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Abstract

Type 4 cAMP phosphodiesterase (PDE4) inhibitors show a broad spectrum of anti-inflammatory effects in almost all
kinds of inflamed cells, by an increase in cAMP levels which is a pivotal second messenger responsible for various
biological processes. These inhibitors are now considered as the potential drugs for treatment of chronic
inflammatory diseases. However, some recently marketed inhibitors e.g., roflumilast, have shown adverse effects
such as nausea and emesis, thus restricting its use. In order to identify novel PDE4 inhibitors with improved
therapeutic indexes, a highly correlating (r = 0.963930) pharmacophore model (Hypo1) was established on the basis
of known PDE4 inhibitors. Validated Hypo1 was used in database screening to identify chemical with required
pharmacophoric features. These compounds are further screened by using the rule of five, ADMET and molecular
docking. Finally, twelve hits which showed good results with respect to following properties such as estimated
activity, calculated drug-like properties and scores were proposed as potential leads to inhibit the PDE4 activity.
Therefore, this study will not only assist in the development of new potent hits for PDE4 inhibitors, but also give a
better understanding of their interaction with PDE4. On a wider scope, this will be helpful for the rational design of
novel potent enzyme inhibitors.
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Introduction

Type 4 cAMP-specific phosphodiesterase (PDE4) are a
family of low km 3',5'-cyclic adenosine monophosphate (cAMP)-
specific phosphodiesterases containing more than 20 isozymes
encoded by four genes (PDE4A, PDE4B, PDE4C, and PDE4D)
in mammals [1]. Even though four subfamilies share the
conserved catalytic domain, each PDE4 gene plays a very
important role in controlling the cell functions. PDE4s are taken
as critical regulators of intracellular cAMP levels, cAMP
signaling, and signal compartmentalization by their wide tissue
distribution as well as differential expression and regulation
among various cell types [1]. Thus many PDE4 inhibitors have
showed remarked anti-inflammatory potential, by increasing
cAMP levels. Recently the use of some newly marketed PDE4
inhibitors such as roflumilast, have been restricted due to their
nausea and emesis. Therefore, the major pharmaceutical

research focus in the field of chronic inflammatory diseases
treatments, is to develop novel PDE4 inhibitors with high
therapeutic index [1,2]. In our study, we successfully used
pharmacophore modeling, database screening, and molecular
docking approaches in identifying lead candidates to be used in
potent PDE4 inhibitor design and thereby devising a new class
of safer and effective anti-inflammatory agents.

Results and Discussion

Pharmacophore modeling
A set of ten pharmacophore models was generated by a

training set containing 28 compounds. Structures of the training
set compounds are shown in Figure 1. The total cost values of
ten pharmacophore models ranged from 106.849 to 120.562
(Table 1). The cost difference between the null cost and total
cost must be greater and it should be smaller between fixed
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cost and total cost values for a good pharmacophore model. In
the present work, the first pharmacophore model (Hypo1) is
basically composed of four features: two hydrogen bond
acceptors, one hydrophobic region and one aromatic ring
feature (Figure 2). Hypo1 was developed with a fixed cost
value of 99.761 and a null cost value of 204.947. Among the
total cost values of ten pharmacophore models, Hypo1 scored
the closest value to the fixed cost value than other models. The
cost difference for the first pharmacophore model was 98.098.
A cost difference value above 60 implies that the
pharmacophore model correlates the estimated and
experimental activity values more than 90% [9,10]. Therefore,
Hypo1 could be considered as a good model. Based on the
correlation coefficient, ten pharmacophore models were further
evaluated. The correlation values of the generated
pharmacophore models were greater than 0.91, and the values
for the first three pharmacophore models were even higher,
i.e., above 0.950. These results implied the capability of the
pharmacophore model to predict the activity of the training set
compounds. Hypo1 showed the highest correlation coefficient
value of 0.963930, indicating its strong predictive ability.
Moreover, RMSD values for ten pharmacophore models were
less than 1, further supporting the predictive ability of these
models. Among the ten pharmacophore models, Hypo1 was
developed with better statistical values, such as higher
correlation, larger cost difference and lower RMSD. Based on
the experimental activity (IC50) values, training set and test set
compounds were categorized in following four groups: Highly
active (IC50 < 10nM, ++++), active (10≤ IC50 < 200nM, +++),
moderately active (200≤ IC50 < 1000 nM, ++), and inactive (IC50

