
The Yule Approximation for the Site Frequency Spectrum
after a Selective Sweep
Sebastian Bossert*, Peter Pfaffelhuber

Department of Mathematical Stochastics, Albert-Ludwigs University, Freiburg, Germany

Abstract

In the area of evolutionary theory, a key question is which portions of the genome of a species are targets of natural
selection. Genetic hitchhiking is a theoretical concept that has helped to identify various such targets in natural populations.
In the presence of recombination, a severe reduction in sequence diversity is expected around a strongly beneficial allele.
The site frequency spectrum is an important tool in genome scans for selection and is composed of the numbers S1,:::,Sn{1,
where Sk is the number of single nucleotide polymorphisms (SNPs) present in k from n individuals. Previous work has
shown that both the number of low- and high-frequency variants are elevated relative to neutral evolution when a strongly
beneficial allele fixes. Here, we follow a recent investigation of genetic hitchhiking using a marked Yule process to obtain an
analytical prediction of the site frequency spectrum in a panmictic population at the time of fixation of a highly beneficial
mutation. We combine standard results from the neutral case with the effects of a selective sweep. As simulations show, the
resulting formula produces predictions that are more accurate than previous approaches for the whole frequency spectrum.
In particular, the formula correctly predicts the elevation of low- and high-frequency variants and is significantly more
accurate than previously derived formulas for intermediate frequency variants.
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Introduction

Genetic hitchhiking is the cause of a severe reduction of

sequence diversity in a population due to recent strong positive

selection [1]. Several statistical methods are available to detect

these selective sweeps. The most successful approaches include

various aspects of the available data, such as the site frequency

spectrum and linkage disequilibrium patterns. See e.g., [2] for a

framework using a likelihood ratio test using the site frequency

spectrum, [3], [4] for tests based on linkage disequilibrium and [5],

who use a combination of both. The most challenging issue today

is to dissect population demography from signatures of selection.

One of the most successful approaches for detecting selective

sweeps is called SweepFinder. Here, the site frequency spectrum for

a selective and a neutral model is compared for each SNP

available in the data [6]. This approach highlights the necessity of

making analytical predictions for site frequency spectra under

strong positive selection, which is the main goal of the current

manuscript. While SweepFinder uses a selective model with the star-

like method (see e.g., [7]), here, we use a refined model.

Current theoretical investigations and predictions of the

signature of strong positive selection are mostly based on a

genealogical perspective. The resulting genealogy is termed

coalescent in a random background and was studied by [8] and

[9]. The simplest approximation for large selection coefficients is

the star-like approximation from [10] and [7]. The star-like

approximation assumes that all individuals from a sample taken at

the time of fixation are direct descendants of the founder of the

selective sweep. In addition, recombination events may have split

the history of the target of selection from a linked neutral variant.

[7], [11], and [12] used a marked Yule process, which has been

shown to be a finer approximation by [7]. Rather than using a

star-like approximation of the genealogy at the target of selection,

[12] used the idea put forward by [13], which states that in the

early phase of a selective sweep, the beneficial allele behaves

similarly to a supercritical branching process. As a consequence,

the genealogy also resembles a supercritical branching process,

which turns out to be a Yule process [14].

In this manuscript, we go beyond approximating the genealogy

by a marked Yule process and provide an analytical expression for

the site frequency spectrum after a selective sweep. Two features of

the spectrum are the most important for data analysis: an excess of

singletons (which might also arise due to population expansion)

and an excess of high-frequency variants (which appear to be a

unique feature of sweeps; [15]). [16] already gave an approxima-

tion of the site frequency spectrum and used the excess of high

frequency variants to develop a statistical test for positive selection.

