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Abstract

The establishment of persistent viral infection is often associated with the selection of one or more mutant viruses. For
example, it has been found that an intraleader open reading frame (ORF) in genomic and subgenomic mRNA (sgmRNA)
molecules is selected during bovine coronavirus (BCoV) persistence which leads to translation attenuation of the
downstream ORF. Here, we report the unexpected identification of leaderless genomes, in addition to leader-containing
genomes, in a cell culture persistently infected with BCoV. The discovery was made by using a head-to-tail ligation method
that examines genomic 59-terminal sequences at different times postinfection. Functional analyses of the leaderless
genomic RNA in a BCoV defective interfering (DI) RNA revealed that (1) the leaderless genome was able to serve as a
template for the synthesis of negative-strand genome, although it cannot perform replicative positive-strand genomic RNA
synthesis, and (2) the leaderless genome retained its function in translation and transcription, although the efficiency of
these processes was impaired. Therefore, this previously unidentified leaderless genome is associated with the attenuation
of genome expression. Whether the leaderless genome contributes to the establishment of persistent infection remains to
be determined.
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Introduction

The families Coronaviridae (Coronavirus and Torovirus genera)

and Arteriviridae, together with Roniviridae, are members of

order Nidovirales in which a nested set of subgenomic RNA

(sgmRNA) molecules are made that are 39-coterminal with the

genome during transcription [1–6]. In arteriviruses and corona-

viruses, sgmRNAs are both 39-coterminal and contain a common

59 leader sequence derived from the 59 end of the genome [7–9].

However, all sgmRNAs in gill-associated virus (GAV), and

sgmRNAs 3, 4, and 5 in equine torovirus (EToV), lack a leader

sequence identical to the 59 end of the genome [5–6]. The

mechanism of leader acquisition during discontinuous negative-

strand ((2)-strand) synthesis from the positive-strand ((+)-strand)
genomic RNA template has gained favor to explain how

sgmRNAs acquire a leader sequence from the 59 end of the

genome [9–15]. The mechanism has been applied to explain high-

frequency leader-switching events during the replication of the

coronavirus defective interfering (DI) RNA genome [16–19].

To date, the function of a leader sequence in the genome or

subgenome during the coronavirus life cycle has not been

systematically established. It has been suggested that the leader

sequence within the context of the mouse hepatitis virus (MHV)

DI RNA containing the chloramphenicol acetyltransferase (CAT)

gene is nonessential for negative-strand DI RNA synthesis [20],

whereas for replication (interpreted as positive-strand RNA

synthesis) of bovine coronavirus (BCoV) DI RNA the leader is

thought to be required [19]. A 25–59-nucleotide (nt) sequence

motif within the leader sequence has been demonstrated to be

required for transcription using MHV DI RNA with CAT gene

[21]. Although replacement of the a-globin mRNA 59 UTR with

the MHV leader sequence has been suggested to enhance the

translation of a-globin mRNA [22], the role of the leader sequence

in genome translation remains unknown.

Structural changes within the leader sequence of BCoV have

been linked to persistent infection in cell culture due to the

selection of a translation-attenuating intraleader open reading

frame (ORF) [23]. In MHV, 59 UTR changes have also been

found to arise during persistent infection in cell culture [24] but in

this case, a mutation was found downstream of the leader that

caused an enhancement of gene expression rather than attenua-

tion of translation. The mechanisms that establish persistent

infections in coronaviruses are still not understood; however, as

with other RNA viruses, the interplay between virus and host may

be the key to initiate persistence, which is then followed by the

selection of a mutation to maintain the persistent infection [25–

28]. Although there are some exceptions [24,28–29,30], the

general principle for establishment of virus persistence appears to

be the attenuation virus gene expression and a restriction of

cytopathic effect [25,29,31]. Whether there are mutations other

than the one described above that might contribute to BCoV

persistent infection remains to be determined.
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In a study designed to identify potential sequence heterogeneity

within the 59 end of genomic RNA during BCoV persistent

infection, we unexpectedly found a leaderless genome in addition

to the leader-containing genome. Along with evidence in previous

studies [32–36], this finding suggests that viruses in the order

Nidovirales may be evolutionarily derived from a common

leaderless ancestor since leaderless sgmRNAs are also identified

in other nidoviruses as a normal condition. Functional analyses of

BCoV DI RNA suggested that the leaderless genome is able to

attenuate translation, negative-strand synthesis, and transcription.

Therefore, the leaderless genome identified during BCoV persis-

tence appears associated with the attenuation of gene expression.

A proposed consequence of the leaderless genome in persistent

infection is discussed.

Results

Identification of a Leaderless Genomic RNA during
Bovine Coronavirus Persistent Infection
In an attempt to identify the 59-terminal sequence of the

positive-strand viral genomic RNA during BCoV persistent

infection in cell culture, total cellular RNA was extracted at the

time points indicated in Fig. 1B and the RNA population

containing a poly(A) tail was selected. The prepared poly(A)-

containing RNA was then treated with alkaline phosphatase,

decapped with tobacco acid pyrophosphatase and head-to-tail

ligated with T4 RNA ligase, followed by RT-PCR and sequencing

(Fig. 1A). With the use of a PCR primer set that specifically

anneals within the 59 and 39 UTRs of the BCoV genome, RT-

PCR products with a length of more than 200 base pairs (bp) were

observed at 2, 17, 27, and 67 days postinfection (dpi) (Fig. 1B,

lanes 2–5). However, two species of RT-PCR products were

produced from RNA extracted at 77 and 92 dpi that were not

present earlier: the major product with a length larger than 200 bp

and the minor one with a length smaller than 200 bp (Fig. 1B,

lanes 6 and 7). The concentration ratio of the major product to the

minor product was roughly 5 to 1. To determine more rigorously

whether the leaderless genome was present at earlier time points, a

seminested PCR was performed at all time points but again no

RT-PCR product showing a leaderless genome was found at the

earlier time points (data not shown). Sequencing of the two RT-

PCR products (Fig. 1B, lanes 6 and 7) revealed that the major

band (.200 bp) had an intact positive-strand 59-terminal 65-nt

leader sequence (Fig. 1C), whereas the minor band (,200 bp)