≥1000nM, +) [10]. Table 2 shows that activity values of all 28
compounds in the training set were predicted within their
experimental activity scale, indicating the predictability of
Hypo1. The pharmacophore mapping of most and least active
compounds is shown in Figure 3. The most highly active
compound (0.051 nM) mapped all the features of Hypo1, and
the least active compound (4000 nM) missed hydrophobic and
ring aromatic features. The reliability of Hypo1 has been further
revealed.

Validation of the pharmacophore model
The validation process was performed by a test set of 28

compounds with diverse activity classes and different functional
groups. Diverse conformers of these test set compounds were
built in the same manner as for training set compounds using
DS. Based on the geometric fit of these compounds over
Hypo1, the estimated activity values were predicted for every
test set compound. A correlation coefficient value of 0.948 is
shown by the simple regression between the experimental and
estimated activity values of training and test set compounds
(Figure 4). Two compounds out of 30 test set compounds were
predicted in a different activity scale with a success rate of
93%. (Table 3). Especially, twenty-nine compounds from 30
test set compounds had error values less than 2.8, which was
hardly different from the experimental and estimated activity
values. The result showed a fairly good correlation between the
experimental and estimated IC50 values, indicating a good
predictive capacity of Hypo1. Fischer’s randomization method

was additionally performed on the training set compounds to
validate the statistical robustness of Hypo1. In this validation
process, the experimental activities of the training set were
scrambled randomly and the resulting training set was used in
HypoGen module with the parameters chosen for the original
pharmacophore generation [10]. To achieve a 95% confidence
level, a set of 19 random spreadsheets is generated (Figure 5).
The result clearly indicated that none of the randomly
generated pharmacophore models obtained from this validation
method was produced with better statistical values than Hypo1.
The result of Fischer’s randomization test confirmed the
statistical confidence of Hypo1. In order to verify whether the
correlation between the experimental and estimated activities
was mainly dependent on one particular compound in the
training set, leave-one-out method was further used to perform
the final validation. This was finished by recomputing the
pharmacophore mode where one compound was excluded at a
time. Under the same conditions which were used in the
generation of the original pharmacophore model, 28 HypoGen
calculations were carried out on 28 new training sets. The
results indicated that compared to Hypo1, all the 28 new
models generated by this method didn’t have any meaningful
difference. This result confirmed the confident level of Hypo1
that its correlation coefficient didn't depend on one particular
compound in the training set.

Database screening and drug-likeness prediction
Based on the above validation results, the selected Hypo1

was used as a 3D query to search chemical databases
including Specs (135556 molecules), Maybridge (59652
molecules) and NCI (238819 molecules), containing totally
434027 compounds. The inhibitory activity values of these
compounds were estimated. A total of 220 compounds were
firstly screened by restricting the minimum estimated activity to
1 nM. Then on the basis of Lipinski’s rule of five and ADMET
properties, these compounds were further screened to a
number of 40. Finally, we subjected these 40 drug-like
compounds along with the training set compounds to molecular
docking study. Figure 6 lists the steps of the database
screening procedure.

