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Abstract

Combined targeting of the MAPK and PI3K signalling pathways in cancer may be necessary for optimal therapeutic activity.
To support clinical studies of combination therapy, 39-deoxy-39-[18F]-fluorothymidine ([18F]-FLT) uptake measured by
Positron Emission Tomography (PET) was evaluated as a non-invasive surrogate response biomarker in pre-clinical models.
The in vivo anti-tumour efficacy and PK-PD properties of the MEK inhibitor PD 0325901 and the PI3K inhibitor GDC-0941,
alone and in combination, were evaluated in HCT116 and HT29 human colorectal cancer xenograft tumour-bearing mice,
and [18F]-FLT PET investigated in mice bearing HCT116 xenografts. Dual targeting of PI3K and MEK induced marked tumour
growth inhibition in vivo, and enhanced anti-tumour activity was predicted by [18F]-FLT PET scanning after 2 days of
treatment. Pharmacodynamic analyses using the combination of the PI3K inhibitor GDC-0941 and the MEK inhibitor PD
0325901 revealed that increased efficacy is associated with an enhanced inhibition of the phosphorylation of ERK1/2, S6 and
4EBP1, compared to that observed with either single agent, and maintained inhibition of AKT phosphorylation.
Pharmacokinetic studies indicated that there was no marked PK interaction between the two drugs. Together these results
indicate that the combination of PI3K and MEK inhibitors can result in significant efficacy, and demonstrate for the first time
that [18F]-FLT PET can be correlated to the improved efficacy of combined PI3K and MEK inhibitor treatment.
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Introduction

Numerous small molecule inhibitors of specific signal transduc-

tion pathways have been developed; in particular, the PI3K

pathway, a major survival pathway, and the MAPK pathway, a

major mitogenic pathway, have been targeted in cancer. However,

single agent clinical activity with these inhibitors has in general

been modest, and hence combinations are being evaluated [1].

Many combinations of PI3K and MAPK inhibitors have exhibited

promising activity in vitro but some of the most impressive results

have been seen in vivo.

As a single agent, the pan PI3K inhibitor GDC-0941 has

modest preclinical in vivo efficacy, with dose-dependent activity

over the range 25-150 mg/kg/day in the U87MG glioblastoma

xenograft model [2]. Subsequently, doses of 75-150 mg/kg have

been shown to result in tumour growth inhibition in a range of

human tumour xenograft models including tumours that are

PIK3CA mutant, PTEN null, EGFR mutant or wild type, with an

associated decrease in AKT and S6 phosphorylation [2,3,4,5,6].

GDC-0941 displayed promising preclinical pharmacokinetics with

good oral bioavailability (78% in mice), and on the basis of these

data and the predicted pharmacokinetics in humans [2,7], is now

undergoing Phase I and II clinical trials as a single agent or in

combination with chemotherapeutic agents [8,9].

The allosteric MEK inhibitor PD 0325901 also exhibited

promising selective pre-clinical anti-cancer efficacy in vivo as a

single agent, doses of 10–25 mg/kg causing significant tumour

growth inhibition and in many cases regression, in a range of

murine and human tumour xenograft models, including those

which were BRAF or KRAS wild type or mutant

[6,10,11,12,13,14]. Growth inhibition achieved with high doses

of PD 0325901 was accompanied by a decrease in ERK1/2

phosphorylation, which was maintained even when lower doses of

1.5–3 mg/kg PD 0325901 were used; however, these lower doses

were only able to cause a modest tumour growth delay

[6,10,11,12]. Oral and i.v. doses of PD 0325901 were shown to

have comparable bioavailability, were non-toxic at ,100 mg/kg,
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and resulted in a dose-dependent inhibition of ERK1/2

phosphorylation in rat liver and lungs due to inhibition of MEK

[15]. However, clinical trials revealed that single agent PD

0325901 was associated with ocular and neurological toxicity, such

as retinal vein occlusion [16], and thus clinical trials using single

agent PD 0325901 have been terminated [8].

As the MEK inhibitor PD 0325901 appeared promising as a

single agent but showed toxicity in clinical trials, and tumour

growth inhibition was modest with the PI3K inhibitor GDC-0941

even at high doses, these and other PI3K and MEK inhibitors are

now being investigated clinically in combination studies [8]. To

this end, PD 0325901 is being studied in combination with the

PI3K/mTOR inhibitor PF-04691502, and GDC-0941 is in a

clinical trial in combination with the MEK inhibitor GDC-0973

[8].

In vivo pre-clinical studies have shown that combinations of

PI3K and MEK inhibitors consistently result in improved tumour

growth inhibition compared to either single agent, and in many

cases cause regression in a variety of human tumour xenograft and

mouse tumour models with a range of genetic backgrounds,

including those with KRAS, BRAF and/or PIK3CA mutations, and/

or PTEN deletions [6,12,17,18,19]. Furthermore, the responses

observed with combination treatment were often durable, despite

relatively low doses of both inhibitors being used in many studies.

Combination of PI3K and MEK inhibitors have been shown to

decrease the phosphorylation of S6, AKT and ERK1/2 [12,19],

and intermittent dosing studies have revealed prolonged effects on

downstream markers of proliferation and apoptosis, such as a

sustained decrease in cyclin D1 and an increase in Bim levels,

which may be responsible in part for the improved response seen

with the combination therapy [6,19].

