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Abstract

The ability of today’s robots to autonomously support humans in their daily activities is still limited. To improve this,
predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and
machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is
achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine
learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To
support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related
activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes.
Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining
most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing,
i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern.
Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples
are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as
performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation
processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable
predictive HMIs that enable the simultaneous support of different interaction behaviors.
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Introduction

During the last decades different approaches were developed to

support humans in their daily life and working environment or to

restore sensory and motor functions with the help of intelligent and

autonomous robotic systems that behave situational and support

humans according to the context [1–5]. However, autonomous

systems do not yet come close to the cognitive capabilities of

humans regarding their ability to react mostly correctly and

appropriately to a new situation. Therefore, the application of

robotic systems is to some degree restricted to certain situations

and environments.

Some approaches solve restrictions of autonomous robotic

behavior by using human-machine interfaces (HMIs). HMIs for

example explicitly send commands to robots when autonomous

behavior cannot handle a given situation as shown by, e.g., Kaupp

et al. [2] for teleoperation. However, to explicitly send a control

command requires enhanced cognitive demands by the interacting

human. Between humans, implicit information is transferred beside

explicit information during interaction that can be used by the

interacting persons to infer on the general state of each other, like

the emotional state, involvement in the interaction or communi-

cation or the mental load. This implicit information serves to

adapt behavior to interact better, e.g., more efficiently. Thus, a

promising approach for improving the behavior of autonomous

artificial systems is to adapt them with respect to the state of the

interacting human. Such adaptation of technical systems is in a

more general sense also known as biocybernetic adaptation [6]. It

is usually used to, e.g., change the functionality of a system

regarding fatigue or frustration levels of a user and can enable

better control over complex systems [7]. For this aim (psycho-

)physiological data from the user like galvanic skin response, blood

pressure, gesture, eye gaze, mimic, prosody, brain activity or

combinations of those are applied [5,6,8,9].

Establishing and Supporting Interaction by Brain-
Computer Interfaces

The human’s EEG has been used since some decades to develop

brain-computer interfaces (BCIs) with the goal to (re-)establish

explicit interaction and communication [10–15]. For this purpose,

active and reactive BCIs enable the user to control a computer or

machine via the nervous system and can replace classical HMIs for

the explicit control of devices like keyboard, mouse or joystick.

They were mainly developed to open up new ways of commu-

nication for disabled persons [10,11,16], for example, to control a

speller by imaging hand movements [17]. Recently, active and
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reactive BCIs are also used by healthy people [18], e.g., in BCI

controlled computer games [19,20]. Active and reactive BCIs have

some main drawbacks in their application: The user has to

concentrate on the task of controlling the device via his brain

activity, hence the application of such BCIs typically requires a

high amount of cognitive resources from the user. However,

training can improve, even automate the control of such BCI and

thus reduce the effort. Further, due to the direct link between

brain and machine, misclassifications of the brain signals always

have an impact on the application and can lead to faulty behavior

[21] or inaccuracies. There are, however, promising approaches

that attempt to automatically correct misclassifications in active

BCIs. For example, [22,23] have shown that misclassifications of

brain activity can be compensated by autonomous interpretation

of the situation by the cooperating robotic system.

To extend the usage of EEG activity for physiological

computing [6] passive or implicit BCIs were developed [24,25].

They have their roots in several approaches in the past that focus

on user-state detection [25,26]. For example, in [25] the detection

of error potentials is used to correct errors that happen during a

rotation task which is performed by the application of an active

human-computer interface (HCI) that is manipulated in a way that

execution errors are introduced randomly. Since users of passive

or implicit BCIs do not actively influence their brain activity, i.e.,

do not explicitly control a device by brain activity and do not

actively produce brain activity, they seem to be an appropriate tool

to improve human-machine interaction by implicitly gained

information about the humans brain state. It was further proposed

that passive BCIs can be integrated into more complex and

natural control systems, like emergency braking assistance in cars

to improve their functionality. Haufe et al. 2011 [27] discuss that

an emergency braking assistance system could be modified by

predicting upcoming braking behavior based on EEG analysis.

The given examples furthermore show that compared to active or

reactive BCIs, passive BCIs seem to be even more easily applicable

in hybrid HMI or BCI approaches [28,29], where at least two

different kinds of BCIs or a HMI and a BCI as in [25] are

combined.

Embedded Brain Reading in Robotic Applications
Our approach to improve interaction in robotic application

scenarios was to implement embedded brain reading (eBR) [30]. It

allows to integrate implicitly gained information about the human

from his brain’s activity into the control of HMIs to automatically

adapt them for a better support of future interaction behavior.

Since such HMIs are adapted by eBR with respect to inferred

upcoming interaction behavior we call the resulting HMIs predictive

HMIs. Since we make use of implicit information, our approach is

similar to the approach of passive BCI, however we focus on

applications in which upcoming interaction behavior can be

supported instead of, e.g., correcting former false behavior. In eBR

the detection of specific brain patterns by means of machine

learning (ML) methods and the process of relating them to specific

states of the user, e.g., his intentional state, is called brain reading

(BR). BR was introduced as a method to gain information about

hidden processes and states of the brain, i.e., the function of the

mind [31]. BR can even be applied to detect different conscious

states of the human, i.e., in his conscious perception [32].

However, more functional questions like the decoding of visual,

auditory, perceptual or cognitive patterns are addressed as well

[33–37]. For our purpose, we define BR as the passive decoding of

brain activity, i.e., detection of certain brain patterns that are

related to specific functional, cognitive or intentional (but not

necessarily conscious) processes, which are evoked by internal or

external events during human-machine interaction. BR takes place

unnoticed by the user and requires no extra attentional or

cognitive resources of the user it is applied to.

The application of eBR to adapt HMIs and the tasks of BR can be

explained on the example of a robotic telecontrol scenario (see

Fig. 1), where two HMIs are implemented for human-machine

interaction. During teleoperation the operator has to understand

information about the general situation or possible hazards, e.g., a

person entering the operating area of the robot, a malfunction of the

exoskeleton or robot, or requests for communication from outside,

such as a second task. It is known that under such conditions of high

workload attention to a second task can be impaired [7,38]. This

impairment can lead to failure in one of the tasks, most likely the

subjectively less important one. Since manipulation of the exoskel-

eton requires a very high amount of the user’s cognitive resources, it

is very likely that he misses important information. It is well known

that the event-related potential (ERP) P300 is evoked whenever the

brain detects information that appears infrequently in the user’s

subjective perception. Several sub-components of the positive P300

are known, i.e., novelty P3, P3a and P3b [39–41]. The P3b

component is evoked by infrequent task relevant stimuli and is

therefore not only an indicator for attentional, but also for early

cognitive processes, i.e., when target evaluation and recognition

takes place [41–44]. The amplitude of the P300 does not only

depend on the subjective impression of the frequency of occurrence

of stimuli but also on the importance of a presented stimulus and

whether a subject devotes high amounts of effort to the task [38]. A

reduction of the amplitude of P300 can be found in case of

ambiguous stimuli for which relevance and importance might not be

clear. In case that a subject misses an important stimulus it is

expected that no P300 is expressed [45]. Since in the teleoperation

scenario a dual-task (controlling the robot by the exoskeleton and

responding to important information) is performed, it can further be

assumed that besides brain activity related to target recognition

processes also other partly overlapping ERP components related to

the retrieval of intended action from long-term memory, post-

retrieval monitoring, and task coordination processes will be evoked

by target stimuli and accompanied by further EPRs like the

prospective positivity [46–48].

Hence, in the teleoperation scenario we used ERP activity, i.e.,

positive parietal ERP activity, mainly the P300. Instead of having

a second person to assist the operator we adapted the implemented

operator monitoring system (OMS) by eBR to better assist the

operator under both conditions, i.e., if she/he recognized an

important warning or did not recognize it. The task of BR was to

detect different brain patterns, i.e., patterns that were evoked by

the recognition of important stimuli (that contain a P300) and

patterns that were evoked by important stimuli that were not

recognized, i.e., missed (containing no P300). This information was

then used to infer whether or not the operator would respond and

to adapt the repetition time for warnings appropriately by eBR.

For example, if eBR infers that the operator will respond (in case

BR detected brain patterns related to the recognition of important

stimuli) the tolerated response time is extended. On the other

hand, if eBR infers that the operator will not respond (in case BR

did not detect brain patterns related to the recognition of important

stimuli) the allowed response time is reduced or the important

information is repeated immediately (see Video S1 and Fig. 2).

Experiments conducted so far support our approach [49]. Subjects

reported that an adapted OMS can reduce stress by avoiding to

force fast responses and emphasizes important information by

repeating them at a higher frequency in case the subject was

distracted.