lacked the 59-terminal 69 nt (Fig. 1D). To determine whether the

identified RNA molecule with 59-terminal 69-nt deletion is a

degraded product, total cellular RNA was extracted, poly(A) tail-

selected, and head-to-tail ligated with T4 RNA ligase, but not

treated with alkaline phosphatase and tobacco acid pyrophospha-

tase followed by RT-PCR. As shown in Fig. 1E, an RT-PCR

product with a length greater than 200 bp was detected, indicating

that there is still some degraded leader-containing RNA in the

infected cells. However, an RT-PCR product of less than 200 bp

was not observed, indicating that the 59-terminal 69 nt-deleted

RNA molecule was not an artifact resulting from the cleavage of

the positive-strand leader-containing genomic RNA as observed in

Fig. 1B. To test whether a leaderless negative-strand genomic

RNA is also produced during BCoV persistence, the same primers

were used as for identification of positive-strand genomic RNA,

but primer 1: BCV39UTR1(2) was used for the RT. However,

only RT-PCR products with a length of more than 200 bp were

observed (Fig. 1F, lanes 2–7). We speculated that if there are

leaderless negative-strand genomic RNAs in persistently-infected

cells, they may be present in numbers too low to be detected by

RT-PCR. In BCoV persistently infected cells, by Northern

analysis at 76 day of persistent infection, there are an estimated

,10 and ,500 molecules of genome and sgmRNA 7 per cell,

respectively, and ,0 and ,10 molecules of genome negative

strand and sgmRNA 7 negative strand per cell, respectively [37].

Therefore we chose to look for leaderless negative-strand sgmRNA

7 in persistent BCoV-infected HRT-18 cells. As shown in Fig.

S1A, lanes 5–7, two species of RT-PCR products were produced

from RNA extracted at 67, 77 and 92 dpi. Sequencing of the two

RT-PCR products (Fig. S1A, lanes 5–7) revealed that the product

with the longer length had an intact negative-strand 39-terminal

sequence (Fig. S1B), whereas the RT-PCR product with the

shorter length lacked the 39-terminal 69 nt (Fig. S1C). These

results demonstrate that the leaderless negative-strand sgmRNA 7

is also synthesized during persistent BCoV infection and may

explain why the very low abundance of leaderless negative-strand

genome is not detected. Taken together, these results suggest that

both the leader-containing and leaderless positive-strand genomic

RNA molecules coexist during BCoV persistent infection in cell

culture.

DI RNA with a Leader Sequence Translates with
Significantly Greater Efficiency than DI RNA without a
Leader Sequence in BCoV-infected Cells
All the viruses in the order Nidovirales contain a leader

sequence at the 59 end of the positive-strand genome [15]. The

identification of a previously unnoticed leaderless genomic RNA

during BCoV persistent infection raises a question with regard to

the biological significance of the leaderless genome. The replace-

ment of the a-globin mRNA 59 UTR with the MHV 59-leader

sequence has been suggested to cause an increase of the translation

efficiency for a-globin mRNA, indicating a probable requirement

of a leader sequence in sgmRNA translation [22]. Based on this

finding, we speculated that one of the functions of the leaderless

genomic RNA may be to downregulate viral translation. To

examine this possibility, we used BCoV DI RNA, a naturally

occurring DI RNA that has been employed as a surrogate for the

BCoV genome to analyze cis-acting elements required for

replication and translation [38–44]. To test the effect of the

leaderless genome on translation, BCoV DI RNAs BM65Ahis

(with the leader sequence) and D69-BM65Ahis (without the leader

sequence) containing the MHV 39 UTR were constructed [45]. In

addition, to specifically define the function of the leader sequence

in coronavirus translation without the influence of replication,

replication-incompetent DI RNAs BM65AhisD5 (with the leader

sequence) and D69-BM65AhisD5 (without the leader sequence) in

which the last 5 nt of the 39 UTR of both constructs were deleted

were also generated and tested (Figs. 2A and 2B). Histidine

residues were used as a tag in both constructs to test the translation

efficiency in the BCoV-infected cells by Western blot analysis.

Antibody specific to the histidine tag was used. The His-tagged

proteins expressed from BM65Ahis and D69-BM65Ahis are

shown in Fig. 2C, and a quantitation analysis of the translation

products (Fig. 2D) revealed that the expressed proteins from both

constructs increased over time. However, the translation efficiency

from D69-BM65Ahis was ,3- and ,2-fold less compared to that

from BM65Ahis at 4 and 8 hours posttransfection (hpt) (p,0.01),

respectively, although the translation efficiency between the two

constructs became closer at 21 hpt (66% vs 100%, p,0.05).

Because recombination between the input DI RNA and corona-

virus genome may occur under certain selection pressures [46–48],

the detected proteins may be translated from a recombinant

containing the coronavirus genome and DI RNA genes. To ensure

the expressed His-tagged protein arose specifically from DI RNA

Leaderless Genome during Coronavirus Persistence
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Figure 1. Identification of leaderless genomic RNA during BCoV persistent infection. (A) Strategy to identify positive-strand leaderless
genomic RNA. Poly(A)-containing RNA was selected from total cellular RNA extracted from BCoV-persistently infected cells, treated with alkaline
phosphatase, decapped with tobacco acid pyrophosphatase, head-to-tail ligated with T4 RNA ligase I, and used as the template for RT-PCR with the
BCoV 59 UTR-(+)-strand-specific primer 2: BCV107(+) (for RT) and BCoV 39 UTR-(2)-strand-specific primer 1: BCV39UTR1(2). (B) RT-PCR product
synthesized by the method described in Fig. 1A. RT-PCR products with a size of more than 200 bp (lanes 2–7, marked with black arrowhead) and with
a size of less than 200 bp (lanes 6–7, marked with white arrowhead) were observed. (C) The upper panel shows part of the first 88-nt sequence of the
59 UTR in the positive-strand BCoV genomic RNA. The positions (1 and 70) are given on the top of the sequence, and the intergenic sequence (IS)
UCUAAAC is underlined. The lower panel shows the sequence (shown in the negative strand) of the cDNA-cloned RT-PCR product with a size of more
than 200 bp from lane 7, as indicated with a black arrowhead in Fig. 1B. (D) The upper panel shows the sequence of the 59UTR on the positive-strand
BCoV genomic RNA, which lacks the first 69 nts; position 70 is given on the top of the sequence. The lower panel shows the sequence (shown in the
negative strand) of the cDNA-cloned RT-PCR product with a size of less than 200 bp from lane 7, as indicated with a white arrowhead in Fig. 1B. (E)
Control reactions to determine if the positive-strand leaderless genome is a degradation product. RT-PCR product was synthesized by the method
described in Fig. 1A except RNA sample was not treated with alkaline phosphatase and tobacco acid pyrophosphatase. RT-PCR products with a
length of more than 200 bp were detected. (F) Identification of negative-strand leaderless genomic RNA. Total cellular RNA was treated with tobacco
acid pyrophosphatase and ligated with T4 RNA ligase I. RT-PCR product was synthesized by the method described in Fig. 1A except that primer
BCV39UTR1(2) was used for RT. RT-PCR products with a size of more than 200 bp (lanes 2–7, marked with black arrowhead) were observed. M, ds
DNA size markers in nt pairs. dpi: days postinfection.
doi:10.1371/journal.pone.0082176.g001
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and not from a recombinant molecule, RT-PCR using primers