Pharmacodynamic biomarkers of MAPK and PI3K pathway

modulation, such as those mentioned above, require repeated

invasive biopsies and hence may not be clinically feasible.

Furthermore, changes in tumour size or disease stabilisation, as

measured by volumetric imaging methods such as CT and MRI,

may not become apparent until after many weeks of therapy,

which can delay clinical decision making and potentially result in

patients inappropriately remaining on ineffective and toxic

treatments for prolonged periods of time. To address the

limitations of conventional volumetric imaging, positron emission

tomography (PET) is being used in pre-clinical studies and clinical

trials as a functional surrogate response imaging biomarker

[13,14].

The fluorine-modified thymidine analogue, 39-deoxy-39-[18F]-

fluorothymidine ([18F]-FLT) is a PET radiotracer that is used for

detecting anti-proliferative effects, as accumulation in cells is

determined by the expression and activity of the enzyme

thymidine kinase 1 and specific nucleoside transporters, both of

which are under the control of S phase cell cycle regulators

[13,14,20,21,22,23]. Furthermore, the uptake of [18F]-FLT has

been shown to correlate with standard proliferation markers, such

as Ki67, TK1 and BrdU uptake [24,25,26,27,28,29]. Using [18F]-

FLT PET, changes in proliferation compared to baseline have

been demonstrated in a variety of human tumour xenografts as

early as 18, 24 and 120 hours using either single agent GDC-0941

or PD 0325901 [13,14,30,31]. Additionally, [18F]-FLT PET has

already been used to predict the efficacy of chemotherapy and

radiotherapy [32,33,34] and recently 2 clinical trials have begun

with the MEK inhibitor AZD6244 as a single agent incorporating

[18F]-FLT PET [8,35].

The aim of the studies described in this report was to determine

whether [18F]-FLT PET can be used as a surrogate response

biomarker for combined MEK and PI3K inhibitor therapy, as a

prelude to clinical trials.

Methods

Ethics Statement
All experiments were reviewed and approved by the Newcastle

University (UK) animal welfare committee, and were performed

according to the guidelines for the welfare and use of animals in

cancer research [36] and national law, under project license

(PPL60/4442) issued by the UK Government Home Office under

the animals (scientific procedure) act 1986.

Cell Lines & Reagents
HCT116 and HT29 human colorectal cancer cells were

obtained from the ATCC (American Type Culture Collection).

All cell lines were grown in RPMI-1640 medium (supplemented

with 10% (v/v) foetal bovine serum, 1% (v/v) penicillin (50 U/ml)

– streptomycin (50 mg/ml) and 2 mM L-glutamine) and were

confirmed free of mycoplasma contamination by regular testing

with Mycoalert (Cambrex, Iowa, USA).

Inhibitors
The MEK inhibitor PD 0325901 was kindly supplied by UCB

Celltech, Slough, Berkshire, UK. The PI3K inhibitor GDC-0941

was either synthesised in house [37] or purchased from Stratech

Scientific Ltd, Newmarket, Suffolk, UK. All batches of GDC-0941

were fully characterised using conventional chemical analyses,

shown to be .99% pure, and generated biological results

consistent with the authenticity of the compound. Both drugs

were suspended in 0.5% hydroxypropyl-methylcellulose (w/v) and

0.2% Tween 80 (v/v) in sterile distilled water (MCT).

Animals
Animal studies were all carried out using female athymic CD1

nude mice (Charles River, Kent, UK), implanted with HCT116 or

HT29 xenografts (16107 cells in 50 ml media injected subcutane-

ously into the right flank), maintained and handled in isolators

under specific pathogen-free conditions.

Pharmacokinetic (PK) and Pharmacodynamic (PD) Studies
Mice bearing HCT116 human tumour xenografts were treated

with either 1 mg/kg PD 0325901, 100 mg/kg GDC-0941 or the

combination of 1 mg/kg PD 0325901 and 100 mg/kg GDC-

0941, and were bled by cardiac puncture under terminal

anaesthesia at selected time points post-treatment (0.25–24 hours,

3 mice/time point). Blood was collected into heparinised tubes,

and plasma was separated and stored at 220uC until analysed.

Tumours were removed, snap frozen in liquid nitrogen and stored

at 280uC prior to PK and PD analyses, as described below.

For PK analyses, drug was extracted from 60 ml aliquots of

samples by protein precipitation with 9 volumes of acetonitrile

(MeCN). Samples were centrifuged at 3000g for 5 minutes at 4uC,

and 500 ml of the supernatant evaporated to dryness under

nitrogen gas at 30uC using a Zymark Evaporator (Caliper Life

Sciences Limited, Cheshire, UK). Samples were reconstituted in

100 ml HPLC mobile phase consisting of 40% acetonitrile and

60% (v/v) 0.1% formic acid pH 4.0 (v/v), and 50 ml of the

supernatant applied to a 10 cm Xterra Waters 186000436 C18

3.5 mm column (Waters, Hertfordshire, UK) fitted with an in line

filter. Compounds were eluted with the above mobile phase at

1 ml/min using a Waters Millennium Chromatography system

(Waters, Hertfordshire, UK). Analytes were detected by UV

absorbance at 275 and 315 nm, at retention times of 6.8–7.3 and
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3.9–4.3 minutes for PD 0325901 and GDC-0941, respectively. For

analysis of drug in tumour tissue, tumours were homogenised in 3

volumes of PBS (w/v) and 50 ml aliquots extracted with 9 volumes

of MeCN, and centrifuged, evaporated and analysed as described

above. Total (free and protein bound) drug concentrations were

determined using standard curves (0.1–10 mg/ml, r2.0.98 in all

cases) generated by extracting compounds from the appropriate

matrix, the extraction efficiency being .97% for all matrices.

