

that enhanced eddy development by Ekman pumping. Indeed,

one hypothesis proposed by the E-Flux and EDDIES programs

was that intermittent carbon pulses might be undersampled during

research cruises. Determining the influence of eddies on carbon

export and organic matter composition using time series observa-

tions could be useful to test this hypothesis.

Here, with the aim of addressing this challenge, we measured

POC, amino acid and chloropigment fluxes and compositions in

samples collected from a mooring deployed in the area of

generation of cyclonic eddies south of Gran Canaria (Canary
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Islands). The island sheds oceanic eddies all year round [10–12],

making this region an ideal site for the investigation of the effects

of newly formed eddies on the biogeochemistry of an oligotrophic

subtropical system. This study reports results from the longest time

series to date of organic matter composition and export within a

cyclonic eddy field.

Materials and Methods

Study area and sampling design
A sediment trap mooring was deployed at 27u299570N;

16u159190W, 3600 m bottom depth, for three 6-month periods

(from June 2005 to December 2006). Periods I, II, and III are

shown in Fig. 1. Rough sea conditions forced the mooring location

to be situated closer to the islands during Period III (27u30940N;

15u449320W, 2500 m bottom depth). Since the mooring line was

placed in Spanish waters deeper than 3000 m and not involved

endangered or protected species, no specific permission was

necessary. The mooring accommodated 3 PPS3/3 sediment traps

(TECHNICAP) at 290, 500 and 1000 m; all cups were poisoned

with mercuric chloride, and samples were processed according to

the protocol described in detail by Heussner et al., [13]. Aanderaa

RCM7/8 current meters were placed on the mooring 2 m below

each sediment trap. The presence of eddies was monitored by

combining current-meter temperature anomalies with sea surface

temperature (SST) and chlorophyll from satellite images. Negative

temperature anomalies from the mooring that were associated

with cyclones, matched well with SST negative anomalies

obtained from satellite images [12].

Sediment traps with a collection area of 0.125 m2 were

programmed to collect particles in a time-series mode with a

sampling interval of 15 days; this interval was selected based on the

initial diameter of cyclonic eddies (50–70 Km) and their advection

velocities (3–4 Km day21) [10,14]. According to this, an eddy

would take 15 to 20 days to cross the mooring, which is close to the

time resolution of the sediment trap sampling (15 days). This

estimated period for an eddy’s passage over the mooring site is

consistent with the time period of the corresponding negative

temperature anomalies and SST eddy signals that were recorded

in the mooring area, which was 15 days on average [12]. This

results in a mean residence time of the eddies at the mooring site of

about 15 days, independent of whether the site is crossed by the

center or the periphery of the eddy.

We are aware that small particles with very low sedimentation

rates (e.g. ,5 m day-1) may be collected by deeper traps, and may

have originated from more distant sources. However, using

laboratory and model studies of flow perturbation by obstacles

(like Gran Canaria) Jimenez et al., [11] show that most of the

water in the wake region related to eddies comes from the

recirculation zone located just downstream of the obstacle. Hence,

during eddy events the collection area most likely will be rather

small and located in the recirculation region just downstream of

the island. Thus, funnel effects are not likely to be crucial during

eddy-periods; indeed, this can be clearly seen in color images of

the Gran Canaria area [15].

Taking into account sedimentation rates of particles and

shedding velocities of eddies, we can assume that there is an

overlap in the effects of consecutive eddies that are shed with less

than a 10-day gap. Therefore, it is not feasible to ascribe the

material collected in the sediment traps to a single eddy, but to the

cyclonic eddy field as a whole. To study the differential effects of

the cyclonic eddy field on carbon fluxes and transfer efficiency

within each period, we distinguished between two distinct

dynamical regimes: ‘‘eddy’’ and ‘‘non–eddy’’ conditions. We

consider ‘‘eddy’’ conditions to be the time interval that contains

the bulk of eddy events (e.g., from July to September in Period I),

and vice versa for ‘‘non-eddy’’ conditions. Under ‘‘eddy’’

conditions, certain time frames may be observed with no eddies

present, but they were under 10 days in length. This finding

justifies our approach of clustering and averaging samples as a

function of ‘‘eddy’’ and ‘‘non-eddy’’ conditions.

