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Abstract

Neurons in all sensory systems have a remarkable ability to adapt their sensitivity to the statistical structure of the sensory
signals to which they are tuned. In the barrel cortex, firing rate adapts to the variance of a whisker stimulus and neuronal
sensitivity (gain) adjusts in inverse proportion to the stimulus standard deviation. To determine how adaptation might be
transformed across the ascending lemniscal pathway, we measured the responses of single units in the first and last
subcortical stages, the trigeminal ganglion (TRG) and ventral posterior medial thalamic nucleus (VPM), to controlled whisker
stimulation in urethane-anesthetized rats. We probed adaptation using a filtered white noise stimulus that switched
between low- and high-variance epochs. We found that the firing rate of both TRG and VPM neurons adapted to stimulus
variance. By fitting the responses of each unit to a Linear-Nonlinear-Poisson model, we tested whether adaptation changed
feature selectivity and/or sensitivity. We found that, whereas feature selectivity was unaffected by stimulus variance, units
often exhibited a marked change in sensitivity. The extent of these sensitivity changes increased systematically along the
pathway from TRG to barrel cortex. However, there was marked variability across units, especially in VPM. In sum, in the
whisker system, the adaptation properties of subcortical neurons are surprisingly diverse. The significance of this diversity
may be that it contributes to a rich population representation of whisker dynamics.

Citation: Maravall M, Alenda A, Bale MR, Petersen RS (2013) Transformation of Adaptation and Gain Rescaling along the Whisker Sensory Pathway. PLoS
ONE 8(12): e82418. doi:10.1371/journal.pone.0082418

Editor: Samuel G. Solomon, University College London, United Kingdom

Received May 31, 2013; Accepted October 24, 2013; Published December 11, 2013

Copyright: � 2013 Maravall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work received support from: Spanish Ministry for Economy and Competitiveness (BFU2011-23049, co-funded by the European Regional
Development Fund; Consolider Program CSD2007-00023); Valencia Regional Government (PROMETEO/2011/086); Spanish National Research Council (CSIC);
CARMEN e-science project (EPSRC grant EP/E002331/1); BBSRC grant BB/G020094/1 and a Royal Society Joint Project Grant. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Author Miguel Maravall is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE policies on
sharing data and materials.

* E-mail: mmaravall@umh.es (MM); r.petersen@manchester.ac.uk (RSP)

¤a Current address: Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
¤b Current address: Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Cientı́ficas-Universidad Miguel Hernández, Sant Joan d’Alacant,
Alicante, Spain

. These authors contributed equally to this work.

Introduction

Adaptation, the accommodation of neuronal responses to

ongoing stimulation, occurs across species and sensory modalities

[1]. Adaptation implies that the response to any given stimulus

depends on the recent history of stimulation. In one prominent

form of adaptation which is common across sensory modalities,

neurons rescale their firing rate and sensitivity according to the

overall scale (variance or contrast) of the ongoing distribution of

stimuli [2–11]. In the primary somatosensory ‘‘barrel’’ cortex,

neurons are tuned to fast temporal features of vibrissa (‘‘whisker’’)

motion, such as instantaneous velocity [12–19]. The gain of this

stimulus-response relationship depends on the stimulus statistics of

the current sensory environment, such that an increase in the

variance of whisker motion causes a compensatory decrease in

gain and vice versa [20,21]. It is not yet known whether these

adaptive changes originate in the barrel cortex itself or in the

ascending somatosensory pathway. The aim of the present study is

to address this issue by analyzing how adaptation to stimulus

statistics progresses along the whisker pathway, from the first stage

of processing in the trigeminal ganglion (TRG) to the final

subcortical relay stage, the ventral posterior medial nucleus of the

thalamus (VPM).

Results

Response of subcortical units to switching variance of
whisker stimulation

To determine how adaptation modifies the encoding of whisker

motion at different subcortical processing stages in the whisker

sensory pathway, we recorded the responses of well-isolated single

units from the TRG (n = 11) and VPM (n = 18) of urethane-

anesthetized rats (n = 15) to simultaneous deflection of the whiskers

with a noise stimulus. Whisker motion consisted of a continuous

‘‘noise’’ trajectory comprising pseudorandom fluctuations occur-

ring on a timescale of a few ms [20,22,23]. Additionally, the

variance of the distribution of fluctuations changed over a

separate, 10 s cycle. Variance switched back and forth between

a 5 s ‘‘low’’ epoch and a 5 s ‘‘high’’ epoch, giving rise to two

statistical ‘‘contexts’’ within which individual stimulus fluctuations

occurred (Fig. 1, Fig. 2A; see Materials and Methods).
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Responses both in TRG and VPM were modulated by the high-

low variance cycle (Fig. 2B). Firing rates displayed a step-like

transition following each switch between low and high variance

(Fig. 2B). The step was generally more marked in the TRG units

but was clearly observed also in the average VPM response

(Fig. 2C).