Docking study
To further refine the retrieved hits, forty drug-like hit

compounds along with the training set compounds were
docked into the active site of PDE4. The active site was
defined based on the bound inhibitor in a crystal structure of
PDE4 (PDB entry: 1XON). The docking poses were ranked by
the binding free energy calculation. The binding free energy
and molecular interactions with the active site residues were
considered as important components in selecting the best hit
compounds. The most active compound of training set
(compound 1) with the binding free energy of -8.897 kcal/mol,
has formed hydrogen bond interactions with Gln369 and
His160 and ionic interactions with Zn2+ and Mg2+ (Figure 7A).
Moreover, this compound also exhibited a very important π-π
interaction with the benzene ring of Phe372 and hydrophobic
interactions with Met357, Thr333 and Gln369. On the basis of
the molecular interaction of compound 1 and PDE4, we
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Figure 1.  Chemical structures of PDE4 inhibitors in the training set.  
doi: 10.1371/journal.pone.0082360.g001

Table 1. Statistical results of the top 10 pharmacophore hypotheses generated by HypoGen algorithm.

Hypothesis  Total cost  Cost differencea  RMSD Correlation  Features
Hypo1 106.849 98.098 0.53586 0.963930 HBA, HBA, HY, RA
Hypo2 110.479 94.468 0.58484 0.957944 HBA, HBA, HY
Hypo3 111.652 93.295 0.59607 0.952531 HBA, HBA, HBA
Hypo4 112.733 92.214 0.63861 0.949526 HBD, HY, HY
Hypo5 115.391 89.556 0.66088 0.946132 HBA, HBA, HBA
Hypo6 116.238 88.709 0.69439 0.938954 HBA, HBA, HBA
Hypo7 117.641 87.306 0.72386 0.931788 HBA, HBD, HY
Hypo8 118.967 85.980 0.78047 0.929203 HBA, HBD, HY
Hypo9 119.145 85.802 0.85013 0.924316 HBD, HY, HY
Hypo10 120.562 84.385 0.89086 0.917282 HBA, HBA, HY

Null cost = 204.947; fixed cost = 99.761; configuration cost = 15.383.
a Cost difference = null cost – total cost; Abbreviations used for features: HBA, hydrogen-bond acceptor; HBD, hydrogen-bond donor; HY, hydrophobic region; RA, ring
aromatic.
doi: 10.1371/journal.pone.0082360.t001
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selected twelve drug-like compounds with a binding free
energy lower than -8.897 kcal/mol of compound 1 as final hits
for further evaluation process. Intriguingly, these hits were
obtained from Maybridge and Specs databases. Table 4 shows
the list of twelve hits along with estimated activity values. The
estimated activity value of every hit was less than 0.2 nM and
the binding free energy was lower than -9.0 kcal/mol.
Particularly, the first hit, PD00519, obtained from Maybridge
database, had an estimated activity value of 0.091 and the
lowest free energy of -11.671 kcal/mol. The molecular
interaction between PDE4 and PD00519 is shown in Figure 7B.
The carboxyl group of PD00519 formed ionic interactions with
metal ions (Mg2+ and Zn2+) while the dimethyl group formed
hydrophobic interactions with Met357, Thr333 and Gln369.
PD00519 had also formed a vital π−π interaction with Phe372
and hydrogen bond interactions with Gln369 and His160 in the
active site of PDE4. The molecular docking study indicated that
compared with compound 1 in training set, the benzotrifluoride
of PD00519 that was fitted adequately into the hydrophobic
pocket of PDE4 has formed hydrophobic interactions with
Met273, Leu229 and Ser208 in the active site. The
understanding of this interaction between PDE4 and PD00519
will be beneficial to develop new design for novel PDE4
inhibitors. Figure 8A shows overlay of compound 1 and
PD00519 in the active site of PDE4 while Figure 8B indicates
their docking positions in the crystal structure of PDE4. Figure
9 represents a fairly good pharmacophore mapping of
PD00519 and compound 1 on Hypo1 as predicted by
molecular docking. The oxygen atoms of PD00519 and
compound 1 that formed important interactions with metal ions
in the pocket overlaid two HBA features of Hypo1. Moreover,
the benzene rings of PD00519 and compound 1 having π−π
interactions with Phe372 mapped RA features of Hypo1, while
the hydrophobic groups mapped the HY features of Hypo1.