POC and biomarker analysis
Particulate organic carbon (POC), amino acids and chloropig-

ments were measured as described earlier [9]. Organic carbon

analyses were performed with a Perkin–Elmer 2400 CHN

elemental analyzer [16]. DOC adsorption on GF/F filters (,4%

of the POC signal) was subtracted from samples to avoid

overestimation of POC [17].

Chloropigment concentrations (chlorophyll a, pheophytin a,

pheophorbide a, and pyropheophorbide a) were determined in

solvent extracts of filtered samples using reverse-phase High

Performance Liquid Chromatography (HPLC) as described in

detail by Lee et al., [18] and Wakeham et al., [19].

Amino acids were measured by HPLC on the same filters

analyzed for pigments, using pre-column o-pthaldialdehyde (OPA)

derivatization after hydrolysis [18,19]. In addition, we calculated

the degradation state of organic matter in each sample using an

amino-acid-based Degradation Index [20,21].

Principal component analysis (PCA)
Principal component analysis (PCA) was used here to quanti-

tatively assess variation in the organic composition of sinking

particles that were collected during eddy vs. non-eddy periods at

290, 500 and 1000 m depth in the Canary Current region. PCA is

commonly used in the analysis of complex organic gechemical

datasets [22–24]. We applied PCA to a dataset that included both

pigment and total hydrolyzed amino acid (THAA) compositions.

Prior to performing the analysis, the mole% values of individual

THAA and pigment compounds in each sample were normalized

by subtracting the mean of all values and dividing by the standard

deviation of all values for each class separately [20,25]. All PCAs

for this study were carried out on Sirius for WindowsTM Pattern

Recognition System (version 7.0).

Cyclonic eddy trajectories from a numerical model
The trajectories of simulated cyclonic eddies at the Canary

Islands were obtained by applying an eddy tracking algorithm to

surface velocity outputs from a 50-year climatological ROMS

(Regional Ocean Modeling System; [26]) solution of the Canary

Basin. Eddies were tracked over a 40-year period. The eddy

tracker is based on the Okubo-Weiss parameter, and follows a

methodology that has previously been applied to the tracking of

mesoscale eddies observed by altimetry [27,28]. A full description

of the eddy tracking method is given by Mason et al., [28]. The

ROMS solution is fully eddy resolving with a horizontal resolution

of 7.5 km, and has been validated by Mason et al., [28] and

Mason et al., [29]. The seasonal cycle of the model eddy kinetic

energy (EKE) over the Canary archipelago compares well with

observations computed using satellite altimeter sea surface height,

indicating that the model is a reliable predictor of eddy activity.

We preferred to use model eddy trajectories rather than observed

trajectories such as from the Chelton et al., [30] database because

of the proximity of the mooring to land, that renders altimeter data

to be unreliable. Nevertheless, we note that Mason et al., [31]

estimate from altimeter data (1992 to 2012) that approximately 10

eddies per year pass through the lee region, in good agreement
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with the results of Piedeleu et al., [12] who reported 10 cyclones

per year at the mooring.

Results and Discussion

Impact of cyclonic eddies and zooplankton activity on
organic matter fluxes and composition

The Eulerian measurements recorded at the fixed position of

our study site allowed us to evaluate the impact of cyclonic eddies

on the local biogeochemistry. An average of 10 cyclonic eddies per

year were identified (light grey bars on Fig. 1). Specifically, during

Periods I and III (summer and autumn), 5 and 4 eddy events,

respectively, were observed in summer, coinciding with relatively

higher intensities of the incident flow and wind shear. In Period II

(winter and spring), 4 eddies were generated in winter and 1 in

spring [12].

Figure 1 illustrates the temporal evolution of POC, chloropig-

ment and amino acid fluxes as well as ‘‘eddy’’ (group of light grey

columns) and ‘‘non-eddy’’ (long white spaces) conditions. Our

results reveal a significant influence of cyclonic eddies on POC

fluxes during summer and autumn periods (Periods I and III),

when surface waters are stratified and eddies are more intense due

to the combined effect of flow perturbation and wind forcing

[11,32,33]. In these periods, average carbon export during eddy

conditions was approximately 2 to 4 times higher than that

measured during non-eddy conditions (Table 1). However, during

Period II (winter and spring), cyclonic eddies seem to have little

effect on POC export compared to non-eddy conditions (Table 1,

Fig. 1).