Increased diversity in adaptation along the
somatosensory pathway

Having established that switches in the variance of the noise

stimulus modulated the firing rate of units at multiple stages of the

whisker pathway, we tested for adaptive behavior as follows. For

each unit, we measured the evolution of the firing rate during the

full 10 s period that included the high- and low-variance epochs.

In this design, response adaptation would be observed as a

systematic change in firing rate within each epoch while variance

remained constant (Fig. 2). We found that the amount and

temporal evolution of adaptation was variable across units, with

clear differences between the populations recorded from the TRG

and VPM.

Units in the TRG tended to exhibit comparatively weak

adaptation. Typically, their firing rates increased immediately

after switching to high-variance stimulation and then plateaued;

after stimulation switched back to low variance, firing rates

decreased to a lower plateau (Fig. 2B1). Superimposed upon this

dominant behavior, a weak, slow decline in response was often

observed during the high-variance epoch, and a correspondingly

weak recovery was often present during low-variance stimulation.

Figure 1. Whisker motion stimulus for probing adaptation.
Whiskers were simultaneously deflected with a filtered noise stimulus
dorso-ventrally. The variance of the distribution of fluctuations in
whisker position switched between ‘low’ and ‘high’ every 5 s. Variance
during the high epochs was twice that during the low epochs. Lower
left, magnified example of a high- to low-variance transition. Lower
right, stimulus autocorrelation function.
doi:10.1371/journal.pone.0082418.g001

Figure 2. Response of subcortical neurons to variance switching. A1–A2. Schematic of the whisker stimulus showing low and high variance
epochs. In order to show both low-to-high and high-to-low transitions, two high-low cycles are shown. B1. Average firing rate evoked by the stimulus
for three example TRG units. B2. Corresponding data for three example VPM units. C1. The firing rate of each unit was normalized by converting it to
a z-score. Average z-score for TRG. Error bars show SD. C2. Corresponding data for VPM. Note greater variability of rates across VPM units than across
TRG.
doi:10.1371/journal.pone.0082418.g002

Adaptive Rescaling in Subcortical Whisker Pathway
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Thus, TRG units exhibited modest firing rate adaptation within

each epoch. Although this behavior was quite consistent across

units (Fig. 2B1), TRG units did differ substantially in their evoked

firing rates. To estimate the average response dynamics, we

therefore first converted the firing rate of each unit to a z-score:

the resulting curve captured the TRG population’s behavior well

(Fig. 2C1).

Units in the VPM displayed greater variety of adaptation than

TRG units (Fig. 2B2). While units normally reached their peak

firing rate soon after the switch from low- to high-variance

stimulation, the dynamics governing firing rate decay were diverse.

In addition to the slow adaptation components observed in TRG,

VPM units often had dynamics featuring both fast and slow

structure, sometimes including rebounds in firing rate (Fig. 2B2).

In contrast to TRG units, whose firing rate trajectories were well

represented by the mean over the population, the trajectories of

different VPM units diverged noticeably around the population

mean (Fig. 2C2; note larger error bars compared to Fig. 2C1).