that anneal to the reporter sequence in DI RNA (for RT) and the

M protein gene in the coronavirus genome was used to test for a

potential recombinant generated during infection [49]. No RT-

PCR product was observed (Fig. 2E, lanes 2–3), thus ruling out the

expression of the protein from a recombinant molecule. These

results suggested that the translation of leaderless DI RNA is less

efficient than that of DI RNA with a leader during infection.

In addition to the present study (Fig. 2B, lanes 1–2), it has been

demonstrated that the leader sequence is required for DI RNA

replication [19]. To exclude the effect of replication on translation

and to specifically define the role of the leader sequence in

translation, replication-blocked DI constructs BM65AhisD5 (with

the leader sequence) and D69-BM65AhisD5 (without the leader

sequence) (Figs. 2A and 2B) were generated and examined in

BCoV-infected HRT-18 cells. The His-tagged proteins expressed

from both DI RNA constructs were also detected over time

(Fig. 2F). After quantitation (Fig. 2G), the translation efficiency

from D69-BM65AhisD5 was ,3- and ,2-fold less at 4 and 8 hpt

(p,0.01), respectively, when compared to that from BM65AhisD5,
whereas the translation efficiency between the two constructs was

closer at 21 hpt (85% vs 100%, p,0.05). The same primers

described above (Fig. 2E) were also employed to identify potential

recombination between DI RNA and the virus genome, and no

RT-PCR product was detected (Fig. 2H, lanes 2–3). These results

suggest that one of the functions of the leader sequence in the

coronavirus genome is to enhance translation. Taken together, it

appears that translation is decreased during BCoV infection as a

result of the lower translation efficiency of leaderless genomic

RNA.

The Leader Sequence Enhances the Efficiency of
Negative-strand DI RNA Synthesis
Following translation, the first step in coronavirus replication is

synthesis of the negative-strand copy of the genome that in turn

serves as a template for the synthesis of the genomic RNA positive

strand. The coronavirus leader sequence has been demonstrated

to be a cis-acting element critical for BCoV DI RNA replication

[19]. Although the role of the leader sequence in BCoV DI RNA

negative-strand RNA synthesis has not been identified, it has been

suggested that it is not required in (2)-strand synthesis of MHV DI

RNA using the CAT gene as a reporter [20]. To determine the

requirement of the leader sequence in BCoV DI RNA for

negative-strand RNA synthesis, the same BCoV DI RNA

constructs (Fig. 3A), BM65Ahis (with the leader sequence) and

D69-BM65Ahis (without the leader sequence) containing the

MHV 39 UTR, created for the translation assay shown in Fig. 2A

were used. A head-to-tail ligation method along with RT-PCR has

previously been used for detecting negative-strand BCoV DI RNA

[45,49]. In the present study, using head-to-tail ligation and qRT-

PCR, the negative-strand counterparts from both the leaderless

and leader-containing BCoV DI RNAs were also detected,

although the efficiency from D69-BM65Ahis was ,30% less than

that from BM65Ahis (Fig. 3B). Furthermore, the negative-strand

DI RNA detected was not from a potential DI RNA-coronavirus

genome recombinant because no RT-PCR product derived from

the recombinant was observed (Fig. 3C, lanes 2–3) with the

primers used in Figs. 2E and 2H [49]. Therefore, these results

suggest that the leader sequence is required for efficient negative-

strand BCoV DI RNA synthesis.

The Transcription Efficiency of DI RNA without the Leader
Sequence is Impaired Compared with that of DI RNA with
the Leader Sequence
During coronavirus infection, a nested set of sgmRNAs are

produced from which the coronavirus structural proteins are

translated; these structural proteins have been linked to viral

assembly and pathogenesis. To test whether the efficiency of

sgmRNA synthesis is modulated by the leaderless genome as a

template during infection, the intergenic sequence (IS), a

transcription signal required for sgmRNA synthesis [41,49,50–

51], and EGFP gene were engineered into BCoV DI RNA to

create the constructs DIEGFP (with the leader sequence) and

D69EGFP (without the leader sequence) (Fig. 4A) [49]. After

transfection of DIEGFP into BCoV-infected HRT-18 cells, a 120-

nt RT-PCR product was obtained using a primer set that anneals

to the leader sequence and EGFP sequence; this product first

appeared at 4 hpt and was abundantly present throughout the 48-

h period of the experiment (Fig. 4B, lanes 5–9, arrowhead).

Sequence analysis of the cloned 120-nt molecule obtained at

12 hpt confirmed the synthesis of sgmRNA as having come from

DIEGFP, based on the leader-body junction sequence (Fig. 4C,

left panel). A 120-nt RT-PCR product was also obtained with the

same primer set from BCoV-infected HRT-18 cells transfected

with D69EGFP. This product first appeared at 1 hpt and was

present throughout the 48-h experiment (Fig. 4B, lanes 12–17).

Sequence analysis revealed the leader-body junction site in the

cloned 120-nt RT-PCR product, confirming that the observed

sgmRNA was synthesized from D69EGFP (Fig. 4C, right panel).

To confirm that the sgmRNA RT-PCR product was derived from

DI RNA constructs rather than a recombinant between the

genome and DI RNA as described above in Figs. 2E, 2H, and 3C,

primers annealing to the BCoV M protein gene and DI RNA

EGFP gene (for RT) were used in RT-PCR to detected a potential

recombined product [49]. No RT-PCR product was identified

(Fig. 4B, lanes 19–20) indicating that the synthesized sgmRNAs

were from the input DI RNAs and not from a recombinant. After

three rounds of independent experiments, the efficiency of

sgmRNA synthesis from DIEGFP and D69EGFP was roughly

quantitated (Fig. 4D) according to the intensity of the RT-PCR

products and was normalized with the levels of internal controls at

the same time point to ensure the samples were compared under

the same conditions. The internal controls included DI RNA

DIEGFP or D69EGFP, helper virus N sgmRNA, and 18S rRNA

(Fig. 4B). As shown in Fig. 4D, the efficiency of sgmRNA synthesis

from D69EGFP was less than that from DIEGFP during 4 h to

48 h of infection. Taken together, the results suggest that a

leaderless genome carrying a transcription signal is able to serve as

a template for sgmRNA synthesis; however, sgmRNA synthesis

from the leaderless genome (D69EGFP) is less efficient than that

from the leader-containing genome (DIEGFP).