In periods I and III, total chloropigment fluxes during eddy

conditions were also 2 to 4 times higher than during non-eddy

conditions (Fig. 1). Since pigments are originally derived from

surface phytoplankton, we hypothesize that cyclonic eddies

enhanced both primary production and POC fluxes in this region.

Indeed, previous studies have demonstrated that cyclonic eddies

(particularly those in their early stages of formation, close to the

islands) may increase by several times the chlorophyll concentra-

tion and primary production with respect to ambient waters

[15,33–35]. Total amino acid fluxes at 500 and 1000 m were up to

an order of magnitude higher within cyclonic eddies relative to

non-eddy conditions (Figs. 1b,c). Similar to the chloropigments,

higher amino acid fluxes within cyclonic eddies relative to non-

eddy conditions are likely to be a result of enhanced primary

production caused by nutrient pumping. We hypothesize that

cyclonic eddies generated during winter/spring (Period II) did not

have a significant effect on primary production and carbon export

because the surface waters were already mixed down to 120 m

(Fig. 1a) and thus nutrient enriched, in agreement with recent

observations [3,36]. Another possible explanation for the higher

fluxes during the stratification period is that summer-autumn

eddies may entrain enriched POC waters from other far-field

regions like the eutrophic NW Africa upwelling system. However,

since pigments and amino acids are highly labile compounds, this

hypothesis is less likely.

Alternatively, the higher POC, chloropigment and amino acid

fluxes measured during eddy conditions could originate from

lower degradation rates of these components relative to those

during non-eddy conditions. In this case, a lower degradation state

of the collected organic matter would be expected. Figure 2 shows

the degradation state of the organic matter collected at 500 and

1000 m using an amino-acid-based Degradation Index (DI)

[20,21]. Since the amino acid composition among marine

organisms is so similar, the variation in amino acid composition

arises primarily from degradation [20,21]. The more negative the

DI, the more degraded the organic matter in the sample, while

positive DI values suggest fresher organic mater. Both 500 and

1000 m DI values show a lesser degradation state for the organic

matter collected during eddy relative to non-eddy conditions

(Fig. 2). This result is more consistent with a slower POC flux

attenuation with depth within cyclonic eddies than that during

Figure 1. Impact of the cyclonic eddy field on organic matter fluxes and composition. POC (dark grey bars; mg m22 d21), amino acids (red
triangles; mmol m22 d21) and chloropigment (green dots; mg m22 d21) fluxes collected with PPS3 sediment traps at a) 290 m, b) 500 m and c)
1000 m. Dark grey shaded bars indicate POC fluxes derived from an Indented Rotating Sphere Carousel (IRSC) sediment trap located 30 m above
(260 m) of the PPS3 [50]. Light grey bars indicate ‘‘eddy’’ conditions, white spaces indicate ‘‘non-eddy’’ conditions [see 12]. The thicker and thin black
lines on the upper panel represent the seasonal variability of the mixed layer depth measured each 3 days and smoothing with a 15-day moving
average, respectively; white dots stand for the surface chlorophyll derived from satellite images [see 50 for more details]. d) Pyropheophorbide
mole% (mesozooplankton indicator), % CaCO3 and % biogenic opal measured in the 1000 m samples. Period I: June 2005 to December 2005, Period
II: December 2005 to May 2006, and Period III: May 2006 to December 2006. POC flux bar missed means no measurement exists.
doi:10.1371/journal.pone.0082447.g001

Table 1. Influence of the cyclonic eddy field on POC fluxes.