Brain Reading for Human-Machine Interfaces
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A central part of the teleoperation scenario (see Fig. 1) is an

exoskeleton developed by our group [50] to intuitively control

different robotic arms or legs [51,52]. The exoskeleton used for

teleoperation serves both as a control device for a semi-

autonomous robot as well as an interface for the control of a

virtual scenario (for visualization of the scenario see Video S2). For

control reasons the switch between two operating modes of the

exoskeleton: (i) a position control mode (PC) where the exoskeleton

Figure 1. Experimental setup for the teleoperation scenario – a holistic feedback control of semi-autonomous robots. In the
teleoperation scenario an operator is wearing an exoskeleton and, with the support of a virtual scenario, is tele-manipulating a robotic arm. A: three
kinds of virtual response cubes (different responses are required for different types of warnings); B: different kinds of stimuli: unimportant stimulus
(STATE OK – no response required), warning (first target – response required), repeated and enhanced warning (second target – response required),
third warning (response is critical, e.g., exoskeleton control is disabled); C: labyrinth that the robot has to be moved through; D: virtual hand.
doi:10.1371/journal.pone.0081732.g001

Figure 2. Adaptation of an operator monitoring system by BR. The currently implemented message scheduling procedure which is
controlled by the operator monitoring system (OMS) is shown. The OMS considers the cognitive state that is detected by BR and allows to infer the
behavior of the human. The general procedure is described in the following: After a warning the operator’s EEG is analyzed by BR. Detection of
successes versus no success in the recognition of important information by BR allows to infer future behavior (response or no response) by eBR. As a
consequence, the behavior of the OMS is adapted, i.e., the tolerated response time is extended or a second warning is presented right away by the
OMS. In case the operator does not respond to the second warning, a third warning follows. Approximate time required for predictions made by BR
and predefined response times are given in the arrows.
doi:10.1371/journal.pone.0081732.g002

Brain Reading for Human-Machine Interfaces
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supports the user, i.e., by allowing him to rest and (ii) a free run

mode (FM) where the operator can move freely and control the

virtual scenario (see Fig. 3 adopted from [52]) is very interesting

for an adaptation by eBR and could be shown to be applied

successfully [53]. During rest the applied control mechanism of the

exoskeleton cannot make predictions about upcoming behavior as

it is possible during interaction [54]. To improve interaction it is

relevant to know whether the operator wants to move again.

Movement intention can be predicted from the user’s EEG.

Kornhuber and Deecke [55] showed that a complex of ERPs

precedes intended movements. Most prominent are the Be-

reitschaftspotential (BP) or Readiness Potential (RP) and the

Lateralized Readiness Potential (LRP) [55,56]. The RP can be

recorded up to two seconds before the movement’s onset and is

pronounced at central electrode sites [57]. The LRP has, in case

of arm and hand movements, its maximal amplitude contralat-

eral to the side of movement above sensorimotor areas of the

brain and will occur just before movement onset. By detecting

brain patterns by BR that are related to movement preparation

processes, the onset of movement can be inferred by eBR and

used to adapt the interface, i.e., exoskeleton, for an easier lock-

out from a rest situation (PC mode in Fig. 3). However, even if

BR detects movement intention, the exoskeleton’s mode is not

directly changed. Any change from PC to a FM mode will only

happen after the inferred movement onset is confirmed by the

force sensors that are integrated in the exoskeleton (see Fig. 3

and Video S3). This prohibits faulty behavior of the exoskeleton

but improves interaction by reducing the force that is required

for lock-out in case the inferred behavior is indeed executed [52].

Goals: Applying and Improving BR during Complex
Interaction

Although we were able to show in the teleoperation scenario

that our approach of adapting both HMIs by eBR works online

and improves interaction [49,53], it is not clear whether or not our

approach of BR to relate brain patterns that were detected by

means of machine learning methods to certain states of the human

is appropriate for complex human-machine interaction scenarios.

In the given application example the intentional state ‘‘movement

intention’’ and the cognitive states ‘‘recognition of important

stimuli and task coordination’’ are expected to be accompanied by

ERPs, like the RP and LRP for ‘‘movement intention’’ and the

P300 and prospective positivity for ‘‘recognition of important

stimuli and task coordination’’ as explained above. To support that

BR indeed allows to detect these states, correlation between brain

patterns detected by ML and the above mentioned ERP activities

must be shown. One has to point out that other brain activity

besides the expected ERP activity will be learned by the classifier

especially since applied ML methods can make use of all available

signals from all electrodes. This may on one hand decrease

classification performance since the classifier might learn unstable

features that are for example present during training but not

during testing and might reduce the reliability of inferred behavior

by eBR since brain processes other than the assumed ones might

evoke the brain patterns that were detected by BR. On the other

hand, other brain activity than the here investigated one will surely

contribute positively to the classification performance. Hence, our

goal was not to prove that evoked brain activity not investigated

here is not involved. Rather, the goal of this work was to support

the application of BR in complex human-machine interaction

scenarios. Therefore, we investigated whether predictions made by

ML based on detected brain patterns can be related to known

patterns in the EEG, here ERPs, that are well understood in their

meaning with respect to the brain’s functioning as well as their

psychological effects. Since we wanted to perform the above

explained investigations during complex interaction, the chosen

experimental setups had to cover certain aspects of the teleopera-

tion scenario. Two experimental scenarios were designed. The

teleoperation scenario described above was not used since an

investigation in this scenario with a high amount of subjects is

Figure 3. Adaptation of the exoskeleton’s control by BR. It is shown how BR adapts the exoskeletons control. The exoskeleton is supporting
the user while moving (free mode: FM). In case the user stops moving, the exoskeleton will lock in to support the arm at a chosen position (position
control mode: PC). For release the user has to press against sensors that are integrated into the exoskeleton. To ease the release BR detects
movement intention. The movement prediction score is then used to modulate the exoskeleton’s control by eBR: the higher the prediction score (i.e.,
the more certain the classifier is) the stronger is the adaptation of the exoskeleton’s control and the lower is the effort for the user to transfer the
exoskeleton from PC to FM mode. Pressure against the sensors is always required for release, which is minimizing the risk of false lock out in case of
possible false detection of movement intention by BR. Adapted from [52].
doi:10.1371/journal.pone.0081732.g003
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quite-time consuming and experiments could not easily be

repeated and reproduced. Moreover, since in the teleoperation

scenario two different applications for eBR were implemented in

the second scenario we investigated a dual BR approach.

We further systematically investigate experimentally the perfor-

mance of BR with respect to training data. To improve

performance of BR by choosing most appropriate training data

(here the relevant training window as well as combinations of

training windows) is important since BR as a passive approach

cannot make use of direct feedback during training to optimize brain

activity as it is common for the application of active and reactive

BCIs and will hence not profit from effects of biofeedback [12,58].

Even more critical than this is the fact that a complex application

may not produce enough training data while performance of ML

strongly depends on the amount and quality of the training

samples. Our robotic application uses BR in situations which

occur irregularly and are hard to reproduce for training. One way

to deal with this issue is to substitute the underrepresented training

class by a training class for which more and similar examples can

be acquired. Such approaches are already applied with success. In

[59] an overview is given when and how transfer learning can be

applied in general. For the detection of brain patterns, classifier

transfer was also proposed. Observation error related potentials

(ErrPs) were detected in a task on which the applied classifier was

not trained [60]. In this study a classifier for the same type of ErrP

(observation ErrPs) was transferred between tasks. In [61] we

showed that a classifier which is trained on one type of ErrP can

classify another type of ErrP. Although the underlying kind of

interaction (active versus passive interaction) is different, one can

assume that similar brain processes are responsible for the

detection of errors. In this work we want to investigate whether

it is possible to transfer a classifier between classes used for training

and testing that are similar with respect to the fact that the

individual ERPs do not contain a specific component, i.e., a P300.

Our hypothesis is that this is possible, if ERP analysis shows that

the relevant component, i.e., the P300, is missing in both cases.

Hence, for classifier transfer we propose that the classifier does not

have to be trained and tested on examples that are evoked by the

same brain processes (like error detection processes as explained

above), but by brain processes, which might be different, but evoke

brain patterns, which are similar in shape and characteristics, i.e.,

miss a prominent ERP component.

To summarize, in the following we will present results of two

studies, which show that BR can be applied during complex

human-machine interaction to detect patterns in the EEG in single

trial with a high accuracy. In Part ‘‘Labyrinth Oddball Scenario –

Recognition of Important Stimuli and Task Coordination

Processes’’ we investigate, whether the cognitive states ‘‘recogni-

tion of important stimuli and task coordination’’ can be correlated

to the results of ML analysis. For this goal the EEG was analyzed

by averaged ERP analysis and single trial ML analysis. The

applicability of classifier transfer between different classes is

investigated in Sec. ‘‘Window of Interest and Transferability of

Classifier’’. Furthermore, we present results on improving the

detection accuracy by choosing optimal training windows based on

ERP and ML analysis, i.e., show how to optimally combine

different training windows (see Sec. ‘‘Window of Interest and

Transferability of Classifier’’ and Sec. ‘‘Combination of Training

Windows for a Robust Detection of Movement Intention’’ in Part

‘‘Dual BR Scenario Armrest – Simultaneous Detection of Two

States’’). In Part ‘‘Dual BR Scenario Armrest – Simultaneous

Detection of Two States’’ we further present results for detecting

both the intentional state ‘‘movement intention’’ as well as the

cognitive state ‘‘recognition of important stimuli and task

coordination’’ within one experimental setup. Such a dual BR

approach that enables the simultaneous detection of two different

brain states is an important requirement to enable eBR to adapt

two HMIs, i.e., the OMS and an exoskeleton, within one

application, i.e., the above described teleoperation scenario.