The pharmacophore mapping of twelve hits on Hypo1 is
depicted in Figure 10. Every hit compound has mapped four
pharmacophoric features of Hypo1. Figure 11 shows the

superimposition of twelve hit compounds on the Hypo1. The
results indicated that hit compounds can produce perfect
mapping with Hypo1. The benzene rings and oxygen atoms of
hit compounds that overlaid the RA and HBA features of
Hypo1, respectively, enabled considerable hydrophobic and
polar interactions with the important amino acids in the active
site. In addition, hydrophobic groups of these compounds that
mapped the HY feature of Hypo1 interacted hydrophobically
with the amino acids. Thus, in the design of potent inhibitors of
PDE4, all twelve hit compounds which showed good results
with respect to following properties, such as estimated activity,
calculated drug-like properties and scores can be proposed as
potential leads. Novelty search for compounds using SciFinder
Scholar and PubChem search had also ascertained that these
hits were not reported earlier for PDE4 inhibition. Therefore, we
suggest that the identified compounds are novel and potent
virtual leads for PDE4 inhibitor design.

Materials and Methods

Pharmacophore model generation
HypoGen module of Discovery Studio program (DS), version

2.5, from Accelrys (San Diego, USA) was used to perform all
pharmacophore modeling calculations. While 13 compounds
were selected from one article [3], other fourty-three structurally
diverse compounds with inhibitory activity (IC50) data
were chosen as the training and test set compounds from
similar articles [4-8] reported by same group of researchers. All
the 56 compounds were tested for inhibition activity against
PDE4 prepared from U937 cells (a cell line derived from human
monocytes) by using the same experimental conditions. Based
on the diversity of chemical structures and experimental activity
values, we selected 28 compounds with wide activity range
(0.051 to 4000 nM) as the training set. The two-dimensional
(2D) chemical structures of all the compounds were built and
subsequently converted to 3D structures in Discovery Studio
program 2.5 (DS). For the compounds in the the data set,

Figure 2.  The best HypoGen pharmacophore model, Hypo1.  (A) Chemical features present in Hypo 1. (B) 3D spatial
relationship and geometric parameters of Hypo1. Pharmacophore features are color-coded (cyan, hydrophobic; orange, ring
aromatic; green, hydrogen bond acceptor). Pharmacophore features are color-coded: cyan, hydrophobic (HY); orange, ring aromatic
(RA); green, hydrogen bond acceptor (HBA).
doi: 10.1371/journal.pone.0082360.g002
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CHARMM forcefield was used to perform energy minimization
process. Poling algorithm was used to generate a maximum of
230 diverse conformations with the energy threshold of 15 kcal
mol-1 above the calculated energy minimum for every
compound in the dataset [9,10]. Diverse Conformer Generation
protocol running with Best/Flexible conformer generation option
was applied to generate multiple conformers. By performing a
more rigorous energy minimization in both torsional and
cartesian space, this method ensures the best coverage of
conformational space [11]. All the 28 compounds of training set
were submitted to the HypoGen module of DS. The minimum
and maximum count for all the features in the hypothesis run
were set of 1 and 6, respectively. Uncertainty value was set to
2 and the minimum inter-feature distance was set to 2.5 Å from
the default value of 2.97 Å. Hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), hydrophobic (HY) and ring
aromatic (RA) features were used to generate ten
pharmacophore models using 3D QSAR pharmacophore
generation of DS [9,10]. All other parameters used in HypoGen

module were kept at their default settings [9,10]. In this study,
the top 10 hypotheses returned by the hypotheses generation
process were selected for further calculations.

Pharmacophore model evaluation
Based on cost functions and other statistical parameters

which were calculated by HypoRefine module during
hypothesis generation, the quality of the generated
pharmacophore models was evaluated. The best
pharmacophore model should have a high correlation
coefficient, low RMSD values and total cost that should be
away from the null cost and close to the fixed cost [9,10]. All of
these cost values are reported, and a difference of 40-60 bits
between the total and null costs suggests a 75-90% chance of
representing a true correlation in the data [9,10]. To investigate
the ability to estimate the activity of new compounds, the
selected pharmacophore model was further validated by three
methods including test set method, Fischer’s randomization

Table 2. Experimental and estimated IC50 values of the training set compounds based on best pharmacophore hypothesis
Hypo1.