Period I Period II (bloom period) Period III

Depth (m) eddy non-eddy R eddy/non-eddy eddy non-eddy R eddy/non-eddy eddy non-eddy R eddy/non-eddy

290 29.1 (9.1) 16.4 (7.8) 1.8 (p,0.05) 14.3 (6.2) 64.5 (59.4) 0.2 (p.0.05) 29.2 (10.9) 14.9 (2.6) 2.0 (p,0.05)

Teff (500/290 m) 49.9% 32.9% 48.9% 1.6%* 84.2% 66.4%

500 14.5 (9.8) 5.4 (2.2) 2.7 (p,0.05) 7.0 (2.6) 1.0 (0.9) 7.0* (p,0.05) 24.6 (17.3) 9.9 (3.2) 2.5 (p,0.05)

Teff (1000/500 m) 54.4% 38.9% 90% 100%* 86.6% 61.6%

1000 9.9 (2.9) 2.1 (1.1) 3.8 (p,0.01) 6.3 (2.7) 5.1 (1.2) 1.2 (p.0.05) 21.3 (27.2) 4.1 (1.9) 3.5 (p,0.05)

Average (61 SD) fluxes (mg m22 d21) of POC for ‘‘eddy’’ and ‘‘non-eddy’’ conditions. Teff = mesopelagic transfer efficiency defined as 500/290 m and 1000/500 m POC
flux. R eddy/non-eddy = POC flux ratio between eddy and non-eddy conditions. Average eddy-induced carbon flux increase at 1000 m calculated as POC fluxes during
‘‘eddy’’ conditions minus POC fluxes during ‘‘non-eddy’’ conditions (9.9+21.3)/22(2.1+4.1)/2) = 12.5 mg C m22 d21. I: June 2005–December 2005; II: December 2005–
June 2006; III: June 2006–December 2006.
*Anomalous values mediated by vertically migrating zooplankton (see text and Fig. 3 for explanation).
doi:10.1371/journal.pone.0082447.t001
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non-eddy conditions. The degree of flux attenuation can be

expressed as the ratio of POC flux between two depth levels

(transfer efficiency, Teff). During eddy conditions POC Teff

between 500/290 m and 1000/500 m ranged from 49 to 90%,

whereas for non-eddy conditions POC Teff ranged from 2 to 66%

(Table 1). This pattern of more efficient POC transfer within

eddies must be related to the biogeochemical perturbations

generated by these mesoscale features (e.g, higher phytoplankton

cell size, higher particle sinking velocities or higher heterotrophic

activity in non-eddy conditions). However, since trapping

efficiency can be lower at mesopelagic depths [37,38], and an

averaging approach was used in Table 1, these transfer efficiency

calculations must be taken with some degree of caution.

Overall, these findings suggest that the cyclonic eddy field

generated south of the Canary Islands acts as a physical-biological

pump of fresh organic matter to the deep ocean. Thus, our

observations contrast with results obtained in cyclonic eddies in

the lee of Hawaii, which showed strong silica export [39] but no

evidence of enhanced particulate carbon export [7,40]. In a recent

study of organic matter composition within mesoscale eddies [9],

the authors describe the major factors influencing POC export

within the Canary Islands eddy field. It is suggested that

phytoplankton community structure, particularly the dominance

of CaCO3 organisms over diatoms, efficient ballasting, and

subsequent low zooplankton activity are the major factors

influencing organic matter export within Canary Islands eddies.

To evaluate these factors, we analyzed at 1000 m depth the

variability in biogenic opal and calcium carbonate, as well as

pyropheophorbide, an indicator of mesozooplankton grazing

(Fig. 1d). Our results show a carbonate-dominated region with a

low percentage of opal, indicative of low silica supply from the

nutrient source waters (North Atlantic Central Waters, NACW), as

stated by Ragueneu et al., [41]. However, considering the low

opal% in this area, its 6-fold increase during the late-winter bloom

(Fig. 1d) must indicate important changes in the food web

structure. Indeed, associated with this increase in opal there was a

decrease in CaCO3% and an increase in pyro mole% (Fig. 1d).

These data are suggestive of surface silica enrichment because of

winter mixing (see deeper mixed layer depth, MLD; Fig. 1a),

relative enhancement of diatoms during the early stages of the

phytoplankton bloom, and subsequent increase in POC export at

290 m (Fig. 1a).