Paired t tests were used to compare the different treatment groups

and differences with a p value ,0.05 were considered statistically

significant.

For PD analyses, tumours (2 to 4,2.5 mm3 pieces) were

disaggregated in 1 ml PhosphoSafeTM extraction reagent (Merck

Chemicals Ltd, Nottingham, Nottinghamshire, UK) containing a

protease inhibitor cocktail (Pierce, Thermo Scientific, Rockford,

Illinois, USA) at the manufacturer’s recommended dilution using a

MedimachineTM (BD Biosciences, Oxford, UK), centrifuged, and

the supernatant removed and analysed by Western blotting.

Proteins were resolved on NovexH 4–12% (w/w) Tris-glycine gels

(Invitrogen Ltd, Renfrew, Paisley, UK) and electrotransferred onto

Hybond C nitrocellulose membrane (GE Healthcare Life Sciences,

Hatfield, Hertfordshire, UK). Membranes were incubated with

phospho-4EBP1 (Thr37/46) (#2855), phospho-p44/42 MAPK

(Thr202/Tyr204) (#4370), phospho-Akt (Ser473) (#4060) or

phospho-S6 ribosomal protein (Ser235/236) (#4858) monoclonal

antibodies obtained from Cell Signalling Technology (New

England BioLabs (UK) Ltd, Hitchin, Hertfordshire, UK). Anti-

body binding was detected by incubation with a HRP-conjugated

goat anti-rabbit polyclonal antibody (Dako, Glastrop, Denmark).

Blots were developed using Pierce ECL (enhanced chemilumines-

cence) western blotting substrate (Thermo Scientific, Rockford,

Illinois, USA), or SuperSignalH West Dura extended duration

substrate (Thermo Scientific, Rockford, Illinois, USA), and Kodak

X-ray film (Genetic Research Instrumentation Ltd, Braintree,

Essex, UK) on a MediPhot 937 film developer (Colenta, Weiner

Neustadt, Austria), then digitally scanned.

Determination of Anti-Tumour Activity
Mice bearing HCT116 or HT29 human tumour xenografts

were randomised into treatment groups to avoid any bias and

ensure inter-group consistency, and then treated by oral gavage

with either the MCT vehicle (10 ml/kg), 1 mg/kg PD 0325901,

100 mg/kg GDC-0941 or the combination of 1 mg/kg PD

0325901 and 100 mg/kg GDC-0941 once daily for 14 days.

Tumour volume was monitored by calliper measurement using the

equation a26b/2, where a is the smallest measurement and b the

largest. Data are presented as median relative tumour volumes

(RTV), where the tumour volume in each mouse on the initial day

of treatment (day 0) is assigned an RTV value of 1. The time to

RTV3 and RTV4 for each individual tumour was calculated

based on a standard point to point curve with 1000 segments using

GraphPad Prism software (CA, USA). Mann Whitney U tests were

used to compare the different groups, i.e. the control versus each

treatment group, the single agents versus each other, and each

agent versus their combination. Differences with a p value ,0.05

were considered statistically significant.

[18F]-FLT PET Studies
Before treatment and after 2 days of treatment as described

above, mice bearing HCT116 human tumour xenografts (7–

9 mice/group) were anaesthetised, cannulated via their tail vein

and placed in the prone position on a custom-made heated bed,

which held three mice at once, within a MOSAIC PET scanner

(Philips, Eindhoven, NL). [18F]-FLT was obtained from PETNET

(PETNET, Nottingham, UK), and radioactivity levels were

measured using a Capintec well counter (Capintec, NJ, USA).

Approximately 10 MBq of [18F]-FLT was administered intrave-

nously and a 1 hour dynamic PET scan was performed, consisting

of ten 1 minute, six 5 minute and two 10 minute time frames. Mice

were recovered after scanning and continued to receive treatment

for the remainder of the study. Data were analysed using Imalytics

software (Philips, Aachen, Germany); a 3D region of interest was

drawn around the tumour and the standardised uptake value

(SUV) was calculated by dividing the tissue concentration (MBq/

ml) by the injected dose (MBq)/g body weight. Mean SUV values

were then plotted against time, and the area under the curve

(AUC) and the percentage change in the area under the curve

relative to the baseline scan was calculated. Paired t tests were used

to compare the day 2 versus the baseline SUV AUC values for each

individual mouse within each treatment group and differences

with a p value ,0.05 were considered statistically significant.

Results

Pharmacokinetics and pharmacodynamics of PI3K and
MEK inhibitors, as single agents and in combination, in
HCT116 human tumour xenografts

A single dose PK/PD study was performed using the PI3K

inhibitor GDC-0941 and the MEK inhibitor PD 0325901, as

single agents and in combination, in HCT116 human tumour

xenograft-bearing mice, over a time course of 0.25–24 hours. The

concentrations of the drugs in the plasma and the tumour tissue

were measured using HPLC (Figure 1 and Table 1). Concentra-

tions of GDC-0941 and PD 0325901 in the plasma decreased over

24 hours after a single dose of inhibitor (Figure 1). A 10-fold

increment in GDC-0941 dose, i.e. 100 versus 10 mg/kg, achieved

plasma AUC values that were 7-fold higher. In the case of PD

0325901, a comparable dose increase, i.e. 10 versus 1 mg/kg,

resulted in a 15-fold increase in plasma AUC (Table 1).