Furthermore, in Sec. ‘‘Performance of BR in the Detection of a

Highly Underrepresented State’’ we replicated some results of the

first study under more realistic conditions to confirm that our

approach of classifier transfer works even in case of reduced

numbers of samples of the relevant class. In Sec. ‘‘Conclusions’’

conclusions are drawn regarding the results gained in our studies

with respect to the applicability of BR for self-controlled, predictive

HMIs in robotics.

Labyrinth Oddball Scenario – Recognition of
Important Stimuli and Task Coordination
Processes

To support our hypotheses that ERP activities evoked by the

presentation and processing of different stimuli contributes

strongly to the separability of classes in ML analysis and that

BR can hence be applied to detect the cognitive states of

‘‘recognition of important stimuli and task coordination’’ the test

scenario Labyrinth Oddball (Fig. 4) was developed. By means of this

test scenario we further show that classifier transfer is possible

between classes that contain examples of similar shape and

characteristics, i.e., miss a P300. The scenario allows to investigate

the EEG activity of an operator who is controlling a device while

reacting to incoming infrequent information at the same time.

This mimics the situation in the described teleoperation scenario

(see Fig. 1), where the operator performs a main task involving

continuous motor activity (telecontrol of the robot), while

monitoring and responding to important information that is given

to him. In the teleoperation scenario, response time is expected to

jitter in a wide range depending on the workload that is induced

by the main task. This is expected to be similar in the Labyrinth

Oddball setup (for visualization of the scenario see Video S4).

The Labyrinth Oddball scenario can be described as follows: A

subject plays a virtualized BRIOH labyrinth game wearing a head

mounted display (HMD). This demanding task was chosen to put

the subject into a situation of high workload while performing the

second task, which is to react to infrequent warnings (first and

second target stimuli, see ‘‘Target 1’’ in Fig. 4 for first targets,

second targets were represented as a full form in the shape of a

diamond matching the color and size of the first target) by pressing

a buzzer. Subjects were asked to respond immediately and not to

ignore any target stimulus. Target stimuli (infrequent, important

information) were mixed up with standard stimuli (frequent,

unimportant information that require no response, see ‘‘Stan-

dards’’ in Fig. 4; the corner with the longer sides points upwards

instead of sidewards if compared with the first targets) in a ratio of

about 1:6. The inter-stimulus interval (ISI) was 1000 ms with a

random jitter of +100 ms. For more general details about this

experimental setup see [44]. Since the manipulation task was very

demanding, a rather long response time from 200 ms to

approximately 2000 ms (i.e., 1800 ms to 2200 ms due to jitter in

inter stimulus interval) after target stimulus presentation was

allowed during the recording of training data before a second

warning was presented. In case there was no response within this

period, the trial was labeled as missed target. On the second target a

response time of 200 ms to 1000 ms was allowed. In contrast to

the scenario used in [44], visual presentation (shape and color) of

standard stimuli that require no response and first target stimuli

that require a response were kept very similar (see Fig. 4) in order

Brain Reading for Human-Machine Interfaces
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to avoid differences in early visual processing of the stimuli. This

assures that differences in the EEG recorded after the presentation

of both stimuli types were mainly caused by processes of higher

cognitive processing.

As discussed in Sec. ‘‘Introduction’’ classifier transfer is possible

between two classes if the patterns of the samples of both classes

(used for training and for test) are similar in shape and

characteristics. For the detection of target recognition processes

by BR we substituted our test class in ML analysis, i.e., infrequent

samples evoked by situations in which the user missed the first

targets (missed targets), with a training class of frequent samples

(standards), i.e., EEG instances evoked by frequent unimportant

information to which the user was not required to respond (Fig. 5).

This approach was based on the assumption that ERP activity

evoked by standards is very similar in shape and characteristic to

ERP activity evoked by missed targets and that both differ from

ERP activity evoked by targets, which represent the second

training and test class. The expected similarities between EEG

activity evoked by standards and missed targets is mainly the

absence of a P300. Only perceived target stimuli will evoke a P300

(mainly P3b due to the task relevance of the target stimuli). Our

hypothesis is that the P300 substantially contribute to the class

separability in ML learning. We further assume that the absence of

target detection processes, either because of a failure of recognition

or complete miss (for missed targets) or because it is not required

(for standards) mainly contributes to the similarities between ERPs

evoked by standards and missed targets.

Another implicit difference is that response behavior is only

executed after target stimuli and not after standard and missed target

stimuli. It is known that motor-related potentials that are evoked

by the preparation and execution of response behavior can

influence the amplitude of P300 (i.e., P3b in [43]) which is

expected to be evoked by targets but not by standards and missed

targets. However, we can largely rule out a major impact on P300

amplitude differences by motor-related activity and by this a major

influence of response preparation and execution on class

separability and classifier transferability in our experiment for at

least three reasons: First, studies showed that the P300 latency is

not correlated with reaction time [42]. Only in case that a very fast

response time is requested a correlation can be found between

response preparation and P300, i.e., P3b (see [43] for discussion).

In the Labyrinth Oddball scenario we expected that motor response

activity will be late and poorly time-locked to the stimulus onset

with a low correlation due to the dual task condition. Hence,

related EEG activity is not expected to overlap largely. Second,

possible differences related to motor activity are most prominent at

frontal and central electrodes [57] and should not heavily

influence ERPs at electrode Pz, where highest amplitudes for

P3b are expected. Third, subjects are constantly performing the

labyrinth task during the experiment and therefore motor-related

Figure 4. Experimental setup Labyrinth Oddball. In the Labyrinth Oddball setup subjects perform a dual-task, i.e., they play a virtualized
labyrinth game and react to less frequent first and second target stimuli by pressing a buzzer. A second target is presented in case that the first target
was missed. Brain activity recorded after the different stimuli was averaged over all subjects, sessions, and runs (total number of trials after artifact
removal: target 1 (red ERP curve, right side): n~1623; missed target 1 (blue ERP curve, right side): n~439; standards (black ERP curve): n~13598).
doi:10.1371/journal.pone.0081732.g004
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activity (not corresponding to the oddball response) is evoked while

processing all types of stimuli. Thus, motor activity is not only

prominent after target stimuli. Furthermore, it could be shown that

the execution of button press in a simple oddball setting does

reduce the amplitude of the midline P3b [43]. By weakening the

amplitude of the P3b by motor response on targets, ERP activity

that is evoked by target stimuli would be more similar to ERP

activity on missed targets than the latter to standards which is rather

the opposite of the hypothesis we want to validate here.

To support our hypothesis, we conducted an ERP study in the

Labyrinth Oddball scenario investigating differences in ERPs after

the presentation of standard, target and missed target stimuli. First, the

behavior of the subjects is analyzed to differentiate between EEG

trials with correct, incorrect and missed behavior. Further, the

reaction time for correct trials is calculated. In the average ERP

analysis we focus on EEG activity occurring 300 ms after stimulus

onset at electrode locations Cz, Pz, and Oz, since the P3b

component should be expressed at that time or later with maximal

amplitude at electrode positions Cz and/or Pz in case of target

recognition [41]. The relevance of the P300, i.e., P3b, for class

separability and classifier transferability is investigated by the

above mentioned average ERP analysis and by a systematic

machine learning (ML) analysis. By comparing the results of both

analyses we investigate whether ERP activity recorded in the time

range of the P3b is suited to make predictions on the transferability

of a classifier. In the ML analysis we systematically train a classifier

on different sub-windows to evaluate how well the transfer works

for different windows. Following and depending on the outcome of

the ERP average study we investigate which window and which

window size is most important and what performance can be

achieved after optimization of preprocessing and classification. A

reduction of window size contributes to lower computational costs

and is therefore desirable for online analysis.

Methods
Experimental Procedures and Data Acquisition. Six

subjects (males; mean age 27:5, standard deviation 2:1; right-

handed, and normal or corrected-to-normal vision) took part in

the experiments. Subjects were instructed to respond to all target

stimuli even in case they were uncertain. By this procedure, we

ensured that missed targets were indeed missed and not perceived as

important and task relevant stimuli. Subjects were in a competition

to miss as few as possible targets while achieving good performance

in the game. Recognizing and responding to all targets was rated

higher than performing the senso-motor, i.e., labyrinth task. One

subject had to be excluded in retrospect due to extensive eye blinks

which made average ERP analysis impossible. The experiment

was split into two sessions with at least one day rest in between. In

each session, each subject performed 5 runs with 120 target 1

stimuli (important information) and about 720 standard stimuli

(unimportant information, shape of stimuli see Fig. 4). Stimuli

were presented in random order.

While the subjects were performing the task, the EEG was

recorded continuously (62 electrodes, extended 10–20 system with

reference at FCz) using a 64 channel actiCap system (Brain

Products GmbH, Munich, Germany). Two electrodes of the 64

channel system were used to record the electromyogram (EMG) of

muscles of the upper arm (M. bizeps brachii) related to the buzzer

press in order to monitor muscle activity. Impedance was kept

below 5 kV. EEG and EMG signals were sampled at 1 kHz,

Figure 5. Classifier Transfer. Transfer of classifier between classes is visualized. Classifier transfer is applied between the class standard and missed
targets. Hence, for training the class standard was used, in test the class missed targets was used instead.
doi:10.1371/journal.pone.0081732.g005
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amplified by two 32 channel BrainAmp DC amplifiers (Brain

Products GmbH, Munich, Germany) and filtered with a low cut-

off of 0:1 Hz and high cut-off of 1 kHz.