Surprisingly, the signal of the POC peak generated during the

seasonal bloom is missed at 500 m (Fig. 1b). This raises the

question: what is the fate of the organic carbon exported during

the late-winter bloom? The increase in mole% pyro at 1000 m

suggests a high contribution of organic matter processed by

mesozooplankton (fecal pellets). This hypothesis is supported by

direct microscopic observations, which confirm a high proportion

of fecal pellets at 1000 m during the seasonal bloom, and by a

principal component analysis (PCA) based on pigment and amino

acid compositions (Fig. 3). PCA splits the sample set into three

major groups and indicates that material collected at 1000 m

during the late-winter bloom is enriched in markers typical of

diatom-derived fecal pellets. These findings suggest a carbon flux

mediated by vertically migrating zooplankton and/or myctophids

feeding in surface and upper mesopelagic waters, bypassing the

depth of 500 m and defecating in the deep scattering layer (DSL;

600–800 m depth). Since the DSL is particularly well developed

and constant in the Canary Island waters [42], defecation by

migrant organisms could potentially contribute significantly to the

vertical carbon flux below the mesopelagic zone [43]. However,

our results show that the POC Teff between 290 and 1000 m

during the seasonal bloom was only 8%, but ranged from 27 to

73% in the presence of eddies during the stratified periods I and

III (Table 1). Moreover, the PCA based on pigment and amino

acid compositions indicates that samples collected during the

seasonal bloom at 290 and 500 m presented a stronger microbial

signature than other samples (Fig. 3), suggesting that sinking POC

at these depths is rapidly processed by the microbial community.

Additionally, a fraction of the organic carbon biosynthesized

during the seasonal bloom would be bypassed by migrants to the

DSL and transformed to non-sinking POC, which is in agreement

with the low sinking POC transfer efficiency at 1000 m. In a

previous study in this area [44], the authors reported the presence

of peaks of dissolved organic carbon (DOC) at 600 m depth,

coinciding with the depth of the DSL. Moreover, profiles of

suspended POC in the upper 1000 m show peaks, more intense at

the DSL, which could only be explained by in situ production

[45]. All together, these results suggest that an important fraction

of the POC transported down by migrant organisms could be

directly (excretion) or indirectly (fecal pellet disaggregation or

dissolution) released to the water column as dissolved and

suspended organic carbon, decreasing the efficiency of the carbon

pump.

Figure 2. Organic matter degradation state. Time evolution of the amino acid Degradation Index (DI) of the organic matter collected at 500 m
(grey circles) and 1000 m (black circles) depth. See Figure 1 for period dates.
doi:10.1371/journal.pone.0082447.g002
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Figure 4 shows a conceptual model of the POC flow during

stratified/eddy vs. seasonal bloom conditions based on our

observations. The major differences between the two scenarios

are the phytoplankton community structure and the resulting

differential microbial and zooplankton pressure. The lower

metabolic carbon consumption during stratified/eddy conditions

(Fig. 4a) could be the cause of the higher POC Teff and the fresher

organic matter exported relative to the bloom period (Fig. 4b).

Overall, our results suggest that the pathways of POC flow both

vary seasonally and at the mesoscale level, with profound

implications for carbon dynamics.

Our time series observations provide insights of how variations

between CaCO3 and opal generating organisms may explain

observed differences in carbon export. When opal is more

abundant in this region (presumably due to a diatom enrichment

during the early stages of the phytoplankton bloom) there is higher

carbon export at surface (290 m), probably caused by the

generation of larger size cells, but also enhanced grazing by

zooplankton and microbial remineralization in the mesopelagic

waters, which may result in a lower POC Teff to the deep ocean.

The presence of CaCO3 enriched samples associated with eddy

events during stratified periods could be due to a shallower mixed

layer favoring the presence of phytoplankton with carbonate shells

against diatoms with silica shells [46]. We did not carry out

microscopic analyses of the plankton community composition, and

CaCO3 in trap samples could also be derived from foraminifera

and pteropods, which can be non-trivial constituents of plankton

communities in subtropical regions.

Annual influence of cyclonic eddies on carbon
sequestration

To evaluate the potential role of cyclonic eddies in the regional

carbon budget, we have estimated potential annual eddy-induced

carbon export below 1000 m depth by combining different tools.

In situ observations and results from the ROMS simulation were

used to estimate the number, age and area of cyclonic eddies

generated during the stratified summer-autumn period (when

eddies seem to enhance carbon fluxes). The ROMS model showed

1160 cyclonic eddies within the 40-year climatological dataset,

giving an average of 29 cyclonic eddies per summer-autumn

period for the whole area (Fig. 5). Figure 6 shows the relationship

between the frequency at which simulated cyclonic eddies pass

through the target region and their age, while black lines in

Figure 7 show the areas of the 1160 simulated cyclonic eddies as a

function of their age. As illustrated in Figure 6, the age histogram

for cyclonic eddies shows that most of the eddies are structures of

less than 150 days (as are our sampled eddies).