To ascertain whether the encoded sgmRNA from the leaderless

genome is translated, fluorescing HRT-18 cells were obtained as

evidence of the expression of EGFP-containing sgmRNA. With

respect to the upstream ORFs the EGFP ORF in both the

D69EGFP and DIEGFP templates is in the 21 reading frame;

therefore, EGFP expression from a fusion protein was not

expected and the fluorescence observed from HRT-18 cells could

only have resulted from expression of the encoded EGFP-

containing sgmRNA. As predicted, EGFP fluorescence was

observed in BCoV-infected HRT-18 cells transfected with either

DIEGFP or D69EGFP (Fig. 4E, panels 2 and 4) but not in

DIEGFP- or D69EGFP-transfected mock-infected HRT-18 cells

(Fig. 4E, panels 1 and 3). The percentage of fluorescing cells was

,0.8% for DIEGFP and ,0.19% for D69EGFP. Together, the

Leaderless Genome during Coronavirus Persistence
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results suggest that the sgmRNA synthesized from the leaderless

genome is able to serve as a template for translation although the

percentage of fluorescing cells observed from D69EGFP (,0.19%)

was less than that for DIEGFP (,0.8%). This result is also

consistent with sgmRNA synthesis quantitated by RT-PCR

(Fig. 4D) in which synthesis of sgmRNA from the leaderless DI

RNA was also diminished.

Discussion

Synthesis of a 39 co-terminal nested set of sgmRNAs is a

common feature of members of the Nidovirales [9,15,52–53]. In

Figure 2. Effect of leaderless DI RNA on translation. (A) DI RNA constructs with a His-tag used for replication and translation assay. Each DI RNA
construct has an open reading frame (open box), followed by an in-frame 18-nt His-tag coding region (stippled box) and MHV 39 UTR. (B) Replication
of DI RNA by Northern blot assay. RNA samples collected at 48 hpi of VP1 were used to determine the replication of the DI RNA. (C) and (F) Protein
expression from the DI RNA constructs. BCoV-infected HRT-18 cells were transfected with the indicated DI RNA construct at 2 hpi, and total
intracellular proteins or RNA was extracted at 4, 8, and 21 hpt for analysis. Western blotting was used to measure the abundance of His-tagged
protein and b-actin. The levels of DI RNA, N sgmRNA, and 18S rRNA were measured by Northern blotting. (D) and (G) Quantitation analysis of the His-
tagged protein from individual DI RNA constructs at different time points. (E) and (H) RT-PCR to detect a potential recombinant between the BCoV
genome and DI RNA. The primers MHV39UTR2(+), which anneal to the MHV 39 UTR and was used for RT, and M3(2), which anneal to the BCoV M
protein gene, were used for PCR to detect potential recombination between the BCoV genome and BM65Ahis (Fig. 2E, lane 2), D69-BM65Ahis (Fig. 2E,
lane 3), BM65AhisD5 (Fig. 2H, lane 2), or D69-BM65AhisD5 (Fig. 2H, lane 3). The recombinant DNA of 1,639 nt shown in lane 4 of Figs. 2E and 2H was
generated by overlap RT-PCR and was used as a size marker for the product generated using the primers MHV 39 UTR2(+) and M3(2). The values (D)
and (G) represent the mean6SEM of three individual experiments. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0082176.g002

Figure 3. Effect of leaderless DI RNA on negative-strand synthesis. (A) DI RNA constructs used to test the efficiency of negative-strand DI
RNA synthesis. (B) Quantitation analysis of negative-strand DI RNA synthesis, as measured by qRT-PCR. BCoV-infected HRT cells at 2 hpi were
transfected with the indicated DI RNA, and total cellular RNA was extracted at 8 hpt to determine the efficiency of negative-strand synthesis for
BM65Ahis and D69-BM65Ahis. Controls for qRT-PCR: control 1, total cellular RNA from mock-infected cells; control 2, total cellular RNA from BCoV-
infected cells; control 3, total cellular RNA from BM65Ahis -transfected mock-infected cells; control 4, total cellular RNA from D69-BM65Ahis -
transfected mock-infected cells; control 5, a mixture of BCoV-infected cellular RNA extracted at 8 hpt and BM65Ahis transcript; control 6, a mixture of
BCoV-infected cellular RNA extracted at 8 hpt and D69-BM65Ahis transcript. (C) RT-PCR to detect potential recombination between the BCoV
genome and DI RNA. The same strategy described in Fig. 2E and 2H was used here for the detection of potential recombination between the BCoV
genome and BM65Ahis (Fig. 3C, lane 2) or D69-BM65Ahis (Fig. 3C, lane 3). A recombinant DNA of 1,639 nt was produced to serve as a size marker, as
described for Fig. 2E and 2H. The values (B) represent the mean6SEM of three individual experiments. *p,0.05.
doi:10.1371/journal.pone.0082176.g003
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Figure 4. Effect of coronaviral leaderless DI RNA on transcription. (A) Constructs of DI RNA with the insertion of the intergenic sequence (IS)
followed by the EGFP gene to test the effect of leaderless DI RNA on coronavirus transcription. (B) RT-PCR products with a length of 120 nt were
observed from DIEGFP- (lanes 5–9, arrowhead) or D69EGFP- (lanes 12–17, arrowhead) transfected BCoV-infected cells. 18S rRNA, DI RNA, and helper
virus N sgmRNA were used as internal controls. RNA extracted at 0 hpt was from mock-transfected BCoV-infected HRT-18 cells. To detect a potential

Leaderless Genome during Coronavirus Persistence
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addition to this feature, the 59 end of all sgmRNAs in arteri- and

coronaviruses possesses a common leader sequence derived from

the 59 terminus of the genomic RNA [2,7–9,15,17,54]. Although

ronivirus GAV sgmRNAs and torovirus EToV sgmRNAs 3, 4,

and 5 have been identified as lacking a leader sequence, leaderless

genomic RNA has not been documented in all members of

Nidovirales [5–6]. In this study, we found for the first time a

leaderless genomic RNA in coronavirus-infected cells at a late

stage of persistent coronavirus infection, and this finding prompted

us to analyze the functional role of the leaderless genome in

coronavirus infection.