Ethics Statement. The study has been conducted in

accordance with the Declaration of Helsinki and approved with

written consent by the ethics committee of the University of

Bremen. Subjects have given informed and written consent to

participate.

Behavior. For behavioral analysis we investigated the perfor-

mance of the subjects in the oddball task. For this, we analyzed the

subject’s correct behavior and incorrect behavior (commission

error, i.e., response on standard stimuli and omission error, i.e.,

missing response on target stimuli).

Further, we investigated the response times and jitter in

response times based on buzzer events and EMG onsets (see

Fig. 6 for averaged EMG activity based on EMG onset and buzzer

event). The onsets in the EMG signal had to be labeled manually,

due to poor signal quality and constant movement of the subject

an automated onset detection as described in [62] was not

possible. For the analysis of EMG onset the signals from the two

unipolar EMG channels were subtracted from each other to

calculate a bipolar signal. The raw bipolar signal was preprocessed

using a variance based filter with a window length of 1 s [62]. The

resulting signals were visually inspected and each onset was

marked in the EEG data. The single response time was then

measured as interval between the target onset and the corre-

sponding EMG onset. Single response times on the buzzer events

were measured as time between the onset of stimulus presentation

and the onset of buzzer press. Further, we calculated the median of

response time over all sets (3 sets |2 sessions) for each subject and

also minimal response time and maximal response time. After that,

the mean of subject’s medians was calculated.

Average ERP Analysis. To identify relevant ERP activity an

average ERP analysis was performed. EEGs from runs 2,3 and 4
of both sessions were analyzed off-line with the BrainVision

Analyser Software Version 2:0 (Brain Products GmbH, Munich,

Germany). Run 1 and 5 were not used for analysis to reduce the

amount of data and thus processing time for the ML analysis

presented in Sec. ‘‘ML Analysis’’. We chose the middle runs to

minimize side effects due to training or exhaustion.

EEGs were re-referenced to an average reference (excluding

electrodes Fp1, Fp2, F1, F2, PO9, PO10, FT7–FT10 due to

artifacts and electrodes TP7 and TP8 which were used to record

EMG activity) and filtered (0:2 Hz low cutoff, 4:0 Hz high cutoff).

The low-pass filter was chosen with an untypical low cutoff

frequency, since results of average ERP analysis should be

compared with results of ML analysis. Although different pass

bands are reported in P300 classification (see [63,64]) a study

about the important factors on P300 detection concluded that the

main energy of this type of ERP is concentrated below 4 Hz [64].

Our own investigations support this conclusion (see for example

[65]). An ERP analysis of EEG data from a very similar

experimental setting which considers a wider frequency range

(higher low pass filter) is currently under preparation. Preliminary

results are published in [47]. Artifacts (e.g., eye movement, blinks,

muscle artifacts, etc.) were rejected semi-manually (maximal

amplitude difference in 200 ms intervals was 50 mV, gradient

75 mV/ms, low activity was 0:1 mV over 100 ms). EEGs were

segmented into epochs from 100 ms before to 1000 ms after

stimulus onset. Epochs were averaged separately for each stimulus

type. Only segments in which a stimulus of type target was

followed by a response within the given response time contributed

to mean ERP curves on the stimulus type target. Segments in which

no response followed after a stimulus of type target were defined as

missed target trials and contributed to generate mean ERP curves

on the stimulus type missed target. Baseline correction was

performed before averaging (pre-stimulus interval: {100 to

0 ms). In case of missed target events a second target (target 2)

followed. In this study we did not evaluate ERP activity evoked by

stimulus type target 2 and missed target 2.

Amplitude differences were analyzed using repeated measures

ANOVA with the within-subjects factors stimulus type, electrode, and

time window and between-subjects factor subject. To find the

expected P300 effect, we compared amplitude differences between

the three stimulus types (standards, targets, and missed targets).

Additionally, the factor electrode (Cz, Pz and Oz) served to

investigate spatial differences in the P300 effect. Time window was

used as factor, since visual inspection of the averages of activity

evoked by targets revealed multiple peaks in the time range of

300–900 ms for each subject. Therefore, we divided the 300–

900 ms window into two separate windows (300–600 ms and 600–

900 ms after the stimulus) to cover early and late parts of the

broad peak (as seen in grand average in Fig. 4), accounting for

multiple, possibly overlapping positive ERP components. To

investigate subject-specificity of the effects, subject was used as a

between-subjects factor. Where necessary, the Greenhouse–

Geisser correction was applied and the corrected p-value is

reported. For pairwise comparisons, the Bonferroni correction was

applied.

Figure 6. Averaged EMG activity. Average EMG activity of subject 1 that was averaged based on two different events is displayed. A: Averaged
activity based on buzzer press event is shown. B: Average activity based on EMG onset is shown.
doi:10.1371/journal.pone.0081732.g006
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ML Analysis. All ML evaluations have been performed using

the open source signal processing and classification environment

pySPACE [66]. Data processing was as follows: Windowing and

preprocessing were performed directly on the raw data from the

recording device. In order to avoid that preprocessing artifacts

such as, e.g., filter border artifacts, influence classification

performance, we performed the complete preprocessing (including

decimation and filtering) on a larger window between {200 and

1400 ms relative to the stimulus onset. We chose the following

preprocessing based on the rationale issued above (see Sec.

‘‘Average ERP Analysis’’ and [64]): The data were baseline-

corrected (with 100 ms window prior to stimulus onset), decimated

to 25 Hz and subsequently lowpass filtered with a cut-off

frequency of 4 Hz.

As in the ERP analysis, run numbers 2, 3 and 4 of both sessions

were used for training and testing. In contrast to the average ERP

analysis described above we included the early time window of 0–

300 ms in the ML analysis. This was done to control for the fact

that early time windows may still contribute to the classification of

the different classes (standards, targets, missed targets) even though we

hypothesized that main differences are caused by the P300 effect

(see Sec. ‘‘ Relevant Averaged ERP Activity’’).

It is important to note here that several dependencies have to be

kept in mind when evaluating the results: First, performance

depends on window size since a larger window contains more

features and thus a higher dimensionality of the signal. Second, the

classifier parameters depend on the underlying data (and

dimensionality). However, the purpose of this investigation was

to compare different windows (and sizes) concerning their quality

for classification, so we assessed the results always with respect to

window size and starting point of the window and performed

statistical analysis only on windows of equal length.

Furthermore, the parameters of the classifier were adjusted to

an unspecified value to omit data-dependent effects: in the entire

analysis, we used a support vector machine (SVM) as implemented

in LIBSVM [67] (SVC-C with a linear kernel) with a fixed

complexity of 100 simulating a hard margin. Hence, we cut

different windows by varying starting point (0 ms-700 ms) and

window size (200 ms-800 ms) in steps of 100 ms. Data used for

training and testing were different, as outlined above: We trained

on standards and targets of one experimental run and tested missed

targets versus targets of another run within one session. All possible

combinations of the above mentioned runs within one session were

tested. Classifier features were the preprocessed time-channel

values, i.e., the amplitudes.

The corresponding classification performance was computed

using the area under curve (AUC) [68] which is an indicator of

general separability of the two classes in the data. AUC is the area

under the receiver operating characteristics curve. This curve

maps the different true positive rates (TPR) and false positive rates

(1-TNR) obtained when the decision boundary is varied from

{? to ?. The AUC is then computed as the integral of the

resulting function. In this way, we investigated the linear

separability of the data essentially independent of the applied

classifier.

For statistical inference, we chose three time windows from the

aforementioned temporal segmentation that match the later time

windows which had been chosen for ERP analysis (300–600 ms,

and 600–900 ms see Sec. ‘‘Average ERP Analysis’’) and the early

time window of 0–300 ms. This procedure relates the results of the

classifier performance-based approach to the results of the ERP

analysis. Classification performances for the different window sizes

were statistically analyzed using repeated measures ANOVA with

the within-subjects factors time window (0–300 ms, 300–600 ms,

and 600–900 ms) and subject. Corrections were applied where

necessary. Classification performance after optimizing the classifier

were analyzed using repeated measures ANOVA with subject as

within-subjects factor. Where necessary, the Greenhouse–Geisser

correction was applied and the corrected p-value is reported. For

multiple comparisons, the Bonferroni correction was applied.

In a further analysis we investigated the possibility to improve

classification performance by the combination of information from

two windows. We combined the middle time window (300 to

600 ms) with both other time windows (early: 0 to 300 ms and

late: 600 to 900 ms time window) separately.

To determine classification performance that can be achieved

under optimized conditions we finally performed a final analysis

with the goal to get a better estimate of the applicability of our

approach of classifier transfer between the classes standard and

missed target. The processing window was chosen based on the

results of the systematic ML analysis explained above. We

performed a classifier optimization of the SVM parameter

complexity using a 5-fold cross validation in combination with a

pattern search algorithm [69] to evaluate the overall performance

in the application with an adjusted classifier.

In this subsequent investigation we used an optimized SVM on

a chosen time window. Further, we computed the balanced

accuracy (BA) as a performance measure for the chosen time

window. The balanced accuracy [70] is the arithmetic mean of

true positive rate (TPR) and true negative rate (TNR) and

calculated accordingly

BA~
1

2
TPRzTNRð Þ: ð1Þ

Both performance measures used (AUC and BA) are insensitive

to unbalanced or even changing ratios of the two classes (positive

class P and negative class N), which is most important in the

application where we have an oddball-like situation with frequent

and infrequent examples. It holds for both metrics that a value of

0:5 means guessing and 1 means perfect classification.