 IC50 nM  Activity scalec

Name Experimentala Estimated Errorb Experimental Estimated
1 0.051 0.09 +1.8 ++++ ++++
2 0.18 0.34 +1.9 ++++ ++++
3 0.32 1.5 +4.7 ++++ ++++
4 0.52 0.43 -1.2 ++++ ++++
5 0.85 2.3 +2.7 ++++ ++++
6 2.5 1.9 -1.3 ++++ ++++
7 4.7 5.6 +1.2 ++++ ++++
8 5.9 3.8 -1.6 ++++ ++++
9 9 5 -1.8 ++++ ++++
10 14 10 -1.4 +++ +++
11 26 50 +1.9 +++ +++
12 42 62 +1.5 +++ +++
13 58 48 -1.2 +++ +++
14 71 98 +1.4 +++ +++
15 85 75 -1.1 +++ +++
16 150 130 -1.2 +++ +++
17 180 185 +1.0 +++ +++
18 450 380 -1.2 ++ ++
19 530 410 -1.3 ++ ++
20 760 850 +1.1 ++ ++
21 870 730 -1.2 ++ ++
22 940 620 -1.5 ++ ++
23 1260 1730 +1.4 + +
24 1600 2300 +1.4 + +
25 2000 2800 +1.4 + +
26 2500 3300 +1.3 + +
27 3200 2700 -1.2 + +
28 4000 3600 -1.1 + +
aReferences [3–8].
bPositive value indicates that the estimated IC50 is higher than the experimental IC50; negative value indicates that the estimated IC50 is lower than the experimental IC50.
cActivity scale: IC50 < 10nM (Most active, ++++); 10 ≤ IC50 < 200nM (Active, +++); 200 ≤ IC50 < 1000nM (Moderately active, ++); ≥ 1000nM (Inactive, +).
doi: 10.1371/journal.pone.0082360.t002
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test and leave-one-out method. 28 diverse compounds were
used as the test set to validate the pharmacophore model. For
Fischer’s randomization test, 95% confidence level was chosen
in this validation study and the 19 random spreadsheets were
constructed. Finally, we performed the leave-one-out
methodology for the cross validation of the model by using the
same parameters as used for generating original
pharmacophore model, thus 28 pharmacophore models were
generated. To ensure the influence of each compound from the
training set in the generation of selected pharmacophore
model, one compound at a time from 28 compounds was left
[10-13].

Virtual screening
In order to identify novel hit compounds, the best

pharmacophore model after validation was used as 3D
structural search query to screen three chemical databases
including Specs (135556 molecules), Maybridge (59652
molecules) and NCI (238819 molecules), respectively. Search
3D Database protocol with Best/Flexible search option was
applied in database screening. The hits identified through
database screening were further filtered using estimated
activity, Lipinski’s rule of five [14], and ADMET properties
[15-18]. A Lipinski-positive compound has (i) a molecular
weight < 500; (ii) < 5 hydrogen bond donor groups; (iii) < 10
hydrogen bond acceptor groups and (iv) an octanol/water
partition coefficient (Log P) value < 5 [9,10].