Concentrations of GDC-0941 and PD 0325901 in the tumour

were more variable, and levels of PD 0325901 were undetectable

in the plasma at 24 hours (limit of detection: ,100 nM) after

treatment with 1 mg/kg and in tumour tissue at all time points

(limit of detection: ,0.4 nmoles/g of tumour material or

,100 nM in tumour homogenate diluted four-fold). Tumour

GDC-0941 AUC values (Table 1), indicate that there was a 15-

fold increase in AUC following a 10-fold increase in dose.

Interestingly, the plasma AUC data suggests that there can be a

modest increase in the concentrations of PD 0325901 in the

plasma following concomitant dosing with GDC-0941 (Table 1),

and although this difference was limited (2–3 fold), there was a

consistent and statistically significant difference between the AUC

of PD 0325901 when dosed alone at 1 or 10 mg/kg PD 0325901,

or concomitantly with 100 mg/kg GDC-0941 (p ,0.01). GDC-

0941 administration also appeared to have an effect on the tumour

retention of PD 0325901, where it could be measured (i.e. after

10 mg/kg PD 0325901), as there was again a statistically

significant difference between the tumour AUC following dosing

with 10 mg/kg PD 0325901 alone or concomitantly with 100 mg/

kg GDC-0941 (p = 0.01). However, in contrast to the plasma data,

following combination treatment tumour concentrations of both

PD 0325901 and GDC-0941 were lower than those following

single agent treatment, when a significant difference was observed.

Thus the enhanced anti-tumour activity observed with the

combination of the MEK and PI3K inhibitors (see below) was

not due to a pharmacokinetic interaction resulting in increased

tumour drug levels. Overall, the PK data demonstrate that there

were no marked pharmacokinetic interactions (i.e. .3-fold change
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in AUC) when GDC-0941 and PD 0325901 were given in

combination.

After a single dose of 100 mg/kg GDC-0941, alone or in

combination with 1 mg/kg PD 0325901, concentrations of GDC-

0941 in the plasma and the tumour tissue consistently exceeded

that of the in vitro GI50 value of 1081 nM (previously determined in

[38]) over 6 hours (Figure 1A). Similarly, after a single dose of

1 mg/kg PD 0325901, alone or in combination with 100 mg/kg

GDC-0941, concentrations of PD 0325901 in the plasma

consistently exceeded that of the in vitro GI50 value of 21 nM

[38] over the first six hours; however, levels were undetectable in

the plasma at 24 hours and in the tumour tissue at all time points

(Figure 1B). Nevertheless, as the limit of detection for PD 0325901

in both plasma (,100 nM) and tumour tissue (,0.4 nmoles/g)

was greater than the in vitro GI50 value (21 nM), the PK data do

not necessarily indicate that pharmacologically active drug

concentrations were not achieved.

Although, following 1 mg/kg PD 0325901, concentrations were

below the limit of detection in the tumour (,0.4 nmoles/g), this

dose was able to reduce (1 hour) and completely ablate (3 and

6 hours) the phosphorylation of ERK1/2, with very little recovery

by 24 hours. As expected, there was no marked effect of PD

0325901 on AKT, S6 or 4EBP1 phosphorylation (Figure 2A).

GDC-0941 at 100 mg/kg was sufficient to cause a reduction in the

phosphorylation of AKT, S6 and 4EBP1 over the time course

studied, although the reduction was incomplete and the extent of

inhibition varied within groups (Figure 2B). Interestingly, there

was also a reduction in the phosphorylation of ERK1/2 following

Figure 1. Plasma and tumour concentrations of GDC-0941 and PD 0325901 from mice bearing human tumour xenografts. Plasma
and tumour concentrations of the PI3K inhibitor GDC-0941 (GDC) (A) and the MEK inhibitor PD 0325901 (PD) (B) measured by HPLC in samples from
HCT116 tumour xenograft-bearing mice at the indicated time points after a single p.o. dose of either 100 mg/kg GDC-0941 alone, 1 mg/kg PD
0325901 alone or the combination of 1 mg/kg PD 0325901 and 100 mg/kg GDC-0941. Data are presented as the mean concentration from 3 mice in
each group 6 standard error. The horizontal dashed line indicates the in vitro GI50 concentration (previously determined in [38]).
doi:10.1371/journal.pone.0081763.g001

Table 1 Plasma and tumour tissue concentration AUC values following GDC-0941 and PD 0325901 administration.