Using our analytical approximations, we will see that such classical

approaches slightly overestimate the number of high-frequency

variants, while our Yule-approximation is more accurate. In

addition, intermediate-frequency variants are predicted accurately

only by the marked Yule-approximation. These features of the

Yule-approximation can be used to construct conservative tests for

selective sweeps.
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Model and Results

Consider a (diploid) population of size N which evolves under

the neutral Wright-Fisher model. We will study two loci (called A-

and B-locus) within this population, which recombine with

probability r per generation. (We neglect recombination within

loci.) At the A-locus, the population is fixed for the wild-type a
before time t~0. The B-locus is modeled using an infinite sites

model of mutation with mutation probability m per generation (see

[17]). At time t~0, a beneficial mutation A with fitness 1zs
appears at the A-locus and is conditioned on eventual fixation in

the whole population. Our main interest is the site frequency

spectrum of the B-locus at the fixation time T of the A-allele,

which we also refer to as the end of the sweep. Consider a sample

of size n taken at time T , and let Si be the number of SNPs at the

B-locus where the derived variant is present in exactly i
individuals. The time before t~0 is called the neutral phase, while

the time between t~0 and t~T is the selective phase.

Diffusion approximation and structured coalescent
To derive an approximation of the expected site frequency

spectrum, we rely on a diffusion approximation for the frequency

of the beneficial A-allele (see e.g., [18]) and a coalescent process in

a random background as described in [9] (see also [8]). Recall

(e.g., from [19]) that the frequency of the A-allele after t~0, when

time is rescaled by a factor of 2N, is approximately given by the

solution Y~(Yt)t§0 of the stochastic differential equation

dY~aY (1{Y ) coth (aY )dtz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y (1{Y )

p
dW , Y0~0, ð1Þ

where a~2Ns is the rescaled (genic) selection intensity, and s is

defined by saying that (1zs)x=(1zsx) is the expected number of

A-alleles in the next generation if the current frequency is x.

Observe that Yt~1 after some random time T , which we call the

fixation time of A. In the background of the path Y, we consider a

structured coalescent that evolves as follows (see Figure 1 for an

illustration, where a sample of size n~9 is used): Set b~T{t and

start with n lines at time b~0 (i.e., t~T and the end of the sweep)

in the A-background. The following four transitions can occur

between times b~0 and b~T , i.e., during the selective phase:

1. Coalescence of a pair of lines in the A-background: at rate

1=Yb, any pair of lines in the A-background coalesces.

2. Switching of background from A to a by recombination: at rate

r(1{Yb) with r : ~2Nr (r is the recombination fraction between

the selective and neutral locus within a single generation), any line

in the A-background changes to the a-background.

3. Coalescence of a pair of lines in the a-background: at rate

1=(1{Yb), any pair of lines in the a-background coalesces.

4. Switching of background from a to A by recombination: at rate

rYb, any line in the a-background changes to the A-background.

Due to these transitions, there is a random number Ka of lines

in the a-background at time b~T and KA[f0,1g lines in the A-

background. (If there was two or more lines in the A-background,

their coalescence rate would have been arbitrarily large by the

coalescence rate 1=Yb.) The resulting K : ~KazKA lines follow a

standard neutral coalescent after time b~T , i.e., every pair of

lines coalesces at rate 1 after only a single line is left and the

process is stopped.

After having constructed the random tree from the coalescing

lines, every line is hit by mutation events at the rate h=2, with

h : ~4Nm. We call an event a mutation of size i if it falls on a branch

leading to exactly i leaves of the tree. The number of size i
mutations is called Si, and S1,:::,Sn{1 is called the site frequency

spectrum, which we will approximate for large a below.

Yule approximation of the genealogy in the selective
phase

In [19] and [11], the following approximation of the structured

coalescent during the selective phase was developed with the limits

of large a and for r%a: As was shown, events 3. and 4. from the

structured coalescent can be ignored because their probability

becomes small for large a. Thus, each line undergoes at most one

recombination event during the selective phase. Two lines of the

Figure 1. The structured coalescent. In the given example of the structured coalescent, we see on the right side the selective phase with a
sample of size 9 at the moment of fixation and the frequency development of the beneficial allele. At time 0, there are 3 late recombinant families
(labeled with L), which all have a size of 1, one early recombinant family (labeled with E) of size 2 and one nonrecombinant family (labeled with D) of
size 4. These lines then start a standard coalescent in the neutral phase. The crosses illustrate SNPs in the sample.
doi:10.1371/journal.pone.0081738.g001
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genealogy at time b~T belong to the same family if they coalesce

between time 0 and T . The following families are distinguished:

1. Nonrecombinant family: The set of individuals whose ancestral

lineages never left background A.