To characterize the diversity of firing rate adaptation at the

population level, for each unit we constructed a neuronal

adaptation index from the firing rate z-scores. In a typical

adapting neuron, the switch to the high-variance epoch elicited a

high transient firing rate (zinit,hi) which then decayed to a steady

state (zss,hi); the switch to the low-variance epoch elicited a low

transient firing rate (zinit,lo) which then increased to a steady state

(zss,lo) (Fig. 3A). We computed a unit’s adaptation index for the

high-variance epoch as the signed difference between the peak and

plateau z-scores (AIhi = zinit,hi 2 zss,hi, Fig. 3A). The adaptation

index for the low-variance epoch was computed analogously (AIlo

in Fig. 3A). Units with large AIhi also tended to have large AIlo

(n = 29, Pearson r = 0.53, p = 0.0032). Finally, we summed AIhi

and AIlo to give the overall adaptation index (AI) for the unit,

AI = AIhi+AIlo = (zinit,hi 2 zss,hi)+(zss,lo 2 zinit,lo). AI values computed

in this way gave a robust measure of the amount of rate adaptation

displayed by a neuron over the 10 s stimulation cycle. Note that,

rearranging terms, AI was equal to the difference in firing rates at

the beginning of the high- and low-variance epochs minus the

difference in rates at steady state: AI = (zinit,hi 2 zinit,lo) 2 (zss,hi 2

zss,lo). A unit highly responsive to switches between high- and low-

variance stimulation and with complete rate adaptation would

display a large difference between firing rates at the onset of a

switch (i.e., a large zinit,hi 2 zinit,lo) and no difference between firing

rates at steady state (i.e., zero zss,hi 2 zss,lo), since complete rate

adaptation should equalize steady-state responses under different

conditions.

Figure 3B shows AI values for all units recorded in TRG and

VPM. For comparison, we also plot AI values for a data set

recorded in the barrel cortex under equivalent conditions and

reported in an earlier publication [20]. Comparing AI values for

the TRG and VPM populations revealed greater diversity of

adaptation in the VPM (Bartlett’s test, p = 0.0003, Fig. 3B), as

noted in the examples above. The average level of adaptation was

not significantly higher in VPM than in TRG (Kruskal-Wallis with

Bonferroni correction for multiple comparisons, p = 0.99, Fig. 3B).

In contrast, adaptation increased on average in the barrel cortex

compared to both VPM and TRG (Kruskal-Wallis with

Bonferroni correction, p = 0.00066 and p = 0.0004 respectively,

Fig. 3B). Thus, the change from the TRG to the VPM population

was primarily an increase in the variety of dynamic behaviors

displayed by different units, while a detectable increase in

adaptation level did not occur until the transformation from

VPM to barrel cortex.

Linear-Nonlinear-Poisson framework for describing
adaptive changes in stimulus-response relationships

Adaptive alterations in firing rate could imply a change in how a

neuron represents a stimulus – for example, a change in the

stimulus feature(s) to which the neuron is tuned, or in its sensitivity

to those features (reviewed in [1]). To determine which was the

case in the present data set, we investigated the stimulus-response

relationships of recorded units.

Characterizing a neuron’s stimulus-response relationship re-

quires (1) identifying the specific stimulus features to which the

neuron is selective (its receptive field), and (2) estimating the tuning

curve that describes the sensitivity of the neuron’s firing rate to the

relevant features. Previous work has shown that for both TRG and

VPM neurons the stimulus-response relationship can be accurately

described by simple, but powerful Linear-Nonlinear-Poisson (LNP)

models [23,24] (Fig. 4A). In the LNP framework, a neuron’s

feature selectivity is represented by one or more ‘‘stimulus filters’’

[25,26]. In the simplest (‘‘single-dimensional’’) case, which is the

most frequent one both in the TRG and the VPM, a neuron’s

selectivity is well-described by a single filter [23,24]. The filter(s)

are then convolved with the stimulus time series, and firing rate is

estimated as a function of the resulting coefficients (see below). Out

Figure 3. Quantification of firing rate adaptation and compar-
ison across the whisker pathway. A. The firing rate trajectory of an
example unit over one high-low variance cycle, normalized as a z-score.
Schematic represents computation of adaptation indices (AIs) from z-
score rates at different times in cycle (e.g., zinit,hi). init signifies rates
collected in the first two 100-ms bins within an epoch; ss the final five
bins within the epoch, corresponding to the steady-state response. B. AI
for each TRG unit and each VPM unit in our database. These data are
compared to AIs of S1 units previously reported in [20]. Adaptation was
more diverse in the VPM than in TRG, but was not significantly higher
on average; adaptation did increase on average in S1.
doi:10.1371/journal.pone.0082418.g003

Adaptive Rescaling in Subcortical Whisker Pathway
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of the present data set of n = 29 units, n = 19 could be well

characterized using the LNP framework (detailed in Materials and

Methods; n = 9 out of 11 TRG units; n = 10 out of 18 VPM units;

Fig. 4B). In the following, we focus on these well-characterized

units.

Both in the TRG and VPM, the majority of units had single-

dimensional temporal receptive fields: that is, their feature

selectivity was well-described by a single filter recovered by

spike-triggered averaging (STA; see Materials and Methods and

[23]). Only one ganglion unit out of 9 required a higher-

dimensional description involving multiple filters (see Materials

and Methods; Fig. 4B). However, a sizable minority of VPM units

(4 out of 10) had multi-filter receptive fields (Fig. 4B). This suggests

that temporal receptive fields in the whisker system increase

gradually in complexity along the pathway, in agreement with

earlier findings that essentially all cortical neurons in the system

have multi-dimensional receptive fields [19,20].