Molecular docking
The docking study was performed using the Molecular

Operating Environment (MOE) software (Chemical Computing
Group Inc.). The crystal structure of PDE4 obtained at a
resolution of 1.72 Å was downloaded from the protein data
bank (PDB entry: 1XON). This structure was then protonated in
the Molecular Operating Environment (MOE) via MMFF94x
force field. The hits identified through database screening were

subjected to molecular docking studies. The active site was
defined with a 6 Å radius around the bound inhibitor. The
triangle matcher algorithm of the MOE software packages was
used to dock the identified hits into the protein active site.
According to this algorithm, different poses were generated by
aligning ligand triplets of atoms on triplets of alpha spheres. For
all scoring functions, lower scores indicated more favorable
poses. The scoring function of these compounds has to obey
the following parameters: (1) Specifying ASE Scoring to use for
ranking the poses output by the placement stage; (2)
Specifying Forcefield Refinement to use to relax the poses,
respectively; (3) Specifying Affinity dG Scoring to use for
ranking the poses output by the refinement stage. The free
energy of binding was calculated from the contributions of
hydrogen bond, ionic, hydrophobic and van der Waals
interactions between the protein and ligand, intramolecular
hydrogen bonds and strains of the ligand. We observed in the
S field that the docking poses were ranked by the binding free
energy calculation.

Conclusions

In the present work, a highly correlating (r = 0.963930)
pharmacophore model (Hypo1) containing two hydrogen bond
acceptors, one hydrophobic region and one aromatic ring
feature, was selected through various parameters such as total
cost, correlation coefficient and cost difference. Further
validation was done by using test set prediction, Fischer
randomization method and leave-one-out method. Result of
these validation tests showed that Hypo1
could accurately predict the active compounds, it has better
statistical values compared to other randomly generated
pharmacophore models and its correlation coefficient is not
solely depended on a single compound. This validated Hypo1
was led to database screening for identifying compounds which
can be used as potent PDE4 inhibitor design. Further studying
these compounds by drug-like filtrations and molecular

Figure 3.  Pharmacophore Mapping.  (A) Mapping of the most active compound 1 on the best pharmacophore model, Hypo1. (B)
Mapping of the least active compound 28 on the best pharmacophore model, Hypo1. Pharmacophore features are color-coded:
cyan, hydrophobic (HY); orange, ring aromatic (RA); green, hydrogen bond acceptor (HBA).
doi: 10.1371/journal.pone.0082360.g003
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docking, also suggested the robustness of Hypo1. In the end,
twelve structurally diverse compounds having high estimated
activity and strong molecular interactions with key active site
amino acids of PDE4 were identified. Therefore, the results of
this study will assist, not only in the development of new potent

hits for PDE4, but also in providing a better understanding of
the interaction between PDE4 and inhibitors. This will in turn be
beneficial to the rational design of novel potent enzyme
inhibitors.

Figure 4.  The correlation graph between experimental and estimated activity values based on Hypo1.  
doi: 10.1371/journal.pone.0082360.g004
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Table 3. Test set compounds listed with their experimental, estimated activities and error values.

 IC50 nM  Activity scalec

Name Experimentala Estimated Errorb Experimental Estimated
1 0.08 0.11 +1.4 ++++ ++++
2 0.29 0.2 -1.5 ++++ ++++
3 0.41 0.25 -1.6 ++++ ++++
4 1.0 0.83 -1.2 ++++ ++++
5 4.6 6.3 +1.4 ++++ ++++
6 5.8 8.9 +1.5 ++++ ++++
7 6.2 5.6 -1.1 ++++ ++++
8 8.5 9.8 +1.2 ++++ ++++
9 9.7 4.2 -2.3 ++++ ++++
10 12 34 +2.8 +++ +++
11 18 21 +1.2 +++ +++
12 26 45 +1.7 +++ +++
13 29 17 -1.7 +++ +++
14 34 26 -1.3 +++ +++
15 62 40 -1.6 +++ +++
16 66 75 +1.1 +++ +++
17 80 53 -1.5 +++ +++
18 100 180 +1.8 +++ +++
19 150 260 +1.7 +++ ++
20 250 430 +1.7 ++ ++
21 490 930 +1.9 ++ ++
22 500 720 +1.4 ++ ++
23 790 1630 +2.1 ++ +
24 1000 1832 +1.8 + +
25 1600 3100 +1.9 + +
26 2000 3385 +1.7 + +
27 2500 3700 +1.5 + +
28 4000 3800 +1.0 + +
aReferences [3–8].
bPositive value indicates that the estimated IC50 is higher than the experimental IC50; negative value indicates that the estimated IC50 is lower than the experimental IC50.
cActivity scale: IC50 < 10nM (Most active, ++++); 10 ≤ IC50 < 200nM (Active, +++); 200 ≤ IC50 < 1000nM (Moderately active, ++); ≥ 1000nM (Inactive, +).
doi: 10.1371/journal.pone.0082360.t003
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Figure 5.  Results of Fischer randomization test for 95% confidence level.  
doi: 10.1371/journal.pone.0082360.g005