PD 0325901 AUC (mM.min) GDC-0941 AUC (mM.min)

Drug dose Plasma Tumour Plasma Tumour

1 mg/kg PD 0325901 83624a - - -

10 mg/kg PD 0325901 12966125b,c 10826232d,e - -

10 mg/kg GDC-0941 - - 3246178 3646130g

100 mg/kg GDC-0941 - - 23616677 54226962h,i

1 mg/kg PD 0325901+10 mg/kg GDC-0941 164651 - 3936162 3966144j

1 mg/kg PD 0325901+100 mg/kg GDC-0941 189612a - 1356646 31966183h

10 mg/kg PD 0325901+10 mg/kg GDC-0941 23996641b 399672d,f 380688 124651g,j

10 mg/kg PD 0325901+100 mg/kg GDC-0941 32486666c 1638627e,f 352961929 26496861i

Plasma and tumour tissue concentrations of the PI3K inhibitor GDC-0941 and the MEK inhibitor PD 0325901 were measured by HPLC in samples from HCT116 tumour
xenograft-bearing mice over 24 hours after a single p.o. dose of 10 or 100 mg/kg GDC-0941 or 1 or 10 mg/kg PD 0325901, alone and in combination (Figure 1). The area
under the curve (AUC) was calculated and data are presented are the mean AUC 6 standard deviation. Significant differences between groups are denoted by
superscript letters; a,c,d,f p,0.01, b,g,j p = 0.04, e,h p = 0.01, i p = 0.02.
doi:10.1371/journal.pone.0081763.t001
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a dose of 100 mg/kg GDC-0941. The combination of 1 mg/kg

PD 0325901 and 100 mg/kg GDC-0941 caused earlier complete

inhibition of ERK1/2 phosphorylation, compared to treatment

with the single agent MEK inhibitor, and greater inhibition of S6

and 4EBP1 phosphorylation compared to treatment with the

single agent PI3K inhibitor (Figure 2C). However, there was no

marked difference between the inhibition of AKT phosphorylation

with combination compared to the single agent PI3K inhibitor

treatment.

Efficacy of PI3K and MEK inhibitors, as single agents and
in combination, in HCT116 and HT29 human tumour
xenografts

Based on the results of the PK/PD study, the efficacy of

100 mg/kg of the PI3K inhibitor GDC-0941 and 1 mg/kg of the

MEK inhibitor PD 0325901 given orally, as single agents and in

combination, was assessed in HCT116 and HT29 human tumour

xenograft-bearing mice (Figure 3). The individual doses of the

PI3K and MEK inhibitors were chosen to be equi-active, in order

to mirror the in vitro conditions under which synergy had been

demonstrated previously in these cell lines [38]. In this study, mice

were treated daily for 14 days and tumour volumes were measured

three times a week. Figures 3A and 3B demonstrate that treatment

with 100 mg/kg GDC-0941 and 1 mg/kg PD 0325901, alone and

in combination, caused tumour growth delay compared to vehicle-

treated control tumours, and that growth delay was greater with

the combination. Additionally, body weight was monitored daily

to assess the tolerability of the therapy, and both single agent and

combination treatments were found to be non-toxic, i.e. body

weights did not drop below 90% of the starting weight (Figures 3C

and 3D).

The time for the tumours to quadruple in size (time to RTV4)

was calculated (Figures 3E and 3F and Table 2), and statistical

analyses using a Mann-Whitney test revealed that there was a

significant difference between vehicle-treated control tumours and

the combination group (p,0.01), and between the single agent

inhibitor and the combination groups (p#0.01), in both HCT116

and HT29 tumour xenograft models. Additionally, there was a

significant difference between vehicle-treated control tumours and

the single agent inhibitors in the HCT116 tumour xenografts

(p,0.01), but not in the HT29 tumour xenografts at the 5% level

(p = 0.06).

[18F]-FLT PET scanning on day 2 as a surrogate response
biomarker of PI3K and MEK inhibitor efficacy as single
agents and in combination in HCT116 human tumour
xenografts

It has been proposed that [18F]-FLT PET can be used as a

surrogate biomarker for tumour response to therapy, and dynamic

PET scans were therefore performed after two days of treatment,

at which time there were no significant differences in tumour

volume between the control or any of the treated groups.

Unfortunately, [18F]-FLT uptake by HT29 tumours was low

and this tumour could not be used for [18F]-FLT PET studies. In

contrast, HCT116 tumours were [18F]-FLT avid and Figures 4A–

C show that there were no differences after 2 days in [18F]-FLT

tumour uptake after treatment with control vehicle, 1 mg/kg PD

0325901 alone or 100 mg/kg GDC-0941 alone, compared to

baseline. However, there was a significant decrease in [18F]-FLT

HCT116 tumour uptake after 2 days of PI3K/MEK inhibitor

combination treatment (Figure 4D).

Based on the data in Figures 4A–D, the percentage change in

the area under the [18F]-FLT SUV versus time curve (AUC) in

HCT116 tumours was calculated for each individual mouse.

Figure 4E shows that there was no significant difference (p = 0.95)

between [18F]-FLT uptake at baseline and after 2 days of

treatment in the control or single agent PD 0325901- or GDC-

0941-treated mice. In contrast, there was a statistically significant

decrease of 18% in the tumour [18F]-FLT uptake after 2 days in

the PI3K/MEK inhibitor combination treated mice (p,0.005).

These data demonstrate that changes in [18F]-FLT uptake precede

effects on tumour volume, and that [18F]-FLT PET is a valid early

surrogate response biomarker for detecting the improved efficacy

of combined PI3K and MEK inhibitor treatment.

Discussion

With some notable exceptions, e.g. imatinib in the treatment of

chronic myeloid leukaemia and vemurafenib BRAF-mutant

melanoma, single agent clinical activity with targeted therapies is

modest, presumably due to the presence of multiple driver genetic

lesions and the rapid development of resistance mechanisms.