To determine whether filters were affected by the state of

adaptation, we conducted STA analyses separately for the high-

and low-variance stimulation epochs. Examples of filters recovered

by STA analysis are shown in Figure 4C. For neurons with single-

dimensional receptive fields such as those represented in Figure 4C,

the shape of the filter indicates whether the neuron is preferentially

selective to stimulus position, velocity, acceleration or other

properties. For example, a neuron whose firing rate depended

entirely on stimulus velocity (a velocity detector) would have a

temporal derivative filter with two equal phases of opposite sign

(Fig. 4D middle); in contrast, a neuron acting as a detector of

ongoing stimulus position would have a single-phase filter (Fig. 4D

top) [23]. We found diverse filters in both the TRG and VPM, in

agreement with earlier results [23,24]. The majority of units had

filters with two phases unequal in size (Fig. 4C), indicating that

they were intermediate between position and velocity detectors. A

minority of units had multiple-phase filters, indicating sensitivity to

more complex variables (Fig. 4D bottom). Usually, the duration of

the filters (,10 ms; Fig. 4C) was similar to the width of the

stimulus autocorrelation (Materials and Methods). This indicates

that the timescale of feature selectivity was usually instantaneous to

within the resolution of our analysis, in agreement with previous

description [23].

Robustness of feature selectivity to changes in stimulus
variance

Adaptation produced no change in feature selectivity. First,

units sensitive to a single filter during low-variance stimulation

remained sensitive to a single filter during high-variance stimula-

tion. Conversely, every unit that required a multi-filter description

(see Materials and Methods) did so under both high- and low-

variance stimulation. Second, for single-dimensional units, the

filter computed for high-variance stimulation was typically very

similar to that computed for low-variance stimulation (Fig. 4C). To

quantify this, we computed the similarity (normalized dot product)

between the high- and low-variance filters of each unit. The

resulting normalized dot product values were always .0.85 and

could not be explained under the null hypothesis that high- and

low-variance filters were randomly related (Materials and Meth-

ods; Kolmogorov-Smirnov, p = 6.0610211; Fig. 4E). Third, for

multi-filter units we computed a measure of similarity between the

subspaces spanned by the high- and low-variance filters, known as

the subspace projection [27]. The subspace projection is normal-

ized between 0 (no overlap between high- and low-variance

subspaces) and 1 (complete overlap), and reduces to the dot

product for single-dimensional subspaces. For each multi-filter

unit, we computed the subspace projection based on the STA-

derived filter plus up to 2 additional filters (Materials and

Methods). The resulting overlap between high- and low-variance

filter subspaces was 0.8560.05 (mean 6 SEM). We conclude that

switches in stimulus variance over the range explored here do not

evoke significant adaptive changes in neuronal feature selectivity.

Changes in stimulus variance induce a rescaling of
response gain

Given that stimulus filters were unmodified by changes in

stimulus variance, we hypothesized that adaptation to variance

could involve changes in tuning curve (second stage of the LNP

Figure 4. Analysis of adaptation using LNP models: testing for
adaptive changes in receptive field. A. Schematic of LNP model. In
the L (linear) step, a stimulus time series is convolved with one or more
filters. In the N (nonlinear) step, the filtered stimulus is passed through a
non-linear tuning function to produce a time-dependent firing rate.
Finally, in the P (Poisson) step, this firing rate drives an inhomogeneous
Poissonian spike generation process. B. Number of units, in both TRG
and VPM that could be well-described (see Materials and Methods) by
either an LNP model consisting of a single filter (‘single’), an LNP model
consisting of 2 or more filters (‘multi’), or that could not be well-
described by any LNP model. C. Filters (STAs) of two example units
computed separately using spikes evoked during the high-variance
(red) or low-variance (blue) epochs. D. STAs expected from ideal
position, velocity and acceleration detectors respectively, given the
smoothed white noise stimulus used here [23]. E. Histogram of
normalized dot products between the high- and low-variance filters
(STAs) of each unit in the TRG and VPM (red), compared to the
histogram of normalized dot products between pairs of filters
combined at random (white). Dot products between high- and low-
variance filters were significantly different than those between pairs
combined at random.
doi:10.1371/journal.pone.0082418.g004

Adaptive Rescaling in Subcortical Whisker Pathway
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description; Fig. 4A). In the LNP framework, the probability that a

neuron fires an action potential is described by a nonlinear input-

output tuning curve that represents the neuron’s sensitivity or gain.