2. Early recombinant families: The set of individuals whose ancestral

lines have not left background A before (according to the

backward time b) the first coalescence in the sample occurs, but

the ancestor at time b~T (equivalent to t~0) is in background a.

3. Late recombinant families: The families consisting of a single

individual whose ancestral line has left background A before the

first coalescence in the sample, and the ancestor at time b~T is in

background a.

Note that late recombinant families are of size 1 by definition,

and there can be at most one nonrecombinant family that has

inherited their B-allele from the founder of the sweep.

To get an approximation formula for the genealogy at time

b~T , we first need the distribution for the number and size of the

different families. Recall from Theorem 1 in [19] that the

genealogy consists (up to an error of probability of order r2=a2) of

N L late recombinant families of size 1,

N one early recombinant family of size E and

N one nonrecombinant family of size n{L{E.

For the joint distribution of L and E, define a random variable

F , distributed according to

P(Fƒi)~
(i{(n{1)) � � � (i{1)

(iz(n{1)) � � � (iz1)
: ð2Þ

Given F~f , L is a binomial random variable with n trials and

success probability 1{pf , where

pf ~ exp {
r

a

X2a

i~f

1

i

 !
: ð3Þ

The distribution of E depends on L and on another variable S,

which gives the number of lines that are affected by the early

recombination at time F according to

P(S~s)~

rn
a

Pn{1

i~2

1
i

for s~1

rn
a

1
s(s{1)

for 2ƒsƒn{1

rn
a

1
n{1

for s~n:

0
BBBB@ ð4Þ

(Note that the case rn
a

Pn{1

i~1

1
i
w1 requires a different definition of the

distribution of S, which we give in Section A of the SI.) As one or

more of these S lines could experience a late recombination event,

they could be kicked out of the family of early recombinants. This

explains the hypergeometric distribution of E, i.e., given S~s and

L~l, the variable E is hypergeometric with

P(E~e)~

s

e

� �
n{s

n{l{e

� �
n

n{l

� � : ð5Þ

Combining these equations, a straightforward calculation (see

Corollary 2.7 in [19]) leads to

P(E~e, L~l)~E½pn{l
F (1{pF )l �

:

rn
a

(n{1)

n{2

e{2

 !
1llze~nz

n{1

l

 !
e(e{1)

e§2

rn
a 1llz1~nz

n{1

l

 ! Pn{1

i~2

1
i
z
Pn
s~2

n{s

l{sz1

 !
s{1

0
BBBB@

1
CCCCA e~1

n

l

 !
1{ rn

a

Pn{1

i~1

1
i
{ l

n

Pn{1

i~2

1
i

� �� �

z rn
a

1
n

1ll~nz
Pn
s~2

n{s

n{l

 !
1

s(s{1)

 ! e~0:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

Note that this equation corrects an error (in the case of e~0) of

the equation of [19]; see SI, Sections A and B. Moreover, there is a

factor of 2 difference here because we assume a diffusion constant

of 1 in (1).

Yule approximation of the site frequency spectrum
Our goal is to obtain an expectation of the site frequency

spectrum, E½Si�, at the end of a selective sweep using the

approximation from (6). We will assume that a is large and that

no new mutations accumulate in the sample during the selective

phase. Moreover, recombination between the A- and B-locus has

to be in a certain range to see a non-trivial frequency spectrum.

(Here, trivial would either mean that there is no variation at all if r
is too small or a neutral site frequency spectrum if r is too large.)

Recalling that the duration of the sweep is approximately

(2 log a)=a (see [19]), r must be on the order of a= log (a). In

other words, r=a is on the order of 1= log (a) and hence small if a
is large.

To get an approximation formula for the frequency spectra, the

events and probabilities of the selective phase must be joined with

the neutral phase. In the neutral phase, Kingman’s coalescent

describes the genealogy of the K~KazKA remaining lines. The

crucial point is how to combine the approximation of the

genealogy of the A-locus during the selective phase with a neutral

coalescent before the onset of the sweep. A critical quantity is the

number K of ancestors of the sample at the onset of the sweep.