Combinations of targeted therapies are therefore being widely

investigated. However, in developing optimal combinations,

conventional clinical trial methodology has significant limitations

as the large number of drugs, patient numbers required and the

time taken for response and survival endpoints to be reached

precludes the timely evaluation of all potential combinations.

Consequently, surrogate response biomarkers, such as [18F]-FLT

PET, are being investigated in an attempt to generate early proof-

of-concept data for the activity of specific combinations. The

studies described here have shown that the combination of the

PI3K inhibitor GDC-0941 with the MEK inhibitor PD 0325901 is

more efficacious in vivo than either single agent given at the same

doses, and importantly that the increased efficacy of the

combination treatment correlates with a subsequent decrease in

tumour [18F]-FLT uptake measured by PET after just 2 days of

treatment.

As reported elsewhere [2,3,4,5,6] and confirmed here, single

agent GDC-0941 was non-toxic and induced tumour growth delay

at 100 mg/kg in both the HCT116 and HT29 colorectal tumour

xenograft models. However, both HCT116 and HT29 tumours

re-grew upon termination of dosing, indicating that GDC-0941 is

cytostatic rather than cytotoxic, which is consistent with previous

in vitro growth inhibition and cytotoxicity studies [38].

The efficacy of GDC-0941 has previously been shown to be

associated with decreased AKT and S6 phosphorylation

[2,3,4,5,6,39], an association that was confirmed here, as there

was a decrease in the phosphorylation of AKT and S6 after

treatment with 100 mg/kg GDC-0941. Interestingly, in contrast

to in vitro studies in HCT116 and HT29 cells [38], there was also a

decrease in the phosphorylation of 4EBP1 and ERK1/2

Figure 2. Pharmacodynamic analysis of the in vivo effect of PD 0325901 and GDC-0941 on signal transduction. Effects on the MAPK
and PI3K/AKT signal transduction pathways after HCT116 tumour xenograft-bearing mice were treated with a single p.o. dose of either 1 mg/kg of
the MEK inhibitor PD 0325901 alone (A), 100 mg/kg of the PI3K inhibitor GDC-0941 alone (B) or the combination of 1 mg/kg of the MEK inhibitor PD
0325901 and 100 mg/kg of the PI3K inhibitor GDC-0941 (C). After 0.25–24 hours, tumours were removed and lysates subjected to electrophoresis,
followed by Western blotting using the indicated phospho-specific antibody. Blots were then stripped and re-probed with the corresponding total
protein antibody to confirm equal protein loading. A–C represents samples from the three mice in each treatment group.
doi:10.1371/journal.pone.0081763.g002
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Figure 3. Efficacy and tolerability of GDC-0941 and PD 0325901 in mice bearing human colorectal tumour xenografts. HCT116 (A, C,
E) and HT29 (B, D, F) tumour xenografts were treated with either vehicle control, 1 mg/kg of the MEK inhibitor PD 0325901 and 100 mg/kg of the
PI3K inhibitor GDC-0941 alone, or 1 mg/kg of the MEK inhibitor PD 0325901 and 100 mg/kg of the PI3K inhibitor GDC-0941 in combination, p.o. once
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phosphorylation in vivo after treatment with 100 mg/kg GDC-

0941. In particular, the decrease in pERK1/2 levels is in contrast

to previous reports that PI3K inhibition may cause the opposite

effect as a result of the cross-activation of the MAPK pathway

[40]. However, a previous study has demonstrated that dual

specificity phosphatase 6 (DUSP6), which dephosphorylates ERK

1/2, can be regulated by the PI3K/mTOR pathway [41], and

thus suggests a mechanism for decreased pERK in response to

PI3K inhibition. Furthermore, target inhibition does not neces-

sarily correlate directly with efficacy, and O’Brien and colleagues

have demonstrated that there was no marked tumour growth

inhibition of KRAS mutant MDA-MB-231 breast tumour xeno-

grafts despite pronounced inhibition of AKT phosphorylation [5].

In the studies reported here, levels of GDC-0941 in the tumour

and the plasma over 6 hours were found to greatly exceed the in

vitro GI50 value of GDC-0941 (previously determined in [38]), and

drug was still detectable in the tumour 24 hours after a single dose

at 100 mg/kg. The pharmacokinetic data presented here also

show that the AUCs of GDC-0941 in the plasma and tumour were

approximately linearly dose-dependent as levels changed 7-fold

and 15-fold, respectively, following a 10-fold increase in dose from

10 to 100 mg/kg.

PD 0325901 was also non-toxic and predominantly cytostatic as

a single agent, generating tumour growth delay at 1 mg/kg in both

HCT116 and HT29 colorectal tumour xenografts. The data

presented here are consistent with previous studies where doses of

PD 0325901 ranging from 1.6 mg/kg up to the maximum

tolerated dose of 25 mg/kg caused dose-dependent tumour

growth delay, stasis and in many cases complete regression in a

variety of human and murine tumours [10,11,13,14]. In addition

to inhibition of ERK1/2 phosphorylation, one study reported a

corresponding decrease in cyclin D1, an upregulation of p27 and

decreased phosphorylation of Rb, which resulted in decreased cell

proliferation as detected by Ki67 staining [13]. These reported

effects of PD 0325901 on ERK1/2 phosphorylation are consistent

with the PD data presented in this study, where a marked decrease

in the phosphorylation of ERK1/2 was observed after treatment

with 1 mg/kg PD 0325901. There was also a small decrease in

p4EBP1 and pS6, which may due be to convergence between the

MAPK and PI3K/mTOR pathway, as a previous study has

demonstrated that MEK inhibition can inhibit S6 and 4EBP1

phosphorylation via the Erk-RSK1-mTOR pathway [42].