The RNA-dependent RNA polymerase (RdRp) template

switching event that occurs during negative-strand synthesis to

produce a negative-strand leader template on negative-strand

sgmRNA molecules may yield a mechanistic explanation for

synthesis of the leaderless genomic RNA. This notion is supported

by the following previous findings. First, it has been suggested that,

for equine torovirus sgmRNAs 3–5, the body intergenic sequences

on the positive-strand genome sever as terminators of transcription

during negative-strand synthesis. In turn, the intergenic sequences

at the 39 end of the negative-strand of sgmRNAs 3–5 are used as

promoters for the synthesis of the sgmRNA positive strand

resulting in the synthesis of leaderless sgmRNAs 3–5 [6,55]. This

model may also be applied for the synthesis of leaderless genomic

RNA. Second, the leaderless genomic RNA observed in this study

lacked the first 69 nt of the entire 59 UTR sequence, which is 4 nt

beyond the 65-nt leader. That is, the first nt of the 59-end

leaderless genomic RNA is the 70th nt of the 59-end leader-

containing genomic RNA. Interestingly, the high-frequency

crossover region of leader switching during negative-strand BCoV

DI RNA synthesis is from the 70th to 93th nt [16]; that is, the 39-

most nucleotide of the crossover region on the negative-strand

BCoV DI RNA in that study was the initiation site of the positive-

strand leaderless genomic RNA in the present study. Accordingly,

based on these findings, the intergenic sequence may play the dual

roles of promoter and terminator [6,55], and the 59-most nt of the

crossover region on the positive-strand BCoV DI RNA [16] is the

59-terminal nt of the leaderless genomic RNA observed in this

study. Therefore, we propose the following model for how the

leader-containing and leaderless genomes are generated (Fig. 5).

(1) During negative-strand genomic RNA synthesis using positive-

strand genomic RNA as a template, polymerase strand switching

would occur at any site within the crossover region to acquire the

leader sequence. This would then lead to the synthesis of negative-

strand leader-containing genomic RNA. The synthesized negative-

strand leader-containing genomic RNA would in turn be

employed as a template for the synthesis of positive-strand

leader-containing genomic RNA (Fig. 5A). (2) If RdRp template

switching does not occur, the intergenic sequence downstream of

the leader sequence on the positive-strand genomic RNA would

serve as a terminator, and the newly synthesized negative-strand

genomic RNA would stops at the 70th nt. The 70th nt is a site

located at the 59-most crossover region with respect to the positive-

strand genomic RNA and this process would result in a leaderless

negative-strand genomic RNA for which the 39-end 69-nt leader

sequence is missing. The newly synthesized negative-strand

leaderless genomic RNA would then serve as a template for the

synthesis of a positive-strand leaderless genomic RNA (Fig. 5B).

Although the negative-strand leaderless genomic RNA was not

detectable in this study (Fig. 1F), the finding of the leaderless

sgmRNA 7 negative strand which also lacked the 59-terminal

69 nt (Fig. S1) provides further evidence in support of this model.

Since the negative-strand leaderless genomic RNA was not

identified in the current study (Fig. 1F), an alternative model

could be that after synthesis of the leader-containing negative-

strand genomic RNA during positive-strand RNA synthesis, the

coronaviral polymerase recognizes the 39-proximal intergenic

sequence on the negative-strand leader-containing genomic

template as a promoter and internally initiates synthesis of

positive-strand leaderless genomic RNA (Fig. 5C). Further studies

are required to elucidate a detailed mechanism of how the

leaderless genome is synthesized during BCoV persistence.

The leaderless genomic RNA identified during BCoV persistent

infection is not likely to be an artifact or a cleaved product because

(1) the head-to-tail RT-PCR product of the leaderless genome was

observed only at 67 and 97 dpi but not at other time points and (2)

RT-PCR product with a length smaller than 200 bp was not

observed when extracted RNA was not treated with tobacco acid

pyrophosphatase as shown in Fig. 1E. In addition, head-to-tail

ligation is performed at the viral RNA and not at the cDNA level.

Therefore, even if a premature cDNA is produced the PCR

product is not likely to be detected since the primers used anneal to

both sides (59 UTR and 39UTR) of the poly(A) tail junction

(Fig. 1A). Although the reason why the coronavirus leaderless

positive-strand genomic RNA is not observed during acute

infection is unknown, we speculate that since there is highly

active translation taking place and the factors involved in template

switching are in active that the overall process leads to the

predominant synthesis of leader-containing RNA. The over-

whelming abundance of leader-containing genomic RNA may

subsequently lead to undetectable leaderless genomic RNA due to

the feature of PCR competition [56]. In contrast, replication may

be limited during coronavirus persistence [37], and the leaderless

RNA can gradually be detected (Fig. 1B) because of the reduced

number of leader-containing RNA molecules synthesized.

The discovery of a leaderless genome during coronavirus

persistent infection in HRT-18 cells has led us to attempt a

systematic analysis of leaderless genome behavior. It has been

shown that substitution of the a-globin mRNA 59 UTR with the

MHV leader sequence enhances the translation of a-globin
mRNA [22]. Consistent with this result, in the present study

deletion of the leader sequence in BCoV DI RNA decreased the

genome translation efficiency. In contrast to the results indicating

that the MHV DI RNA leader sequence is nonessential for

negative-strand synthesis, the BCoV DI RNA leader sequence was

required for the efficient synthesis of its negative-strand counter-

recombinant between the BCoV genome and input DI RNA, the primers EGFP1(+), which anneals to the EGFP sequence and was used for RT, and
M3(2), which anneals to the BCoV M protein gene, were used for PCR to detect potential recombination between the BCoV genome and DIEGFP
(lane19) or D69EGFP (lane 20). A recombinant DNA of 1,309 nt (lane 21) was produced by overlap RT-PCR and was used as a size marker for the
product generated using the primers EGFP1(+) and M3(2). (C) Sequence of the cDNA-cloned 120-nt RT-PCR product from Fig. 4B, lane 7 (left panel)
and lane 15 (right panel) showing the leader-body junction (indicated with vertical bar), the IS UCUAAAC (indicated with thin line), and the AUG
translation start codon (indicated with thick line) for EGFP. (D) Quantitation analysis of the 120-nt RT-PCR products from the individual DI RNA
constructs shown in Fig. 4B. The efficiency of sgmRNA synthesis was normalized to the levels of the internal controls including 18S rRNA, DI RNA, and
helper virus N sgmRNA. (E) Fluorescence of EGFP expressed from DIEGFP- or D69EGFP-derived sgmRNA. Panels 1 and 3 are mock-infected cells
transfected with DIEGFP and D69EGFP, respectively; panels 2 and 4 are BCoV-infected cells transfected with DIEGFP and D69EGFP, respectively. In all
cases, the cells were examined for fluorescence at 24 hpt. **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0082176.g004
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part in the present study. Additionally, different from the results in