Results
Behavior. In total 724 omission errors (575:2+82:23)

occurred, thus 724 missed targets were observed and 2876 targets

stimuli were found with correct responses. No commission error

(i.e., responses on standards stimuli) could be found.

Figure 7 shows the median response time for each subject across

two sessions. Based on the buzzer press event, responses occurred

837 ms after the target stimuli (mean of subject’s medians). The

median of minimal response time was 597 ms and the median of

maximal response time was 1783 ms. The difference between the

minimal and maximal response time was between 686 ms and

1657 ms (median: 1131 ms). EMG onsets began even earlier in

time (mean of subject’s medians: 551 ms). The median of minimal

response time was 336 ms and the median of maximal response

time was 1466:5 ms. The difference between the minimal and

maximal response time was between 563 ms and 1621 ms

(median: 1130:5 ms). No difference exists between median

difference in response time based on the buzzer event (median:

1131 ms) and median difference of response time based on the

EMG onset (median: 1130:5 ms).

Relevant Averaged ERP Activity. The grand average over

all subjects of the standard, target and missed target ERP pattern

in the centro-parietal electrode (Pz) is depicted in Fig. 4.

Significant differences between standards and targets (i.e., P300

effect) were observed [F (2,50)~65:27,pv0:001, pairwise com-
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parisons: standards vs. targets: pv0:001]. The P300 effect was

stronger at the electrodes Cz and Pz compared to the electrode Oz

[P300 effect at Cz: pv0:001, P300 effect at Pz: pv0:001, P300

effect at Oz: pv0:045]. The significant amplitude difference

between the ERPs evoked by targets and missed targets stems from

a higher positive amplitude on targets for both time windows

[pv0:001]. This higher positivity elicited by targets was significant

for four subjects [targets vs. missed targets: pv0:02 for four

subjects, p~n:s: for one subject (subject 1), see Fig. 8]. Further-

more, no subject showed differences between ERPs evoked by

missed targets and standards in the 300–600 ms time range

recorded over central electrodes [standards vs. missed targets: p~

n.s.]. However, in the 600–900 ms window, amplitude differences

between missed targets and standards are more subject-specific

[standards vs. missed targets: p~ n.s. for subject 4 and 5,

pv0:029 for subject 1, 2, and 3, see Fig. 8].

To summarize, a P300 effect elicited by targets was observed for

both time windows and in all subjects with a maximum amplitude

intensity at the central and parietal electrodes (Cz and Pz). The

morphology of the ERP form elicited by missed targets is,

especially in the 300–600 ms time window, similar to ERP forms

elicited by standards and supports our hypothesis that EEG

instances evoked by standard stimuli can potentially be used to

substitute EEG instances evoked by missed targets during training.

For the later time window results differed. Only two subjects

showed no differences between standards and missed targets.

Window of Interest and Transferability of Classifier. The

results in Fig. 9 illustrate how the separability of the two classes

missed targets versus targets varies when different time windows are

used for classification. For small and early windows (before around

300 ms) the performance is lowest but above random guessing. For

small window sizes (200–400 ms) the performance reached a

maximum when used with windows starting after 300 ms. With

increasing window size performance also increases, which is yet

impacted with the increased dimensionality of the data (more

dimensions imply more information for the classifier) and has

therefore to be considered carefully.

To investigate the amount of information in each time range,

we compared performances on training data with fixed window

sizes of 300 ms as illustrated in Fig. 10. The statistical analysis of

the AUC values shows that performance is clearly affected by the

choice of the time window [main effect of time window:

F (2,22)~82:43,pv0:001] and that classification of the middle

window (300 ms–600 ms) and the late window (300 ms–600 ms)

clearly yields higher performance compared to the early window

(0 ms–300 ms) [early window: mean AUC of 0.82, middle

Figure 7. Evaluation of response time. The mean and median of response time for each subject across two sessions based on EMG and buzzer
press events are displayed. A: Mean of response time. B: Median of response time.
doi:10.1371/journal.pone.0081732.g007

Figure 8. Averaged ERPs in the Labyrinth Oddball scenario. Different averaged ERP patterns evoked by standards, targets, and missed targets
are shown for two subjects. A: Subject 1: No significant difference in ERP amplitude between targets and missed targets but significant difference in
ERP amplitude between standards and missed targets for the late window was found. B: Subject 5: A higher P300 effect on targets compared to both
standards and missed targets and no significant difference in ERP amplitude between standards and missed targets for the late window was found.
doi:10.1371/journal.pone.0081732.g008
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window: mean AUC of 0.90, late window: mean AUC of 0.88,

multiple comparisons: 0–300 ms vs. 300–600 ms: pv0:001, 0–

300 ms vs. 600–900 ms, pv0:001, 300–600 ms vs. 600–900 ms:

p~0:10].

In the further analysis were we combined the middle time

window (300 to 600 ms) that is showing the highest classification

performance for most subjects (see Fig. 10) with both other time

windows (early: 0 to 300 ms and late: 600 to 900 ms time window)

separately, the main result was that classification performance

could be improved by the combination of the middle and late time

window compared to the combination of the middle and early

time window [main effect of combined time window:

F (1,11)~13:03,pv0:005, combination of the middle and early

window: Mean of AUC of 0.89, combination of the middle and

late window: Mean of AUC of 0.92, pairwise comparison:

combination of the middle and early window vs. combination of

the middle and late window: pv0:02] again supporting our

hypothesis that later cognitive activity is most important for the

prediction of the success of cognitive processing.

Given the results presented above we obtained the best results

when starting the windows 300 ms after the stimulus was

presented (depicted in Fig. 9). This supports our hypothesis that

P300 related processes contribute substantially to class separabil-

ity. Based on theses findings, we decided to use a processing

window in the time range between 300 ms and 1000 ms. As

described in the methods section, we now used an optimized

preprocessing procedure and classifier for this window. On

average, a BA of 0:85 (standard deviation: 0:06) was obtained.

While the measure of the AUC served for finding the interesting

window ranges, this performance measure now reflects what the

particular classifier is able to achieve. The distribution of the

results is illustrated in the inset in Fig. 9 and the classification

performance for each subject is depicted in Fig. 11. A

significantly higher classification performance compared to all

other subjects (except for subject 5) was shown for subject 4 [main

effect of subject: F (8,88)~2:97,pv0:03, details see Fig. 11 lower

right].

It is worth to point out that average ERP analysis for subjects 4

and 5 (with better classification performance) in contrast to all

other subjects could not reveal any significant differences in

amplitude of averaged ERP forms evoked by standards and missed

targets in both time windows (300 to 600 ms and 600 to 900 ms).

Based on our hypotheses, such similarity between ERP forms

evoked by standard and missed target stimuli and a clear absence of

P300 and later EPR activity that may be related to task

coordination would suggest a good outcome for classifier transfer

and high performance as was shown here. Hence, results of ERP

analysis can under certain conditions be used to infer classification

performance.

Discussion: Labyrinth Oddball Scenario
Results of ERP and ML analysis confirm that ERPs evoked by

stimulus recognition and subsequent processes, e.g., change of

task and preparation of response, are most important to detect

the state of target recognition by BR. This is a basic prerequisite

for eBR to infer response behavior of the operator. We showed

that a classifier trained on the classes standards versus targets can

be successfully transferred to classify the classes missed targets

versus targets. Results of ERP analysis of ERPs evoked in the

middle time window that were found to be maximally expressed

on central and parietal electrodes (Cz and Pz) were used to infer

on classification performance. Thus, it is likely that the signal

that is maximally expressed at these electrodes contributes most

to the differences and similarities of the overall signal on all three

types of stimuli.

Our hypothesis that ERP activity evoked by unimportant

standard stimuli is similar in shape and characteristic to ERP

activity evoked by important stimuli that were not recognized as

such (missed targets) was supported by the results. Further, our

results indicate that this similarity is in the middle time windows

mainly caused by the absence of target recognition processes,

since the P300 is either missing or massively reduced in

amplitude. Certainly, processes later than the evaluation and

classification of stimuli (evoking a P300) that are related to task

set preparation or response preparation and execution will also be

involved [47]. For example, for some of the subjects ERP activity

evoked by unimportant standard stimuli and by missed target

stimuli shows significant differences in the later time window

which may be related to late task set preparation processes [46]

or late P300 activity that did not lead to a successful stimulus

evaluation as discussed in [42] and requires further investigation

(see Fig. 8, e.g., subject 1). Although a prominent similarity

between standards and missed targets is the missing of a response of

the subject, our results show that response related activity should

not have a major influence on transferability of the classifier,

Figure 9. Classification performance obtained in the Labyrinth
Oddball scenario for different windows of EEG data. The
dependency between classification performance and window size as
well as start point of window are displayed for the classification of
missed targets versus recognized targets. The start position (y-axis) is
given relative to stimulus onset. The inset on the right indicates the
optimized performance using the window from 300 to 1000 ms. The
different windows are compared using the AUC, while the optimized
performance is given as BA.
doi:10.1371/journal.pone.0081732.g009

Figure 10. Classification performance for different time
windows. The mean classification performance is shown for each
time window and each subject.
doi:10.1371/journal.pone.0081732.g010
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since response time to individual target stimuli does widely vary

(see Sec. ‘‘Behavior’’).