Because a mutation can only influence at most K{1 of these

ancestors, the descendants in the selective phase depend on this

number of lines. Recall that the sample size is n, a~2Ns is large,

h=2~2Nm is the mutation rate and r~2Nr is the recombination

rate, with r=a being small. Therefore, the expected number of

mutations of size i is (see SI, Section C for the proof)
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E½Si�~
Xn

l~1

P(E~0,L~l)
(lz1{i)h

(lz1)i
1ll§iz

h

lz1
1ln{lƒi

� �

z
Xn{1

l~0

P(E~1,L~l)
(lz2{i)h

(lz2)i
1llz1§iz

h

lz2
1ln{l{1ƒi

� �

z
Xn{1

s~2

Xs{2

l~0

P(E~s{l,L~l):h:

(lz2{i)(lz1{i)

(lz1)(lz2)i
1ll§i z

(lz1{izn{s)

(lz1)(lz2)
1ln{sƒi1llzn{s§i

�

z
(1{izs)

(lz1)(lz2)
1ls{lƒi1ls§iz

(izl{nz1)

(lz1)(lz2)
1ln{lƒi

�

z
Xn{2

l~1

P(E~n{l,L~l)
(lz1{i)h

(lz1)i
1ll§iz

h

lz1
1ln{lƒi

� �
zO r2

a2

� �
,

for 1ƒiƒn{1, where the probabilities of P(E~e,L~l) are

given by (6). We note that the term O( r2

a2 ) is due to the use of the

approximation formula for the selective phase.

To get an idea of how this formula is computed, consider again

Figure 1. There are 3 late recombinant families, one early

recombinant family of size 2 and one nonrecombinant family

(labeled D) of size 4. Given these values, there are two different

ways for a mutation to get to a size of 2. Either it had a size of 2 at

time t~0 and these two lines were two late recombinant families,

or it had size 1 at time t~0 and then was the founder of the early

recombinant family, which has a size of 2 at the end of the sweep.

Taking into account all possibilities, (7) arises.

Previous approximation formulas
Using simulations, we compared the Yule approximation

formula (7) to two other approximation formulas for the frequency

spectra. The first approximation is from [16] and will be called the

deterministic formula because a deterministic development of the

frequency of allele A is assumed in this approach. The second

approximation is the star-like approximation (see [7] or chapter 6 in

[20]).

Deterministic approximation
In [16], Fay and Wu obtained the following approximation for

the site frequency spectrum after a selective sweep, building on the

ideas of [1]. They obtain

E½Sk�~
ð1

0

n

k

� �
xk(1{x)n{kw(x)dx ð8Þ

with

w(x)~h
1

x
{

1
*
r

� �
1l½0,

*
r�(x)z

h
*
r

1l½1{
*
r,1�(x),

*
r : ~

r

s
log

1

p0

� �

where p0 is the starting frequency of the beneficial allele. For the

numerical comparison, we use p0~
1
a because, in this situation, the

length of the selective phase is 2 log (a)=a, which is close to the

expectation of the stochastic model.

Star-like approximation
For the classical star-like approximation, every line in the

selective phase has the same independent chance to recombine

and be in background a at time t~0. Therefore, E~0, and L is

binomially distributed with parameters n and 1{e{rlog a
a , which is

the probability that a single line recombines. Combining this

insight with (7) leads to the equation

E½Si�~
Xn

l~1

n

l

 !
(1{e{r log a=a)l(e{r log a=a)n{l

(lz1{i)h

(lz1)i
1ll§iz

h

lz1
1ln{lƒi

� �
zO r

a

� �
:

ð9Þ

Note that for small r=a, the approximation error is much larger

than in (7).