Figure 6.  Database screening.  The flowchart of procedure used in 3D QSAR pharmacophore modeling.
doi: 10.1371/journal.pone.0082360.g006
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Figure 7.  Molecular docking experiments of PD00519 and compound 1 in the training set.  (A) Interaction between PDE4 and
compound 1 as predicted by molecular docking. (B) Interaction between PDE4 and PD00519 as predicted by molecular docking.
Active site residues are shown in stick form. Zn2+ and Mg2+ ions are shown in cyan and saddlebrown sphere, respectively. Hydrogen
bond network with protein residues is represented in red dotted lines. Interaction network with metal ions is represented in cyan
dotted lines. π-π stacking interaction is represented in green dotted lines. Compound 1 and PD00519 are color-coded: cyan –
compound 1, yellow – PD00519.
doi: 10.1371/journal.pone.0082360.g007

Table 4. List of twelve hit compounds from databases and their estimated activity values with the binding free energy.

Name Estimated Activity (nM) The binding free energya

PD00519 0.091 -11.671
GK03776 0.131 -11.062
BTB01176 0.137 -10.745
AW01131 0.142 -10.114
AA-768-32245030 0.148 -10.031
AA-504-32628026 0.152 -9.878
AA-516-12432156 0.158 -9.742
BTB01888 0.166 -9.461
BTB01889 0.167 -9.125
BTB01180 0.179 -9.110
AW00861 0.183 -9.098
AA-768-30891048 0.190 -9.012
a The docking poses were ranked by the binding free energy calculation.
doi: 10.1371/journal.pone.0082360.t004

Pharmacophore Modeling of PDE4 Inhibitors
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Figure 8.  The positions of PD00519 and compound 1 as predicted by molecular docking.  (A) Molecular overlay of PD00519
and compound 1 shown at the active site of PDE4. (B) The docking positions of PD00519 and compound 1 in the crystal structure of
PDE4. PD00519 and compound 1 are color-coded: yellow – PD00519, cyan – compound 1.
doi: 10.1371/journal.pone.0082360.g008
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Figure 9.  Pharmacophore mapping of PD00519 and compound 1 as predicted by molecular docking.  Active site residues
are shown in stick form. PD00519 and compound 1 are color-coded: green – PD00519, cyan – compound 1. Pharmacophore
features are color-coded: cyan, hydrophobic (HY); orange, ring aromatic (RA); green, hydrogen bond acceptor (HBA).
doi: 10.1371/journal.pone.0082360.g009
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Figure 10.  Pharmacophore mapping of twelve hit compounds based on the best pharmacophore model, Hypo1.  (A)
PD00519. (B) GK03776. (C) BTB01176. (D) AW01131. (E) AA-768-32245030. (F) AA-504-32628026. (G) AA-516-12432156. (H)
BTB01888. (I) BTB01889. (J) BTB01180. (K) AW00861. (L) AA-768-30891048. Pharmacophore features are color-coded: cyan,
hydrophobic (HY); orange, ring aromatic (RA); green, hydrogen bond acceptor (HBA).
doi: 10.1371/journal.pone.0082360.g010
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Figure 11.  Alignment of twelve hit compounds with the best pharmacophore model, Hypo1.  Pharmacophore features are
color-coded: cyan, hydrophobic (HY); orange, ring aromatic (RA); green, hydrogen bond acceptor (HBA).
doi: 10.1371/journal.pone.0082360.g011
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