Results of ML analysis finally show that early stimulus

processing in the time window 0–300 ms was not equally

important as EEG activity in the later time range (w300 ms)

investigated here. However, early brain activity contributed as

well. This might be caused by differences in attentional processes

which have to be investigated in future experiments and analysis.

To summarize, from our results we conclude that brain activity

evoked by infrequent, unimportant stimuli (standards) in the

investigated low frequency range is highly similar to brain activity

evoked by missed targets, which are important stimuli that were not

successfully processed, i.e., not recognized as important stimuli or

completely missed. To substitute infrequent examples of the class

missed targets by frequent examples of the class standards during

training is possible and supports our hypothesis that transfer

between classes is a feasible approach for applying BR in scenarios

in which the amount of training data is way too small to

implement methods that can handle few training data [71–73] (for

a brief discussion see [74]). Hence, the problem of few training

examples in realistic scenarios can be solved by our approach of

classifier transfer with a high classification performance, and can

be improved by choosing appropriate window combinations. The

choice of window, samples used for transfer and the combinations

of windows were first defined by knowledge about underlying

brain activity gained from average ERP analysis and confirmed by

systematic ML analysis. Hence, it is shown that average ERP

analysis can be a useful method to choose appropriate training

data, especially if processes are involved that evoke pronounced

patterns in the EEG like the P300.

Dual BR Scenario Armrest – Simultaneous
Detection of Two States

Since the BR system in the teleoperation scenario (see Fig. 1)

should not only detect success in the recognition of important

information but also movement intention to optimize the

exoskeleton’s control (see Sec. ‘‘Introducation’’), a second test

scenario, the Armrest setup, was developed to test a dual BR

approach. Experiments were conducted to test whether a

simultaneous classification of different brain states is possible by

analyzing the EEG recorded in a complex scenario similar to the

teleoperation scenario. The Armrest setup copies a realistic dual-

task situation that comes closer to the teleoperation scenario than

the dual task performed in the Labyrinth Oddball scenario (see Part

‘‘Labyrinth Oddball Scenario – Recognition of Important Stimuli

and Task Coordination Processes’’). That is because in the

Armrest setup the user is not always able to respond to information

(responses to target events were not allowed during the rest period –

see below) but has to postpone his response. This restriction was

most important to prove that our approach still works under

realistic conditions in which two motor tasks may influence each

other, thus one task inhibits the execution of the other one.

Further, it is expected that trained operators of teleoperation

scenarios have a low rate of missed targets. Hence, to investigate

whether it is indeed possible to detect very few instances of missed

targets by our approach, we designed a test scenario in which

subjects would not miss too many target stimuli.

The Armrest setup can be described as follows: Participants of

the experiments wore a head-mounted display (HMD) and stood

in a dimly lit room while performing a task in a virtual

environment. The task was to move the right arm from a rest

Figure 11. Classification performance in the Labyrinth Oddball scenario. For each subject for a window from 300 to 1000 ms the evaluated
classification performance and statistics are shown. The red lines in the main diagram mark the median values of obtained classification performances
for each subject. The inserted diagram shows that highest classification performance was obtained for subject 4 and 5 (mean classification
performance and standard error of mean (SEM) are depicted).
doi:10.1371/journal.pone.0081732.g011
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position in order to reach a virtual target ball which was presented

in the upper right corner marking a possible object which could be

manipulated in a final application case (Fig. 12A and B). A hand-

tracking system was used to detect the point in time when the hand

left the armrest. Whenever subjects moved their arm 5 cm away

from the rest position, a marker for movement onset was sent and

stored together with the EEG (movement marker was set at time

point ‘‘0’’, see Fig. 12C). After entering the target ball (see

Fig. 12B–2), the subject returned to the rest position. To support

the rest state of the arm, an armrest was designed as part of our

testbed. This armrest was integrated into the setup to imitate the

strong support of the arm by the exoskeleton during the position

control in the teleoperation scenario. The arm and hand of the

participant had to stay in the rest position for at least 5 seconds. In

case the subject left the rest position too early, the target ball would

disappear. This served to avoid too rapid changes between rest

and movement which was necessary to assure sufficiently long

non-movement periods.

While the subject was performing this task, important versus

unimportant information were presented at a ratio of 1:20. Three

different types of important stimuli (target 1) were presented

requiring three different responses, namely touching one of three

virtual target objects in the virtual scenario as shown in Fig. 12B-1,

whereas each kind of warning required touching a particular one.

Unimportant stimuli were similar in shape and required no

response. In case the user missed an important stimulus (target 1),

i.e., did not respond within 10 s after stimulus onset, a second

stimulus (target 2), visually highlighted with a different color

(orange instead of green), appeared. Again, important stimuli were

expected to evoke a P300 and overlapping later ERP components

while unimportant stimuli should not (see Fig. 12D). All three

virtual response objects were presented at a position in the HMD

that followed the head movement to assure that all three objects

were always visible on the left side of the visual field. Again

subjects were instructed to always respond to the target stimuli.

This was the more important task.

In the following we present results that were conducted in the

Armrest setup. The main goal was to confirm our general approach

of BR and to show that it still works in a dual BR scenario in which

two classified conditions may influence each other. Further, we re-

tested the substitution of training examples and hence, partly

classifier transfer in this scenario that is similar to the teleoperation

scenario and produces even less training examples than the

Labyrinth Oddball scenario did. Some extra questions were

addressed for the detection of movement preparation. During

online detection of movement preparation the classifier should to

some extent be time shift invariant, hence should not only be able

to detect the EEG pattern at the point in time it was trained on,

but also at adjacent instances. To obtain such a time shift invariant

classifier, Blankertz et al. [75] trained the classifier on two rather

than just one window per movement marker. In [54], we

systematically analyzed the influence of the number of training

windows per movement on classification performance. We found

that two training windows significantly improve classification

performance. A higher number of training windows per move-

ment does not significantly improve classification. Here, we

address the question which combination of two training windows

(labeled by their end time with respect to the movement marker)

provides the best results across subjects. The two windows

identified can subsequently serve for all subjects and an exhaustive

Figure 12. Armrest scenario. The experimental setting Armrest is illustrated and most relevant ERP activity evoked by brain processes involved in
target recognition and failure in target recognition as well as motor preparation are shown. A: Experimental setup is displayed. B: Three types of
virtual response cubes (B-1) and the virtual target ball (B-2) are shown. C: Averaged difference curve between electrodes C3 and C4 (number of trials
for movement events: 279) shows differences recorded over the primary motor cortex ipsi- and contralateral to the side of movement (movement
onset marker at dashed line). D: Averaged ERP patterns at electrode Pz on different stimulus types (number of standards: 2968, number of targets:
156, number of missed targets: 9) are depicted.
doi:10.1371/journal.pone.0081732.g012
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re-optimization or re-analysis is unnecessary. This is highly

relevant for an online application.

Methods
Experimental Procedures and Data Acquisition. Four

male subjects (between 25 and 31 years, right-handed, with

normal or corrected-to-normal vision) took part in the experiments

which were divided into three runs conducted on the same day. In

each run, the subjects had to respond to 60 target 1 stimuli. The

number of intentional movements from the rest position differed

from 116 to 159. This difference in the number of movement onset

trials was caused by the experimental condition that a minimum

number for correctly responded target 1 trials was requested per

run but the amount of rest periods and their duration (a rest period

had to take at least 5 seconds but was allowed to take longer) was

not predefined and hence varied between subjects.

For reasons of future data analysis and method development not

presented here EEG was continuously recorded with a high

density of sensors, i.e., with a 128 electrode system (extended 10–

20 system, actiCap, Brain Products GmbH, Munich, Germany),

referenced to FCz. Four electrodes of the 128 actiCap system

served to record the EMG of muscles of the upper arm (M. biceps

brachii and M. triceps brachii) in order to monitor muscle activity.

All signals were amplified using four 32-channel BrainAmp DC

amplifiers (Brain Products GmbH, Munich, Germany), were

digitized with a sampling rate of 5 kHz and filtered with a low

cutoff of 0:1 Hz and high cutoff of 1 kHz. Impedance was kept

below 5 kV.

Ethics Statement. The study has been conducted in

accordance with the Declaration of Helsinki and approved with

written consent by the ethics committee of the University of

Bremen. Subjects have given informed and written consent to

participate.

Behavior. As for the Labyrinth Oddball scenario we analyzed

subject’s performance in the oddball task in terms of the amount of

target stimuli with correct response and false reactions (i.e.,

omission and commission errors) as well as response times and

jitter in response time based on the movement marker. We also

analyzed how many movements from the rest position were valid,

i.e., followed five or more seconds of rest and analyzed the EMG

data with the method described earlier for EMG onset detection.

Furthermore, the physical movement onset was estimated based

on the labels obtained from the interaction of the subject in the

virtual scenario and an analysis of movement speed in a study

investigating intentional arm movements [62].