which the deletion of the sequence between nt 25 and 59 within

the MHV DI RNA leader sequence almost blocked sgmRNA

synthesis [21], the results of the present study suggest that the

leaderless BCoV DI RNA was still able to synthesize sgmRNAs

although the efficiency of sgmRNA synthesis from the BCoV

leaderless DI RNA was ,2- to ,3- fold less than that from the

leader-containing BCoV DI RNA during the 48 h of infection

(Fig. 4D). Note that the decreased transcription efficiency from

BCoV leaderless DI RNA at earlier times may attribute to the lack

of leader sequence but not the number of DI RNA since the

amount of the templates between input leader-containing and

leaderless DI RNA was almost the same at 4 and 8 hpt as shown in

Fig. 4B. However, in addition to the deletion of leader sequence,

the less templates of leaderless DI RNA used for transcription

could also be a factor to impair the efficiency of sgmRNA synthesis

at later times of infection despite that the quantitated efficiency of

transcription was normalized with the internal controls (Fig. 4B).

The reasons for the various observations remain unclear; however,

we speculate that the experimental approaches may be largely

responsible for the different outcomes. Regardless, the leader

sequence on genomic RNA is undoubtedly a crucial cis-acting

element required for translation, replication (including negative-

strand synthesis), and transcription during infection using BCoV

DI RNA as a test system.

With regard to the significance of the leaderless genomic RNA

identified during coronavirus persistence, the 59 UTR of many

positive-strand RNA viruses has been suggested to function in

translation, replication, and transcription [57–65], and alterations

of critical elements in the 59 UTR have been linked to the

persistence of coronaviruses [23–24]. For BCoV, the attenuated

sgmRNA translation efficiency during persistence is associated

with 59 intraleader mutations of sgmRNA molecules [23], whereas

mutations in the 59 UTR of the MHV genome enhance

translation and the subsequent replication and transcription

during persistence [24]. Because functional analyses have revealed

that the leader sequence is critical for translation, replication, and

transcription of the viral genome in BCoV, as determined in the

present study, we propose that the significance of leaderless

genomic RNA identified during coronavirus persistence is to

restrict the expression of viral genes, leading to reduced cytopathic

effects, and ultimately may be associated with the establishment of

persistent infection. As mentioned above, the selection of leaders

with an intraleader ORF in BCoV sgmRNAs has been indicated

as a mechanism to maintain BCoV persistence [23]. Therefore, in

addition to the finding of leaderless genomic RNA in the present

study, at least two structural alterations in the 59 UTR of the

genome and sgmRNA have been employed by BCoV to attenuate

the gene expression that may correlate to the persistent infection of

BCoV.

Figure 5. Schematic hypothetical model for the synthesis of
leader-containing and leaderless genomic RNA during BCoV
persistent infection. (A) Model for the synthesis of leader-containing
genomic RNA. During negative-strand synthesis (indicated in gray)
using positive-strand genomic RNA as a template (indicated in black),
coronavirus polymerase switches template at the crossover region to
acquire a leader sequence, generating negative-strand genomic RNA
with the leader sequence. Alternatively, coronavirus polymerase may
stay on the same positive-strand template to complete the synthesis of
negative-strand genomic RNA containing a leader sequence. The
synthesized negative-strand genomic RNA is then employed as a
template to generate positive-strand genomic RNA with a leader
sequence. The leader sequence is indicated with an open rectangle, and
the polymerase crossover region is indicated with a dashed line. (B)
Model for the synthesis of positive-strand leaderless genomic RNA
using negative-strand leaderless genome as a template. Coronavirus
polymerase employs positive-strand genomic RNA as a template to
synthesize negative-strand genomic RNA. However, if template
switching does not occur within the crossover region, the intergenic
sequence on the positive-strand genomic RNA may serve as a
terminator. Polymerase then falls off after copying the 39-most
nucleotide (cytosine) of the intergenic sequence UCUAAAC at position

70 on the positive-strand genomic RNA, which is also the 59-most
nucleotide of the crossover region on the positive-strand genomic RNA
with respect to template switching during negative-strand synthesis,
leading to the synthesis of leaderless negative-strand genomic RNA.
The resulting leaderless negative-strand genomic RNA in turn serves as
a template for the generation of leaderless positive-strand genomic
RNA. (C) Model for the synthesis of positive-strand leaderless genomic
RNA using negative-strand leader-containing genome as a template.
After the synthesis of the leader-containing negative-strand genomic
RNA, coronavirus polymerase recognizes the 39-proximal intergenic
sequence on the negative-strand leader-containing genomic template
as a promoter and internally initiates the synthesis of positive-strand
leaderless genomic RNA.
doi:10.1371/journal.pone.0082176.g005
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In this study, we discovered previously unidentified leaderless

genomic RNA during BCoV persistent infection in cell culture,

providing additional evidence that the members of Nidovirales

may share a common ancestor. Functional analyses of the

leaderless genomic RNA using BCoV DI RNA revealed that the

leader sequence on the genomic RNA is required for coronaviral

translation, replication, and transcription. Whether the leaderless

genome is selected and contributes to the establishment of

persistence needs to be further determined. Many aspects deriving

from this study also need to be resolved. (1) Is leaderless sgmRNA

synthesized during coronavirus persistent infection in addition to

the leaderless genome discovered in this study? (2) Are there other

mutations or structural changes in the BCoV genome or

subgenome related to the maintenance of BCoV persistent

infection? (3) Are there sequence alterations selected in the

replicase gene that may be associated with the synthesis of

leaderless genomic RNA? The elucidation of these questions will

contribute to the further understanding of coronavirus persistence.