Pharmacokinetic analyses revealed that levels of PD 0325901 in

the tumour and the plasma greatly exceeded the in vitro GI50

concentration (previously determined in [38]) for 6 hours follow-

ing a single dose of 10 mg/kg PD 0325901, and concentrations of

PD 0325901 in the plasma were linearly dose-dependent, as levels

changed 15-fold following a 10-fold increase in dose from 1 to

10 mg/kg. Furthermore, there were no major pharmacokinetic

interactions between GDC-0941 and PD 0325901 (i.e. a.3-fold

change in AUC), and the lack of any major interaction is

consistent with clinical data for the PI3K inhibitor GDC-0941 in

combination with the MEK inhibitor GDC-0973 [43].

In pre-clinical models, combinations of PI3K and MEK

inhibitors have consistently shown improved efficacy compared

to either single agent alone, causing striking regressions in some

cases, in a range of human tumour xenograft and mouse models

[6,12,17,18,19]. For example, the combination of 100 mg/kg

GDC-0941 and 6.3 mg/kg PD 0325901 caused regression of

AN3CA endometrial and H2122 NSCLC tumour xenografts,

compared to a modest tumour growth delay with either single

agent alone [6]. This improved activity is consistent with the

results presented here as the combination of 100 mg/kg GDC-

0941 and 1 mg/kg PD 0325901 was non-toxic, and caused

tumour stasis and marked tumour growth delay in the KRAS and

PIK3CA mutant HCT116 and the BRAF and PIK3CA mutant

HT29 colorectal tumour xenografts, respectively, an effect that

was significantly greater than either single agent at the same dose

(p#0.01).

daily for 14 days. [A–B] Tumour growth curves: Data are presented as the median relative tumour volume (RTV), where the growth is calculated for
each tumour relative to its size on day 0. Points represent the median of the 10 mice in each group. The dashed line shows the point at which
tumours reached four times the initial volume (RTV4). [C–D] Effects on body weight: Data are presented as a percentage of starting body weight.
Points represent the mean of the 10 mice in each group 6 standard error. [E–F] Time taken for xenografts to reach four times the initial volume (time
to RTV4): Data are presented as the time taken by each individual tumour in each group to quadruple in size, and lines to represent the mean of the
mice in each group 6 standard error. P values are given where the combination is significantly different from either agent alone (p#0.05).
doi:10.1371/journal.pone.0081763.g003

Table 2 Efficacy of GDC-0941 and PD 0325901 in mice bearing human colorectal tumour xenografts.

Tumour xenografts HCT116 HT29

Treatment Calculation Mean ± SD Median ± IR Mean ± SD Median ± IR

Control Time to RTV4 1064 965 764 762

Time to RTV3 864 865 663 562

1 mg/kg PD 0325901 Time to RTV4 2368 21611 1164 1163

Time to RTV3 1967 18612 1064 1064

100 mg/kg GDC-0941 Time to RTV4 1965 1864 1369 1065

Time to RTV3 1564 1665 1169 1066

1 mg/kg PD 0325901+100 mg/kg GDC-
0941

Time to RTV4 3068 2867 30611 33618

Time to RTV3 2768 2566 27611 30618

Time taken in days for HCT116 and HT29 tumour xenografts to reach three or four times their initial volume (time to RTV3 or RTV4) when treated with either vehicle
control, 1 mg/kg PD 0325901 and 100 mg/kg GDC-0941 alone, or 1 mg/kg PD 0325901 and 100 mg/kg GDC-0941 in combination, p.o. once daily for 14 days. Data are
presented as the mean time to RTV3 or RTV4 for the mice in each group 6 standard deviation (SD) and the median RTV3 or RTV4 for each group (6 interquartile range
(IR)).
doi:10.1371/journal.pone.0081763.t002
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Figure 4. [18F]-FLT uptake in human tumour xenografts before and after treatment with GDC-0941 and PD 0325901. [A–D] HCT116
tumour xenograft [18F]-FLT uptake over the 1 hour dynamic PET scan at baseline and after treatment with either vehicle control (A) 100 mg/kg of the
PI3K inhibitor GDC-0941 alone (B), 1 mg/kg of the MEK inhibitor PD 0325901 alone (C) or the combination of 1 mg/kg of the MEK inhibitor PD

PET Predicts Combined MEK/PI3K Inhibitor Activity
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In HCT116 tumours, the combination of 100 mg/kg GDC-

0941 and 1 mg/kg PD 0325901 was shown to inhibit both the

MAPK and PI3K pathways, and enhance the inhibition of

ERK1/2, S6 and 4EBP1 phosphorylation, compared to either

agent alone. Previous studies have not only reported an inhibition

of ERK1/2, AKT and S6 phosphorylation, but have also observed

effects on downstream determinants of proliferation and apoptosis,

such as a decrease in cyclin D1 and Mcl-1, and an increase in

Bim1 accumulation and caspase 3 cleavage [6,12,17,18,19].