ML Analysis: Detection of Target Recognition

Processes. Data processing for the detection of the relevant

patterns in the EEG by ML analysis was performed as for the

Labyrinth Oddball scenario in the optimized case (see Sec. ‘‘Window

of Interest and Transferability of Classifier’’) using the open source

signal processing and classification environment pySPACE [66].

Due to the reduced amount of training examples that could be

recorded here, three runs that were recorded in one session for one

subject performing the task were joined to a single data set, which

was used for performance estimation based on a 5|2-fold cross

validation. For performance estimation we had to use a modified

cross validation strategy to estimate the classifier’s accuracy due to

the low number of missed targets. The partitioning of standard

and target examples for training as well as the partitioning of

target examples for testing was performed as usual to generate

mutually exclusive splits, but all missed target examples of the

whole dataset were used in every test split for estimating

classification performance. Note that due to the classifier transfer

the classifier was not trained on the class of missed targets and thus

all missed target examples were unknown to the classifier during

testing as it also holds true for all targets examples that were used

for testing.

To evaluate subject-specific differences in classification perfor-

mance, the data were analyzed by one-way repeated measures

ANOVA with subject as within-subjects factor. For multiple

comparisons, the Bonferroni correction was applied. To compare

classification performance between Labyrinth Oddball scenario and

Armrest scenario, the data were analyzed in two steps. First, the

mean of classification performance was calculated for each subject.

Such subject’s means were calculated separately for each of the

scenarios, which were used for the dependent variables for the

statistical test.

Second, two different scenarios were compared by using the

Mann-Whitney U test: 1) The median of the subject’s means was

calculated for each scenario and 2) The mean rank for each

scenario was calculated. Mann-Whitney U test was performed on

subject’s means for each scenario to compare two different

scenarios. Note that different subjects participated in both

experiments (Labyrinth Oddball/Armrest) except for one subject

(coded as subject 1 for the Labyrinth Oddball and subject 3 for the

Armrest scenario).

ML Analysis: Detection of Movement Intention. Again,

all ML evaluations have been performed using the open source

signal processing and classification environment pySPACE [66].

To detect movement intention BR classifies two classes: (i) no

movement preparation and (ii) movement preparation. For correct labeling

of both classes during training and for performance evaluation the

problem of ambiguous instances emerges here, i.e., windows that

neither clearly belong to the movement preparation nor to the no

movement preparation class. To deal with this problem, training is

performed time dependent on the lock-out event, i.e., only specific

Figure 13. Classifier evaluation for sliding windows. It is illustrated how evaluation was performed in the sliding window approach. Evaluation
depends on the end time of a sliding window: (i) less than {600 ms: true label ‘‘no movement preparation’’, (ii) between {300 to {200 ms: true
label ‘‘movement preparation’’, (iii) in gray shaded area: left out for evaluation due to unknown true label or already started movement. The black line
illustrates the average ERP difference curve for channels C3/C4 over all subjects.
doi:10.1371/journal.pone.0081732.g013
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windows were used for training. Since movement intention is

neither locked to a certain stimulus (i.e., command) nor happens

after a fixed time of delay, it is necessary to continuously analyze the

EEG stream during test. This continuous analysis is based on a

sliding window approach, i.e., a window of a fixed length is

extracted every 50 ms from the EEG stream.

For offline evaluation, an approach similar to the one presented

in [54] was chosen: Windows for the movement preparation class had a

length of 1000 ms and were cut out with respect to the movement

marker. For training, 13 different windows were analyzed for that

class that ended between {600 to 0 ms relative to the movement

marker, i.e., [{1600, {600], [{1550, {550], [{1000, 0].

Training windows for the no movement preparation class were cut out

every 1000 ms, if no other marker was stored in the data stream

1000 ms before or 2000 ms after that window. Since the duration

of a rest period was not fixed, the number of instances per data set

differed for that class (from 359 to 520). For testing, sliding

windows were cut out every 50 ms in the range from {4000 to

0 ms. Data processing in both cases (training and test) was done as

follows: All trials were standardized (m~0, s~1), decimated to 20
Hz and band pass filtered (0:1–4:0 Hz). Only the last 200 ms were

used for feature generation: 124 channels |4 time points ~496
features. Finally, a SVM was trained on the feature vectors of the

training data. In each training run, SVM parameters were

optimized with an internal 5-fold cross validation using a pattern

search algorithm [69].

For classifier evaluation, a 5|2-fold cross validation was used for

each subject on the merged data of one session (3 concatenated sets).

To calculate a performance measure (BA), labeling of the sliding

windows was required. Since the onset of the LRP cannot exactly be

determined for single trials (see explanations given above), we

defined a time range from {600 to {350 ms based on average ERP

analysis (see Fig. 13) as an uncertain area, i.e., as a time range in

which we could not be certain (for each single trial) whether or not

the brain was already preparing a movement. Sliding windows

ending in this time interval were left out for performance calculation.

Also, predictions based on windows ending at {150 to 0 ms (see

Fig. 13) were excluded due to the fact that the actual movement onset

happens before the movement marker is stored (see estimation of

movement onset in Sec. ‘‘sec:ArmrestResultsBehavior’’).

Since the training windows overlapped in time, similar

performances for consecutive windows were expected. Hence,

overlapping windows were analyzed for each subject in order to

find points in time which lead to significantly different perfor-

mances to define borders of clusters. To evaluate which combina-

tion of two training windows is optimal, performance of all

possible combinations of two training windows were computed,

i.e., combinations within the same cluster and between clusters.

The mean performance of all within – cluster combinations and all

between-cluster combinations for each defined cluster, the mean

performances of the single training windows in each cluster, and

the performance of all training windows were finally compared

using repeated measures ANOVA with combination (10 levels) as a

within-subjects factor. Here, performance for all 13 training

windows served as a baseline, representing the case that no specific

training windows were chosen.

Results
Behavior. In the whole experiment, subjects responded in

total to 720 target stimuli and missed 33 target stimuli (mean and

standard deviation across subjects for omission errors: 8:25+2:63).

This low amount of omission errors, i.e., missed targets, was expected

due to the low effort of the main task. In total 7 commission errors

on standard stimuli occurred (subject 2: 1 commission error,

subject 4: 6 commission errors). The response time was on average

4:7 sec (mean of subject’s median), with a median minimal

Figure 14. Classification performance in the Armrest scenario. Results for the performance of the classifier trained in the dual BR scenario for
the classification of missed target vs. target instances after classifier transfer are shown for all subjects individually. The red lines in the main diagram
mark the median values of obtained classification performance for each subject. The inserted diagram illustrates mean classification performance
values and standard error of mean (SEM). Highest classification performance is observed for subject 1.
doi:10.1371/journal.pone.0081732.g014
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response time of 1:5 sec and a median maximal response time of

15:3 sec. The difference between minimal and maximal response

time was between 7:4 sec and 19:1 sec (median 13:8 sec). A rest

period of at least 5 sec preceded on average 89%+9% of the

performed movements. For EMG onset detection only the data

from M. biceps brachii contained usable information. However,

we observed a preload in muscle activity in the EMG recordings of

one subject resulting in an EMG onset detection at around

{1:7 sec relative to the movement marker. Therefore, EMG

onset was not used to determine movement onset. Instead,

movement onset was estimated based on the analysis of motion

tracking data recorded during intentional movements of the right

arm in a study performed in [62]. We calculated the time it took to

move the arm by 5 cm from the rest position. For the subjects

recorded in [62] such movement took on average 154 ms. Based

on this analysis, we assumed that the physical movement onset in

this very similar setup was around {150 ms relative to the

movement marker.

Performance of BR in the Detection of a Highly

Underrepresented State. The resulting BA values are shown

in Fig. 14. Best classification performance was obtained for subject

1. Mean classification performance was slightly lower compared to

the Labyrinth Oddball scenario (see Fig. 14 vs. Fig. 11). However,

classification performances between both scenarios did not differ

significantly [median for Labyrinth Oddball: 0:839, median for

Armrest: 0:791, mean ranks of Labyrinth Oddball: 6:2, mean ranks of

Labyrinth Oddball: 7:8, U~4, Z~{2:11, p~0:19, r~0:494].

These results show that our classifier transfer approach can be

applied to realistic scenarios in which the subject is performing

several tasks but is not always allowed to respond to an important

stimulus straight away. Moreover, we were successful in classifying

a highly underrepresented class.

Combination of Training Windows for a Robust Detection

of Movement Intention. Based on the statistical analysis that

was performed to find time points which lead to significantly

different performances to define borders of clusters, 13 training

windows were grouped in three clusters: early [{600, {450] ms,

middle [{400, {250] ms and late [{200, {0] ms. Across all

subjects, the middle cluster (cluster B) provided a significantly

better classification performance compared to both the early

(cluster A) and late cluster (cluster C): B vs. A: pv0:001, B vs. C:

pv0:001 (see also first three columns of Fig. 15). Further,

classification performance was significantly higher when using

training windows of the late cluster than when using training

windows of the early cluster (C vs. A: pv0:001). Figure 15 depicts

a comparison of classifiers trained on one, two or else all 13
training windows.