To estimate annual carbon export below 1000 m promoted by

the presence of cyclonic eddies within this area, we have used the

above data together with the average eddy-induced carbon flux

increase obtained in this study as follows:

POCFlux eddy~ POCe{POCnð Þ � A �N

where POCe and POCn are the respective average POC fluxes

under eddy and non-eddy conditions (from Table 1), A is the

average eddy area, and N is the number of cyclonic eddies

generated during summer-autumn within the red box. In our case,

Figure 3. Principal Component Analysis (PCA). PCA was used here to quantitatively assess variation in the organic composition of eddy- vs.
bloom-derived sinking particles. PC1 (which explains 27.3% of the variation) split samples into three major groups: 1) stratified period particles, with
fresh and CaCO3 algal indicators aspartic (ASP) and glutamic (GLU) acids and Chl-a located to the right along PC1, 2) bloom-derived particles,
indicated by alteration products such as serine (SER), glycine (GLY) and phyropheophorbide (pyro), which are plotted towards the left on PC1, and 3)
particles enriched in microbial degradation indicators b-alanine (BALA), c-aminobutyric acid (GABA), and pheophytin (ppt). Period I (crosses), Period II
(circles). Gradually color from light to dark indicates depth levels (290, 500 and 1000 m).
doi:10.1371/journal.pone.0082447.g003
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POCFlux eddy~ 12:5mgCm{2d{1
� �

� 2550km2 � 29

According to these data, the annual carbon export induced by

cyclonic eddies is 0.34 Tg C/yr. For comparison, carbon export

below 1000 m for the whole studied area without taking into

account cyclonic eddies ranges between 0.23–0.36 Tg C/yr when

using our non-eddy conditions data or those from Neuer et al.,

[47] at the ESTOC station. Our results indicate that cyclonic

eddies, which represent 28% of the total area, export a similar

amount or 1.5 times more carbon than the whole area, clearly

enhancing the biological pump. Moreover, our eddy-induced

carbon export estimates are likely conservative because sediment

traps tend to undercollect particles when deployed in areas of high

mesoscale activity [48–50].

Role of cyclonic eddies and migrant zooplankton on the
mesopelagic carbon imbalance

Estimates of the plankton metabolic carbon demand can be

significantly higher than vertical fluxes of POC measured with

sediment traps [1,2,51]. We wondered whether intermittent POC

pulses by cyclonic eddies could locally resolve this observational

discrepancy. Our results indicate that the overall effect of eddy

activity in our study area is to increase POC fluxes 2–4 times. To

examine the balance between eddy-induced vertical POC fluxes

and mesopelagic carbon demand, we used lower and upper

thresholds (9 and 68 mmol C m22 d21) for mesopelagic respira-

tion rates in our region of study [52,53]. Using these respiration

rates, our eddy-induced POC fluxes range between 10–50% of the

mesopelagic respiration estimates. Thus, we find that cyclonic

eddies cannot directly bridge the gap between vertical carbon

fluxes and the metabolic carbon demand in mesopelagic waters.

This result indicates the existence of alternative mechanisms to

fulfill the high carbon demand of mesopelagic waters. Indeed,

Baltar et al., [2] found a significant correlation between suspended

POC (POCsusp) and potential respiration in the deep waters of the

subtropical Northeast Atlantic. Nevertheless, POCsusp concentra-

tions at depth appear to be inadequate to support sustained

metabolic demand since a new supply of POCsusp would be

required to keep up with the demand [1]. Recently, Alonso-

González el al., [45] showed that the lateral flux of POCsusp from

the continental margin accounted for up to 60% of the total

mesopelagic respiration in the Canary region, giving evidence of

an important mechanism supplying POCsusp at deep levels. In

addition, Baltar et al., [54] suggested that dissolved inorganic

carbon fixation in the dark ocean could contribute between 12–

72% to the prokaryotic carbon demand.