(7)

Figure 2. Comparison of the expected frequency spectra I. Comparison of the 3 approximation formulas and the results from msms for the
parameters 2N~2000000, n~20, h~10, r~0:00005 and s~0:02. In A, the whole frequency spectrum is illustrated, while in B, the number of the
mutation sizes between 3 and 17 are enlarged.
doi:10.1371/journal.pone.0081738.g002
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Numerical comparison
Our goal is to compare the performance of the Formulas (7), (8)

and (9) to simulations from the Wright-Fisher model. For the

Wright-Fisher model, the simulation tool msms was used (which

stands for make sample mit selection, see [21] or http://www.mabs.at/

ewing/msms/index.shtml). To compare the different formulas for

the expected frequency spectra, the average of 105 iterations was

taken as a reference. Figure 2 shows the case of a high selective

advantage s~0:02 in a sample of size n~20. Theoretically, the

Yule and star-like approximations converge for large a~2Ns.

However, while the deterministic and star-like approximations

perform about equally well, the (absolute and relative) error of (7)

is smaller.

In Figure 3, we used a smaller selective coefficient s~0:01 and a

sample of size n~10. Here, the relative error of the star-like and

deterministic approximations exceed 0.6. Again, the Yule

approximation (7) gives the best results, with the relative error

never exceeding 0.2. Reassuringly, all approximations give good

results for low- and high-frequency variants that are known to be

fundamental in detecting selecting sweeps in data.

In applications, the case of a high recombination rate is of

particular importance. Here, (7) needs to be corrected as described

in Appendix A. Because the error of all approximation formulas

increases with recombination rate, it is no surprise that the errors

in Figure 4 are larger than those in Figures 2 and 3. Still, the Yule

approximation works best for most of the frequency classes.

Discussion

The site frequency spectrum is a basic summary statistic used for

the analysis of SNP data. Theoretical predictions of the shape of

Figure 3. Comparison of the expected frequency spectra II. Comparison of the 3 approximation formulas and the results from msms for the
parameters 2N~2000000, n~10, h~10, r~0:0002 and s~0:01. In A, we see the expected frequency spectra, and in B, we see the relative errors
compared to the reference msms.
doi:10.1371/journal.pone.0081738.g003

Figure 4. Comparison of the expected frequency spectra III. Comparison for the parameters 2N~1000000, n~15, h~10, r~0:003 and
s~0:03, where the adjusted formula for the joint distribution according to Appendix A is needed. In A, the expected frequency spectra are depicted,
and in B, the relative errors compared to the reference msms are illustrated.
doi:10.1371/journal.pone.0081738.g004
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the frequency spectrum are most important in order to understand

the evolutionary forces that have shaped the genomic data at

hand. In the present paper, we have demonstrated how a recently

developed approximation for selective sweeps from [7], [19], [11],

[12], based on a marked Yule process, leads to such a prediction

(at least for the expected site frequency spectrum). For the

analytical formula, two cases have to be taken into account. If

d : ~ rn
a

Pn{1
i~1

1
i
v1, the marked Yule process can be applied

directly, but if dw1, we have to use some normalization

procedure. The latter case arises if the neutral locus has a large

recombinational distance to the target of selection. In the

parameter constellation of Figure 4, neither of the approximations

works particularly well, with relative errors up to 20% for the Yule

and deterministic approximations and over 140% for the star-like

approximation. However, theoretical predictions become worse

for larger r=a and errors are less predicable in this setting.

For smaller recombinational distances, we find that the Yule

approximation outperforms the star-like approximation, especially

for intermediate frequency variants (relative error up to 20% for

the Yule approximation versus up to 80% for the star-like

approximation, see Figure 3). In a comparison between the Yule

and star-like approximations, a basic difference is that the star-like

approximation forbids what we called early recombinant families. Such

families lead to a decrease in the number of singleton mutations,

which is shown in our simulations and has the greatest impact on

the relative errors we reported above.

Altogether, the combination of (7) and (11) gives our analytical

formula. Most importantly, compared to other approaches, such

as the deterministic approach of [16] and the star-like approxi-

mation derived in [10], [7] and used e.g., in [3], the Yule process

approximation has a smaller error in nearly all cases. Although the

formulas derived in the Yule approximation are more involved,

they can still be easily implemented for data applications to obtain

a higher accuracy. Above all, such accuracy is desirable in genome

scans for selective sweeps, which are frequently carried out by

software such as SweepFinder [6].
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