The tuning curve also captures effects of thresholding, rectification

and saturation. Specifically, in the simplest case where the

receptive field consists of a single filter, the stimulus time series

is convolved with the filter to produce a time-dependent coefficient

or filtered stimulus, and the tuning curve predicts firing rate as a

function of that coefficient.

As with the filter calculation, we determined tuning curves

separately for high- and low-variance stimulation epochs (Fig. 5).

We plotted the filtered stimulus (x axis) in z-score units, allowing us

to express fluctuations in firing rate specifically as a function of

stimulus deviations away from the mean. Results for two example

units are given in Figure 5A–B. For the unit in Fig. 5A, there was

no change in sensitivity: the high- and low-variance tuning curves

were identical (Fig. 5A1). In contrast, for the unit in Fig. 5B, tuning

curves for the high- and low-variance stimulation epochs differed

in scale: the unit was more sensitive during low-variance

stimulation, implying an adaptive change (Fig. 5B1). For example,

during the low-variance epoch, a firing rate of 80 spikes/s could

be evoked by a filtered stimulus value of 2.5 (in z-score units

proportional to whisker displacement). To produce the same firing

rate during the high-variance epoch, a substantially more intense

stimulus was required (filtered stimulus value 3.8). Yet, despite this

difference in overall gain, the two tuning curves were remarkably

similar in shape (Fig. 5B1). To better visualize this, we rescaled the

tuning curves. For the low-variance tuning curve, we normalized

the filtered stimulus (x axis) by the stimulus standard deviation of

this epoch, and we normalized the firing rate (y axis) by the time-

average firing rate in this epoch. The high-variance tuning curve

was normalized analogously. In these rescaled coordinates, the

tuning curves of the unit of Fig. 5B1 were identical to within

measurement error (Fig. 5B2). This suggests that, for this

particular unit, the effect of adaptation was simply to rescale

neuronal sensitivity to stimulus deviations away from the mean,

with no further change in the shape of the nonlinearity [20]. We

term this ‘gain rescaling’.

To determine whether gain rescaling was typical across the

TRG and VPM populations, for each unit, we tested how well

gain rescaling could account for the difference between high- and

low-variance tuning curves. To do this, we rescaled one of the

tuning curves by a variable factor, searching for the factor that

minimized the residual difference (normalized mean squared

error) between the rescaled curve and the true tuning curve for the

other epoch (Materials and Methods). For most units in the data

set, this procedure captured the change in tuning curve

remarkably well. Indeed, the resulting residual difference between

the true and scaled curves was less than 20% for 21 out of 29 units

(73% of TRG units; 72% of VPM units; Fig. 5C). For single-filter

units, the residual difference was under 20% for 11 out of 14 units:

7 out of 8 in the TRG and 4 out of 6 in the VPM.