Materials and Methods

Establishment of Persistently BCoV-infected HRT Cells
A DI RNA-free stock of the Mebus strain of BCoV (GenBank

accession no. U00735) was plaque-purified three times and grown

in a HRT-18 cell line, as described [54,66–67]. Persistently BCoV-

infected HRT-18 cells were established by infection at a

multiplicity of infection (MOI) of 5. After acute infection, the

surviving cells (,10%) were passaged at every fourth day

thereafter. Total cellular RNA was extracted with TRIzol

(Invitrogen) during acute and persistent infection.

Head-to-tail Ligation of Viral RNA to Determine the
Terminal Sequence of Genomic RNA
A head-to-tail ligation method has previously been used to

identify the terminal features of the RNA genome [49,68]. To

determine the terminal sequence of viral positive-strand genomic

RNA during BCoV persistence, RNA population with the poly(A)

tail was enriched from a 20-mg sample of extracted total cellular

RNA by Sera-Mag Oligo(dT)-coated Magnetic Particles (Thermo

Scientific), treated with alkaline phosphatase (New England

Biolabs) and extracted with phenol-chloroform. The extracted

RNA in 25 ml of water was combined with 3 ml of 10X buffer and

10 U of (in 1 ml) tobacco acid pyrophosphatase (Epicentre) to de-

block the 59 capped end of the RNA. Following decapping, RNA

was extracted with phenol-chloroform. The extracted RNA in

25 ml of water, 3 ml of 10X ligase buffer, and 2 U (in 2 ml) of T4
RNA ligase I (New England Biolabs) were combined, and the

mixture was incubated for 16 h at 16uC. To determine whether or

not the leaderless genome is a degradation product, the RNA

sample was also prepared as described above but without

treatment of alkaline phosphatase and tobacco acid pyrophospha-

tase. The ligated RNA was Phenol-chloroform-extracted and used

for the RT reaction with SuperScript III reverse transcriptase

(Invitrogen) and PCR with AccuPrime Taq DNA polymerase

(Invitrogen). To determine the 59-terminal features of the positive-

strand genomic RNA, primer 2: BCV107(+), which binds nt 107–

129 from the 59 end of the BCoV positive-strand, was used for RT;

for PCR, 5 ml of the resulting cDNA mixture was used in a 50-ml
reaction with primer 2: BCV107(+) and primer 1:

BCV39UTR1(2), which anneal to nt 47–70 from the poly(U) tail

on the negative-strand of the BCoV 39 UTR. To determine the

terminal sequence of viral negative-strand genomic RNA and

sgmRNA, total cellular RNA was treated with tobacco acid

pyrophosphatase (Epicentre), ligated with T4 RNA ligase I (New

England Biolabs) and primer 1: BCV39UTR1(2) was used for

RT; for PCR, primers BCV39UTR(2) and BCV107(+), and

primers BCV39UTR(2) and RYN(+) were used for determining

terminal sequence of negative-strand genomic RNA and sub-

genomic mRNA, respectively. The resulting 50-ml PCR mixture

was heated to 94uC for 2 min and subjected to 50 cycles of 30 s at

94uC, 30 s at 55uC, and 30 s at 72uC. The predicted PCR product

was sequenced to determine the 59-terminal features of the

positive-strand genomic RNA. All primers used in this study are

listed in Table S1.

Plasmid Constructs
Construction of pBM65Ahis has been described previously

[19,49]. To generate the pD69-BM65Ahis construct, an overlap

PCR was employed to delete the first 69 nt of BCoV 59 UTR [51].

For this, oligonucleotides pGEMNDEI(2) and NL(+) were used

with pBM65A DNA in the first PCR, and oligonucleotides NL(2)

and RYN(+) were used with pBM65A DNA in the second PCR.

Oligonucleotides pGEMNDEI(2) and RYN(+) were used with the

products of the first two reactions in a third PCR to amplify a

1235-nt product that was cloned into the TOPO XL vector

(Invitrogen). From this, a 933-nt fragment obtained by digestion

with NgoMIV and XbaI was cloned into NgoMIV- and XbaI-

linearized psBM65A to produce construct pD69-BM65Ahis. To

generate pBM65AhisD5, oligonucleotides TGEV 7(2) and D5(+)
were used with pBM65Ahis DNA in the first PCR, and

oligonucleotides D5(2) and DI reverse(+) were used with

pBM65Ahis DNA in the second PCR; oligonucleotides TGEV

7(2) and DI reverse(+) were used in a third PCR with the products

of the first two reactions to amplify a 1248-nt product that was

cloned into the TOPO XL vector (Invitrogen). Next, an 801-nt

fragment obtained by digestion with SpeI and MluI was cloned into

SpeI- and MluI-linearized pBM65Ahis to produce the pBM65A-

hisD5 mutant. To construct pD69-BM65AhisD5, an 801-nt

fragment obtained by digestion of pBM65AhisD5 with SpeI and

MluI was cloned into SpeI- andMluI-linearized pD69-BM65Ahis to

produce the pD69-BM65AhisD5 mutant. Construct pDIEGFP,

formally called pDIRNA-3, with the template-switching signal

(intergenic sequence; IS) and EGFP gene was previously described

[49]. To generate construct pD69EGFP, pD69-BM65Ahis was

digested with XbaI- and NgomIV, and the digested fragment

carrying a 69-nt deletion of the BCoV 59 UTR was cloned into

XbaI- and NgomIV -linearized pDIEGFP.

Western Blot Analysis for in vivo DI RNA Translation
The DNA constructs were linearized with MluI, transcribed

in vitro with the mMessage mMachine T7 transcription kit

(Ambion) according to the manufacturer’s instructions, and passed

through a Biospin 6 column (Bio-Rad), followed by transfection

[41]. For transfection, HRT-18 cells in 35-mm dishes at ,80%

confluency (,86105 cells/dish) were infected with BCoV at a

multiplicity of infection of 5 PFU per cell and transfected 2 h later

with 3 mg of transcript RNA using Lipofectin (Invitrogen) [19].

After transfection, proteins from HRT-18 cell lysates were

harvested, electrophoresed through 12% SDS-PAGE gels, and

electrotransferred to nitrocellulose membranes (Amersham Bio-

sciences). DI RNA fusion proteins were detected using an antibody

specific to the histidine tag or b-actin (Serotec) as the primary

antibody and goat anti-mouse IgG conjugated to HRPO as the

secondary antibody (Jackson Laboratory). The proteins detected

were visualized using Western LightningTM Chemiluminescence

Reagent (Perkin Elmer NEL105) and X-ray film (Kodak) [69].
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Real-Time RT-PCR Analysis of Negative-strand DI RNA
Synthesis
To analyze the synthesis efficiency of negative-strand DI RNA

[49], HRT-18 cells in 35-mm dishes at ,80% confluency were

infected with BCoV at a multiplicity of infection of 5 PFU per cell.