Multiple previous studies have demonstrated that these enhanced

effects upon combination treatment are due to convergence

between the MAPK and PI3K pathways thus activating common

downstream targets such as the transcription factors, FOXO

[44,45,46] and c-Myc [47,48], and the pro-apoptotic protein BAD

[49,50,51,52,53]. Furthermore, in vivo combination studies have

demonstrated that, whereas the phosphorylation of components of

the MAPK and PI3K pathways was restored within 72 hours,

effects on downstream markers of proliferation and apoptosis were

sustained for over 72 hours, suggesting that intermittent dosing of

combinations of PI3K and MEK inhibitors may be preferable

[12,19]. Indeed, it has been reported that non-continuous dosing

on every 3rd or 4th day with high doses of the PI3K inhibitor

GDC-0941, in combination with the MEK inhibitors PD 0325901

or GDC-0973, resulted in marked tumour growth inhibition, and

potentially reduced toxicity [6,19].

To investigate the potential utility of PET scanning as an early

surrogate biomarker of tumour response to PI3K and/or MEK

inhibitor therapy, PET scanning has been incorporated into

efficacy studies in a small number of pre-clinical and clinical

studies. For example, [18F]-FDG PET has been shown to be a

surrogate marker of sensitivity to PI3K inhibition by NVP-

BEZ235 and NVP-BKM120 in human HNSCC (FaDu) and

mouse mammary (EMT6) 3D tumour spheroids in vitro [54], and

of response following 100 mg/kg LY294002, 10 mg/kg PF-

04691502 or 35 mg/kg NVP-BEZ235 in colorectal, lung and

ovarian tumour xenografts and/or mouse models in vivo

[12,17,55]. Similarly, [18F]-FDG PET has been shown to be of

value in monitoring the activity of the MEK inhibitor GDC-0973

in combination with the BRaf inhibitor vemurafenib in A375 and

vemurafenib-resistant A375R1 melanoma xenografts [56].

The PET radiotracer [18F]-FLT also represents a promising

proof of concept anti-proliferative PD and surrogate response

biomarker for PI3K and/or MEK inhibitor therapy. [18F]-FLT

PET can measure anti-proliferative effects, as it is a thymidine

analogue whose accumulation in cells is determined by the

expression and activity of thymidine kinase 1 and specific

nucleoside transporters, which are under the control of S phase

cell cycle regulators [13,14,20,21,22,23], and has been shown to

correlate with other markers of proliferation [24,25,26,27,28,29].

Dynamic [18F]-FLT PET scans were therefore incorporated into

the HCT116 efficacy studies described in this paper. The tumour

uptake of [18F]-FLT was monitored over 1 hour at baseline and

on day 2 of treatment with the PI3K inhibitor GDC-0941 and the

MEK inhibitor PD 0325901, alone and in combination. As has

been reported by other studies, [18F]-FLT uptake by the HT29

tumours was low [57,58,59], and thus tumours derived from this

cell line were unsuitable for [18F]-FLT PET studies.

The day 2 versus pre-treatment dynamic PET scans showed that

there was no significant difference in [18F]-FLT tumour uptake in

HCT116 xenograft-bearing mice treated with drug vehicle or with

either single agent, whereas there was a significant decrease in

[18F]-FLT tumour uptake after PI3K/MEK inhibitor combina-

tion treatment, which correlated with the enhanced efficacy

observed later in the study. There have been no published pre-

clinical or clinical studies measuring [18F]-FLT uptake after PI3K

and MEK inhibitor combination treatment. There are previous

reports that the PI3K inhibitors GDC-0941 or NVP-BEZ235, or

the MEK inhibitor PD 0325901, given as single agents caused

significant decreases in [18F]-FLT uptake as early as 18, 24, 48 or

120 hours, associated with subsequent tumour growth inhibition

in a variety of human tumour xenograft models [13,14,30,39].

However, these studies used doses at or close to the single agent

MTD which would not be tolerated in combination. In the study

presented here, decreased [18F]-FLT uptake following combination

therapy preceded HCT116 tumour growth inhibition, suggesting

that [18F]-FLT PET could be used as an early surrogate response

biomarker for combined PI3K and MEK inhibitor treatment.

Clinical trials involving combinations of PI3K and MEK inhibitors

should therefore be extended to include the use of [18F]-FLT PET,

in parallel to other common proliferation markers, as a biomarker of

early response to combination treatment.

Overall, these studies confirm that dual targeting of PI3K and

MEK can induce marked tumour growth inhibition in vivo, and

that this anti-tumour effect can be predicted by measuring [18F]-

FLT uptake at baseline and after 2 days of treatment. Pharma-

codynamic analyses following the combination of the PI3K

inhibitor GDC-0941 and the MEK inhibitor PD 0325901

revealed that increased efficacy is associated with an enhanced

inhibition of the phosphorylation of ERK1/2, S6 and 4EBP1,

compared to that observed with either single agent, and

maintained inhibition of AKT phosphorylation. Together these

results suggest that in studies of PI3K and MEK inhibitor

combinations [18F]-FLT PET can be used as an early proof of

concept PD and surrogate response biomarker for detecting

enhanced anti-proliferative and antitumour effects in a pre-clinical

setting, and therefore warrants further testing in clinical trials.
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