The examples of Figure 5 suggest that subcortical neurons differ

substantially in the degree of adaptation that they express. We

used the rescaling factor analysis to investigate this. A unit whose

tuning curves do not adapt at all corresponds to an optimal

rescaling factor of 1; a unit whose tuning curves undergo full

rescaling corresponds to a factor equal to the ratio between high

and low standard deviations, 1/0.7 = 1.43. For example, the unit

in Fig. 5A had very similar tuning curves for low- and high-

variance stimulation. Its optimal factor was 1.05, close to 1. In

contrast, the unit in Fig. 5B, which exhibited substantial tuning

curve rescaling, had an optimal factor of 1.35. In the barrel cortex,

the majority of units display full rescaling [20] and this behavior is

shared by adaptive neurons in many other systems (reviewed in

[1]). Plotting rescaling values for the recorded populations revealed

that units in both the TRG and VPM displayed strikingly variable

rescaling factors (Fig. 5D). Values outside the range from 1 to 1.43

were possible in principle, but occurred infrequently (Fig. 5D). The

distribution of rescaling factors in TRG did not differ significantly

from that in VPM (Kolmogorov-Smirnov, p = 0.61). Moreover,

interestingly, there was no correlation between the amount of

firing rate adaptation and the amount of gain rescaling across units

(n = 21, Spearman r = 0.37, p = 0.094). These data indicate that

subcortical neurons in the whisker system display adaptive gain

control behavior ranging from fixed sensitivity to the absolute

Figure 5. Testing for adaptive changes in neuronal sensitivity
(gain). A. Example of a unit whose gain did not adapt. A1. Tuning curve
computed from spikes evoked during high-variance epochs (red),
compared to tuning curve computed from low-variance epochs (blue).
Filtered stimulus is normalized as a z-score. In this plot, the signature of
an adapting unit is that the high- and low-variance tuning curves differ.
A2. Same tuning curves as A1, but plotted on rescaled axes (detailed in
main text). The filtered stimulus (x axis) is normalized by the stimulus
standard deviation; the y-scale by the time-averaged firing rate. In this
rescaled plot, the signature of a unit that exhibits full gain rescaling
(gain proportional to stimulus standard deviation) is that the high- and
low-variance tuning curves coincide. B. Corresponding data for an
example unit that did adapt. Both this unit and the one in panel A were
recorded in VPM. C. Relative number of units for which the residual
difference between tuning curves after optimal rescaling was less than
20%, and for which the effect of adaptation was therefore well
described as some amount of rescaling (‘rescaling’) compared to those
for which the residual difference was greater and for which the effect of
adaptation was more complex (‘other’). D. Gain rescaling factor
computed as detailed in main text for each unit classified as ‘rescaling’.
Factor = 1 corresponds to no rescaling (similar to panel A); factor = 1.43
corresponds to full gain rescaling (similar to panel B).
doi:10.1371/journal.pone.0082418.g005

Adaptive Rescaling in Subcortical Whisker Pathway
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stimulus value, to full gain rescaling, with sensitivity normalized by

the stimulus standard deviation.

Discussion

Neurons in the whisker pathway act as fast encoders of dynamic

stimulus features such as velocity or acceleration [12–19,23,28].

Our present findings demonstrate that this feature encoding

remains invariant in the face of changes in stimulus scale (variance)

throughout the subcortical lemniscal whisker pathway. However,

the sensitivity (gain) of neuronal tuning to those features can be

altered by changes in stimulus scale. At each observed stage in the

pathway (TRG and VPM), different neurons can adjust their

sensitivity depending on the scale of the stimulus over a spectrum

ranging from no adjustment at all to full adjustment (i.e., the

neuron represents the stimulus fully normalized to the current

context). Both the first (TRG) and last (VPM) subcortical stages

contain neuronal populations with diverse gain rescaling proper-

ties, implying that information about both overall stimulus scale

and local stimulus fluctuations is preserved and available to

downstream neurons. Neurons at these processing stages are also

diverse in that they represent different features of a dynamically

fluctuating stimulus [23,24]. In sum, the TRG and VPM each

contain a diverse, rich population representation of dynamic

whisker stimuli.

Varieties of adaptation in the whisker pathway
Adaptation in the whisker pathway also occurs under other

forms of stimulation (reviewed in [29]). For example, under

repetitive stimulation with identical whisker deflections separated

in time [12,30–37], neuronal tuning properties are sharpened on

successive whisks, including both whisker selectivity [38] and

tuning to whisker direction [39]. The ability of neurons to

discriminate the relative magnitude of the stimulus improves at the

expense of overall stimulus detectability [40]. The extent and time

course of adaptation to repetitive stimulation are different at

successive stages of the system: more central stages typically

undergo stronger adaptation and do so at lower repetition

frequencies [33,35,38,41–48]. The present study shows subcortical

adaptation to changing stimulus statistics and demonstrates an

unexpected variety of behaviors across neurons at each stage of

processing.

The mechanisms underlying the form of adaptation examined

here are unknown. Neurons in the barrel cortex display intrinsic

adaptation and gain rescaling to changes in stimulus variance

[49,50], and thalamocortical synaptic depression can also underlie

adaptation [33]. It is possible that similar mechanisms act at

subcortical stages (e.g., [47]), although we note that adaptation

may act through different mechanisms depending on the form of

stimulation effectively received by the neuron [29,49]. We note

that adaptive changes in spike rate occurred over a time course

long enough to be compatible with possible modulation by

corticothalamic feedback.