After 2 h of infection, 3 mg of DI RNA transcript was transfected

into the BCoV-infected HRT cells; total cellular RNA was

extracted with TRIzol (Invitrogen) at 8 hpt. A 10-mg sample of

extracted total cellular RNA in 25 ml of water was combined with

3 ml of 10X buffer and 10 U of (in 1 ml) tobacco acid

pyrophosphatase (Epicentre) to de-block the 59 capped end of

the RNA. Following decapping, RNA was extracted with phenol-

chloroform, heat-denatured at 95uC for 5 min, and then quick-

cooled. A 3-ml aliquot of 10X ligase buffer and 2 U (in 2 ml) of T4
RNA ligase I (New England Biolabs) were added, and the mixture

was incubated for 16 h at 16uC. After ligation, RNA was phenol-

chloroform-extracted and quantitated, and 1 mg of ligated RNA

was used for an RT reaction to synthesize cDNA with SuperScript

III reverse transcriptase (Invitrogen). The real-time PCR ampli-

fication was performed using TaqManHUniversal PCR Master

Mix (Applied Biosystems) according to the manufacturer recom-

mendations with a LightCyclerH 480 instrument (Roche Applied

Science) and primers MHV6(2) and BCV23-40(+) (Table S1). To
quantitate the synthesis of negative-strand DI RNA, dilutions of

plasmids containing the same gene as the detected RT-PCR

product of the negative-strand DI RNA were always run in

parallel with the quantitated cDNA for use as standard curves (the

dilutions ranged from 108 to 10 copies of each plasmid). The

efficiency of the negative-strand RNA synthesis was normalized to

the levels of the internal controls including 18S rRNA, DI RNA,

and helper virus N sgmRNA; the primers used for these internal

controls are described in Table S1. The reactions included an

initial pre-incubation at 95uC for 5 min, followed by 45

amplification cycles of 95uC for 15 s and 60uC for 60 s.

Northern Assay for DI RNA Replication
HRT-18 cells in 35-mm dishes at ,80% confluency (,86105

cells/dish) were infected with BCoV at a multiplicity of infection of

5 PFU per cell. After 2 h of infection, 3 mg of transcript were

transfected into the BCoV-infected HRT-18 cells. The superna-

tant was harvested at 48 hpt, and 500 ml was used to infect freshly

confluent HRT-18 cells in a 35-mm dish (virus passage 1, VP1).

Total cellular RNA was extracted with TRIzol (Invitrogen) at

48 hpi (VP1), and 10 mg of total RNA was electrophoresed

through a formaldehyde-agarose gel. RNA was transferred from

the gel to a Nytran membrane by vacuum blotting, and the blots

were probed with the TGEV8(+) oligonucleotide, which was 59-

end labeled with 32P. The probed blot was exposed to Kodak

XAR-5 film for 16 h at 280uC. For quantitating DI RNA

replication, the probed blots were analyzed using a Packard

InstantImager Autoradiography System.

Detection of DI RNA-derived sgmRNA
The transcripts used for the detection of sgmRNA from DI

RNA were synthesized from MluI-linearized pDIEGFP and

pD69EGFP in vitro with the mMessage mMachine T7 transcrip-

tion kit (Ambion) according to the manufacturer’s instructions. For

transfection, HRT-18 cells in 35-mm dishes at ,80% confluency

(,86105 cells/dish) were infected with BCoV at a multiplicity of

infection of 5 PFU per cell and then transfected 2 h later with 3 mg
of transcript using Lipofectin (Invitrogen) [19]. For detection of

EGFP expressed from sgmRNA, mock-infected or BCoV-infected

HRT-18 cells transfected with DIEGFP and D69EGFP at 24 hpt

were subject to EGFP determination using fluorescence micros-

copy (Olympus, Japan). For detection of sgmRNA derived from

DI RNA, total RNA was extracted from HRT-18 cells using

TRIzol (Invitrogen) at the time points indicated in Fig. 4B. A 5-mg
sample of extracted total cellular RNA was reversed transcribed

with SuperScript III reverse transcriptase (Invitrogen) and

oligonucleotide EGFP2 (+), which is complementary to the

positive strand of the EGFP gene. The PCR reactions were

performed with AccuPrime Tag DNA polymerase (Invitrogen) and

oligonucleotides leader20(2), which is complementary to the

negative-strand leader sequence, and EGFP1(+), which is comple-

mentary to the positive strand of the EGFP gene; the conditions

were 94uC for 2 min and 29 cycles of 30 s at 94uC, 30 s at 55uC,
and 30 s at 72uC. The ,150-bp PCR products were gel-purified,

cloned into TOPO XL PCR (Invitrogen), and sequenced.

Supporting Information

Figure S1 Identification of negative-strand leaderless
sgmRNA 7 during BCoV persistent infection. (A) Total

cellular RNA extracted from BCoV-persistently infected cells was

treated with tobacco acid pyrophosphatase and ligated with T4

RNA ligase I. The RT-PCR product was synthesized with primers

BCV39UTR1(2) (for RT) and RYN(+). RT-PCR products with a

larger size of ,300 bp (lanes 2–7, marked with black arrowhead)

and with a smaller size of ,200 bp (lanes 5–7, marked with white

arrowhead) were observed. (B) The upper panel shows part of the

first 88-nt sequence of the 59 UTR in the negative-strand BCoV

sgmRNA 7. The positions (1 and 70) are given on the top of the

sequence, and the intergenic sequence (IS) AGAUUUG is

underlined. The lower panel shows the sequence (shown in the

negative strand) of the cDNA-cloned RT-PCR product with a size

of ,300 bp from lane 7, as indicated with a black arrowhead in

Fig. S1A. (C) The upper panel shows the sequence of the 59UTR

on the negative-strand BCoV sgmRNA 7, which lacks the first

69 nts; position 70 is given on the top of the sequence. The lower

panel shows the sequence (shown in the negative strand) of the

cDNA-cloned RT-PCR product with a size of ,200 bp from lane

7, as indicated with a white arrowhead in Fig. S1A. M, ds DNA

size markers in nt pairs. dpi: days postinfection.

(TIF)

Table S1 Oligonucleotides used for this study.

(TIF)
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