Here, we propose a new source of non-sinking organic carbon at

depth that may represent a seasonally important fraction of the

missing carbon respired in the mesopelagic waters. As stated

above, the organic matter produced during phytoplankton blooms

could be processed by migrant organisms and released daily as

DOC or POCsusp in the DSL. Thus, diel vertical migration by

zooplankton and myctophids in this area is more likely to supply

organic carbon for respiration in the mesopelagic zone, rather

than to sequester it to the deep ocean (.1000 m).

Figure 4. Conceptual model. Conceptual model of POC flow during (A) stratified/eddy conditions and (B) bloom period. A) The POC flux from the
epipelagic to the mesopelagic zone is because of passive sedimentation of CaCO3-enriched organic aggregates. The low zooplankton and microbial
pressure result in a high POC transfer efficiency. B) The POC flow is channeled through active transport mediated by migrant zooplankton. A high
microbial and zooplankton activity over the opal-enriched organic matter seems to recycle the exported carbon instead of being transported to the
deep ocean, yielding a low POC transfer efficiency (see text for details).
doi:10.1371/journal.pone.0082447.g004
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Conclusions
Our study provides evidence that cyclonic eddies generated

south of Gran Canaria enhance organic carbon, amino acid and

pigment export with respect to non-eddy conditions, even during

the seasonal phytoplankton bloom. The higher POC Teff observed

during eddy conditions together with the fresher organic matter

exported make eddies an efficient organic carbon pump to the

ocean interior. The fact that the organic matter exported within

eddies is less degraded indicates a faster particle settling velocity

(due to differences in particle size or ballasting) or physical

protection. This finding has profound implications for carbon

sequestration since the depth of organic matter decomposition

determines whether respired CO2 may be exchanged quickly with

the atmosphere or rather be sequestered over long periods of time

Figure 5. Trajectories of cyclonic eddies. Trajectories of 1160 simulated cyclonic eddies that traverse the Canary Island region (identified by the
red box) over a period of 40 climatological years. Blue circles mark the beginning of each trajectory. The large red circle marks the site of the mooring.
doi:10.1371/journal.pone.0082447.g005

Figure 6. Age of eddies traversing target. Histogram showing the relationship between the frequency at which simulated cyclonic eddies pass
through the target region and their age. 30-day bins are shown, and eddies older than 450 days are omitted.
doi:10.1371/journal.pone.0082447.g006
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[55]. Thus, if fast-sinking particles contribute largely to the carbon

flux within cyclonic eddies, the POC transfer efficiency to the

mesopelagic waters increases, resulting in an enhanced CO2

sequestration in the deep ocean (.1000 m). However, we

estimated that the highest POC fluxes observed in this study

could explain only about 50% of the lowest mesopelagic

respiration rates reported for this area. Thus, the apparent

metabolic imbalance in the mesopelagic waters of the Canary

Island region cannot be satisfied by eddy-derived vertical inputs of

sinking POC, strengthening the current view that microbial life in

the deep ocean is also dependent on other sources of carbon.
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Eddy-induced reduction of biological production in eastern boundary upwelling

systems. Nature Geosci 4: 787–792.

4. Sweeney EN, McGillicuddy DJ, Buesseler KO (2003) Biogeochemical impacts

due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda

Atlantic Time Series Study (BATS). Deep-Sea Res II 50: 3017–3039.

5. Bidigare RR, Benitez-Nelson C, Leonard CL, Quay PD, Parsons ML, et al.

(2003) Influence of a cyclonic eddy on microheterotroph biomass and carbon

export in the lee of Hawaii. Geophys Res Lett 30: 1318, doi:10.1029/

2002GL016393.

6. McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, et al. (2007)

Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms.

Science 316: 1021–1026.

7. Benitez-Nelson CR, McGillicuddy DJ (2008) Mesoscale physical-biological-

biogeochemical linkages in the open ocean: an introduction to the results of the

E-Flux and EDDIES Programs. Deep-Sea Res II 55: 1133–38.

8. Maiti K, Benitez-Nelson C, Rii YM, Bidigare RR (2008) Influence of a mature

cyclonic eddy on particulate export in the lee of Hawaii. Deep-Sea Res II 55:

1445–1460.
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