Dissection of adaptation with an LNP framework
We used an LNP framework to characterize adaptive changes in

neuronal stimulus-response relationships. LNP models have

provided a useful way to structure investigations into the nature

of adaptation, since they enable its impact to be dissected into

effects on a neuron’s receptive field (filters) and effects on its tuning

curve [7,8]. Different stimulus protocols affect these two aspects in

different ways. In the present study, we found that changes in

stimulus variance elicited no modification in receptive field

structure, either in receptive field dimensionality or in the shape

of filter waveforms. This is common to results in other systems

[11,51,52]. We also found that switches in variance usually evoked

comparatively simple changes in the tuning curves that describe

neuronal sensitivity: for most units (21 out of 29), changes in tuning

curve consisted of a rescaling of sensitivity or gain (Fig. 5C). For

the remaining 8 units, the changes in tuning curve could not be

well described as a simple rescaling: the reason was either that the

unit was multi-dimensional [23] and a one-dimensional tuning

curve analysis could not capture adaptive changes in the

underlying multi-dimensional tuning function [52] (4 out of 29),

or that the change in shape of the tuning curve could not simply be

captured by a linear change of scale (4 out of 29).

Adaptive behavior was diverse across units in our data set.

Notably, units varied in the amount of gain rescaling, which

covered the entire qualitative range of behaviors from no rescaling

at all (rescaling factors #1) to full rescaling (factors $1.43)

(Fig. 5D). While our finding of diverse rescaling is robust to the size

of our data set, it is possible that the quantitative range of variation

in rescaling factor is wider than reported here.

Transformations in adaptive behavior across the whisker
pathway

We found that the majority of TRG neurons have receptive

fields well-captured by a simple, single-filter LNP description (see

also [24]); in contrast, a larger fraction of VPM neurons have

multi-dimensional receptive fields, whose description required

multiple filters. Earlier work found that cortical neurons in the

whisker system consistently have multi-dimensional receptive fields

[19,20]. This implies that temporal receptive fields increase in

complexity along the whisker pathway, which parallels the

behavior of other sensory modalities [53–56].

A further interesting comparison can be made between

subcortical and cortical tuning curves. Cortical curves typically

display rectification and a relatively high threshold, suggesting

sensitivity to large excursions in the filtered stimulus [20,57].

Hence in the barrel cortex, gain rescaling serves to maintain a

context-dependent threshold and thus provide sensitivity to

relative outliers. In contrast, subcortical tuning curves tend to be

more linear in shape, with little rectification and lower thresholds,

suggesting faithful representation of filtered stimulus magnitude

rather than detection of large-magnitude events [23]. Hence in

TRG and VPM, adaptive gain rescaling likely serves to control

sensitivity such that stimulus values within the current range are

faithfully represented.

Our results show a lower mean amount of firing rate adaptation

in the VPM than in the barrel cortex (Fig. 3B). Moreover, barrel

cortex neurons display full gain rescaling under the same

experimental conditions [20]. This raises the question of whether

and how information about absolute stimulus scale is preserved in

cortex, which remains an issue for further investigation. Our

findings exemplify that the strength of firing rate adaptation need

not go hand in hand with the amount of gain rescaling, as there

was no significant correlation between the two variables. These

two manifestations of adaptation occur conjointly in many systems

but may not be mutually required (reviewed in [1]).

Materials and Methods

Ethics Statement
All experiments were conducted in strict accordance with

international and institutional standards for the care and use of

animals in research. Protocols were approved by the UK Home

Office and carried out under Project Licence 40/3332. All surgery
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was performed under urethane anesthesia, and all efforts were

made to minimize suffering.

Experiments
Electrophysiological recordings were made from the TRG and

VPM as previously described [58]. Briefly, male adult Wistar rats

(n = 15; weight 367622 g SEM, range 245–554 g) were anesthe-

tized with urethane (1.5 g/kg body weight) and placed in a

stereotaxic instrument. In any one rat, recordings were made

either in the TRG or the VPM. A tungsten microelectrode (8–

10 MOhm impedance) was inserted vertically into the brain

through a craniotomy using a piezoelectric motor. Extracellular

signals were pre-amplified, digitized (sampling frequency

24.4 kHz), band-pass filtered (300–3000 Hz) and continuously

stored to hard disk for off-line analysis. Location within VPM was

verified electrophysiologically during the experiment and checked

by histological identification of the recording site. AC electrolytic

lesions were made through the recording electrode by applying 5–

10 mA for 15s. After perfusion with 10% formalin, sites were

identified by staining 50 mm coronal sections with cresyl violet.

Whiskers were mechanically stimulated as previously described

[22]. Briefly, whiskers contralateral to the recorded hemisphere

(E1-4, D1-4, C1-4, c and d) were cut to 10 mm length and

individually placed into the holes of a plexiglass grid, glued to a

piezoelectric multilayer bender. The grid was positioned 3 mm

from the skin. Motion of the actuator was in the ventro-dorsal

direction.

The stimulus was a sequence of pseudorandom white noise with

Gaussian amplitude distribution (generated at a sampling

frequency of 12.2 kHz), low-pass filtered by convolution with a

gaussian kernel (SD 1.6 ms) to restrict stimulus power to

frequencies less than the resonant frequency of the mechanical

stimulator (300 Hz). Noise was unrepeated, i.e., there were no

periods of ‘‘frozen’’ and repeated stimulus trajectories.

The stimulus therefore consisted of fluctuations on a time scale

of a few ms. In addition, the amplitude distribution of fluctuations

changed cyclically on a separate, longer timescale, switching

between a high and a low variance value every 5 s (such that total

cycle duration was 10 s, Fig. 1). The low standard deviation

equaled 0.7 times the high standard deviation. Each variance

switch was smoothed over 10 ms [20]. Both variance conditions

had the same frequency spectrum. We verified that the

piezoelectric bender accurately reproduced the stimulus by

measuring its motion using a custom-built LED-phototransistor

circuit [59].

Analysis
Spikes emitted by individual units were identified by threshold-

ing the extracellular signal and clustering as previously described

[22,23]. VPM units had firing rates ranging from 1.7–17.6 Hz

(mean 6.9 Hz, SEM 1.1 Hz). Ganglion units had rates in the

range 1.1–40.0 Hz (mean 17.9 Hz, SEM 4.8 Hz).

The evoked spike trains were binned with 100 ms time

resolution. The sequence of bins within each stimulus variance

cycle was then averaged across cycles to form a firing rate

trajectory (Fig. 2). To facilitate comparison of firing rates and of

rate adaptation across experiments, we computed each unit’s rate

as a z-score computed across the stimulus variance cycle. First, we

normalized the rate by the total number of spikes in each 10 s

cycle and then averaged over cycles to eliminate variations in

absolute rate (spike count) over different cycles. Next, we

subtracted the rate’s mean over the 10 s cycle, and normalized

by the standard deviation over the cycle. The resulting z-score

gave a specific measure of rate modulation over the course of the

cycle. Average population rate plots were prepared by averaging

over the z-score plots of units in the population (Fig. 2C).

We characterized neuronal stimulus-response relationships

using LNP cascade models as previously described [20,23]

(Fig. 4A). Briefly, for each unit we recovered the spike-triggered

stimulus ensemble, i.e., the ensemble of stimuli that evoked spikes,

by collecting ‘‘snippets’’ of whisker stimulus waveforms corre-

sponding to the time interval [250 ms, +10 ms] relative to each

spike. Waveforms were binned at 1 ms resolution. Next, we first

computed a single filter by spike-triggered averaging (STA) and

identified the corresponding tuning curve using Bayes’ rule [23].

At this step, units were only kept for LNP analysis if the STA

waveform and tuning curve had acceptable (.4x) signal/noise

levels, assessed by comparing the magnitude of the STA peak to its

variation at baseline (see Fig. 4C for examples). Next, to determine

whether the single-filter description sufficed to characterize the

unit’s feature selectivity, we also computed filters using spike-

triggered covariance analysis (STC), which identifies how the

distribution of stimuli that elicits spikes differs in shape from the

overall distribution of stimuli applied in the experiment

[7,20,23,60,61]. We derived STC filters from the eigenvectors

corresponding to significant eigenvalues of the differential

covariance matrix, constructed in the stimulus space orthogonal

to the STA (as detailed in [23]). If no such eigenvalues were found,

we scored the unit as not well described by STC analysis. If

significant eigenvalues did exist, the unit’s feature selectivity was

considered well-described by the STA single filter if the mutual

information conveyed about the most significant STC filter was

less than 20% of that conveyed about the STA [23]. The subspace

projection between high- and low-dimensional sets of filters [27]

was computed based on the subspace consisting of the STA-

derived filter plus the 2 most significant STC filters, except for 2

units (out of 5) where there was only 1 significant STC filter.

Tuning curves were estimated by application of Bayes’ rule

[23]. Error bars in Figure 5A,B depict SEM and were constructed

by a bootstrap procedure. We determined the extent to which

differences between high-variance and low-variance tuning curves

could be attributed to gain rescaling, as follows. We multiplied the

tuning curve for the low-variance epoch by a rescaling factor and

measured the normalized mean squared error (residual) between

the resulting rescaled curve and the tuning curve for the high-

variance epoch. We then obtained the rescaling factor that

minimized this residual.
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