Results showed that the combination of two training windows

increased classification performance (A+A vs. A: pv0:001, B+B

vs. B: pv0:001, C+C vs. C: pv0:001, A+B vs. A: pv0:001, B+C

vs. B: pv0:001, B+C vs. C: pv0:001, C+A vs. A: pv0:001, C+A

vs. C: pv0:001) except when combining training windows from B

and A in comparison to the performance when using single

windows from B (A+B vs. B: p~n:s:). The overall best

performance was obtained when combining training windows

from cluster B and C, although there was no significant difference

compared to window combinations within B (B+C vs. B+B:

p~n:s:). The average TPR from training window combination of

cluster B and C at time point {200 ms (latest time point of

movement preparation class and before estimated movement onset

at {150 ms, see Fig. 13 and Sec. ‘‘sec:ArmrestResultsBehavior’’)

was on average 0:85+0:066. For the application in the

exoskeleton this would mean a correct modulation of the control

in 85 out of 100 movements. Performance of a classifier trained on

all 13 training windows was worse than that of the classifier trained

on the best pair of windows (All vs. B+C: pv0:001).

Discussion: Dual BR Scenario Armrest
In the experiments performed in the Armrest scenario we

showed that our approach of classifier transfer for the detection

of the recognition of important information, which was

developed in the Labyrinth Oddball scenario, can be transferred

into a new setup in which two tasks had to be performed that

influence each other while still achieving similar classification

performance. We confirmed our results from Part. ‘‘sec:BrioOdd-

ball’’ that substitution of training examples and hence, partly

classifier transfer between two different classes in training and

test is possible. Our results indicate that the supervision of

trained operators in a teleoperation scenario is feasible, since

trained operators will miss only few examples of target stimuli

similar to subjects that are performing a simple task in the Armrest

scenario (compared to the more demanding Labyrinth Oddball

scenario). In both cases only very few examples for missed target

stimuli were available. These few examples could not have been

sufficient for alternative training methods that allow direct

training with few training examples as already shown for the

Labyrinth Oddball setup (see [74]).

Besides the detection of the success of information recognition

we showed that the detection of movement intention based on

EEG data in the ERP range [75–78] is possible under dual task

conditions in which the subjects are not solely concentrating on

movement preparation. Within the sliding window analysis we

investigated the influence of different training windows for

classifier construction on the performance when continuously

predicting upcoming movements. We found subject-independent

time intervals, which provide different detection rates depending

on which interval the training window belongs to. This allows

more general suggestions for classifier training on data of new

Figure 15. Method illustration and performance for different
training windows. The diagram illustrates the combination of training
time of two windows using the previously found clusters (see methods
description for details), classification performance and statistics.
Classification performance of a 5|2-fold cross validation for four
subjects quantified with mean BA and standard error is presented by
the dots in the diagram. The x-axis shows different training settings: A,
B, C – one training window per movement marker ending at different
times with respect to the movement marker; A+A, B+B, C+C, A+B, B+C,
C+A – two training windows per movement marker, combined within
the same cluster or with other clusters. All – all 13 training windows
were used to train a classifier.
doi:10.1371/journal.pone.0081732.g015
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subjects, like using a first training window ending between {400
to {250 ms before movement marker (cluster B) and a second

one between {200 to 0 ms (cluster C). For our experiments we

estimated the actual movement onset at around {150 ms before

the movement marker. However, this is only a rough approxima-

tion since the movement marker was set after 5 cm movement in

one direction. Still, results of time intervals with significantly

different performance remain and are valid.

The choice of the training windows critically depends on the

point in time when the movement has to be predicted (e.g., in a

range from {300 to {200 ms relative to the movement marker

(Fig. 13)). If the application requires an earlier prediction, this may

have an influence on the choice of the optimal training window.

Exact interval boundaries for choosing appropriate training

windows for movement prediction remain to some degree

subject-specific. However, based on the results obtained here,

large subject-specific differences are not expected.

To summarize, with the experiments conducted in the dual BR

scenario Armrest, we showed that: (i) the intentional state

‘‘movement intention’’ as well as (ii) the cognitive state ‘‘recogni-

tion of important stimuli and task coordination’’ can be detected in

single trial by BR while a subject is performing a dual-task that is

similar to the described dual-task that has to be performed during

the teleoperation of a robot. The classification of the different

states resulted in high performance. Reliability of the detection of

movement preparation processes could be improved by combining

appropriate training windows. Classification of missed target

instances versus target instances was made possible by applying

our approach of classifier transfer. The reliable and high

performance in single trial prediction of the dual BR we obtained

is an important prerequisite for our approach of adapting both the

OMS and exoskeleton control with respect to the changing

requirements of the user.

Conclusions

The recording, analysis, and integration of (psycho-)physiolog-

ical data to adapt human-machine interfaces with respect to

changing intentional or cognitive states and behavior of the user is

a promising way to improve the functionality of technical systems

that are interacting with the user [30]. We presented two different

scenarios here to investigate the application of BR. In the Labyrinth

Oddball scenario we showed that BR, i.e., the detection of human

states (here the cognitive state of ‘‘recognition of important stimuli

and task coordination’’) based on ML analysis of the EEG, is

possible. This result is supported by the finding that results of

average P300 analysis is predictive for performance of ML analysis

for P300 detection and vice versa. In the Armrest scenario two

different states (‘‘movement intention’’ and ‘‘recognition of

important stimuli and task coordination’’) could successfully and

simultaneously be detected by a dual BR approach while a human

was interacting in this scenario, which was very similar to the

teleoperation scenario.

In the Labyrinth Oddball scenario we developed an approach for

classifier transfer in which a training class with few examples

(missed targets) is substituted by a training class with many

examples (standards). Instances of both classes could be shown to

evoke very similar but not the same ERP activity. Here the missing

of a pronounced ERP activity, namely the P300, was sufficient to

allow the transfer. Hence, we showed that classifier transfer is not

only possible between classes of samples that contain the same or

very similar ERPs evoked by the same or at least very similar brain

processes (see [60,61]). More important for the success of classifier

transfer in our example is the absence of some brain process, i.e.,

target recognition processes, than the similarity of brain processes.

Note that the absence of these processes can have a number of

different causes that were not further investigated here. Only for

subjects with clear absence of P300 on missed targets compared to

targets and very similar shape of the average ERP forms on missed

targets and standards, a transfer of a classifier (trained on standard

stimuli to later detect missed targets) resulted in high classification

performance. The classifier transfer could also be applied

successfully in the Armrest setup which produces only very few

examples for the infrequent but important class (missed targets) as

it is expected to be the case for trained operators in teleoperation

scenarios. Small amounts of training data are not sufficient for

direct training, but classifier transfer allows to apply BR in such an

application-oriented scenario. Furthermore, we showed for both

applications of BR that classification performance can be

improved significantly independent of the subject by combining

training windows identified to likely contain important informa-

tion for classification.

To conclude, our work shows that BR can be applied during

complex human-machine interaction, since brain patterns that are

detected by single trial ML analysis can be correlated to specific

activities of the brain, as shown for ERP activity, and hence

correlated with specific states of the operator. The gained

knowledge about the occurrence of such states can then be used

to infer upcoming behavior by means of eBR [30]. The knowledge

gained about upcoming behavior is a basic requirement for the

implementation of predictive HMIs that better support upcoming

interaction and thus improve human-machine interaction as

explained by the example of robotic teleoperation. Earlier

investigations with simulated adaptation of an exoskeleton control

by eBR showed that our concept of adapting the control of the

exoskeleton for robot teleoperation does indeed help to reduce the

effort of the user during interaction [52]. Further, results of a

recently conducted online study in the teleoperation scenario

[49,53] showed that our approach can successfully be applied

online and be fully integrated for the adaptation of the exoskeleton

and the OMS as proposed in this paper. To implement predictive

HMIs, BR has to be embedded into an application as formally

described in [30]. For this it is not only required to automatically

describe interaction rules and behavior of the interacting human

as discussed in [30] but to particularly understand the nature of

detected brain patterns during complex interaction. That the later

is possible was shown in the work presented here.

Supporting Information

Video S1 Online adaptation of the OMS by eBR in the
teleoperation scenario. It is shown how the OMS that is

adapted by eBR supports the current state, i.e., success or failure in

the recognition of important information, of an operator who is

teleoperating a robotic arm. In case a failure in the recognition of

important, i.e., task-relevant, information is detected, the impor-

tant information is repeated after a short while. In case that success

in the recognition of important information was detected, the

important information will not be repeated for a longer time

during which a response of the subject is monitored. In case the

response is missing within the extended response time the

important information is repeated although BR detected success

in the recognition of the important, i.e., task-relevant, information.

(MP4)

Video S2 Teleoperation scenario and eBR for the
adaptation of two HMIs. It is shown how an operator controls

a robotic arm via a virtual scenario that is presented to him by an

HMI. The control of the robotic arm is enabled by an exoskeleton.

Brain Reading for Human-Machine Interfaces

PLOS ONE | www.plosone.org 17 December 2013 | Volume 8 | Issue 12 | e81732



While controlling the robotic arm, the operator has to respond to

important warnings. The implemented OMS is supporting the

operator in this task. Both HMIs, the OMS and the exoskeleton,

are adapted by eBR.

(MP4)

Video S3 Online adaptation of the exoskeleton by eBR
in the teleoperation scenario. It is shown how the

exoskeleton’s control is adapted by eBR to ease the lock out from

a rest position. Online prediction values and the point in time at

which sensors that are integrated in the exoskeleton detect the

movement onset are visualized in an inserted diagram. Video and

online prediction values for BR as well as movement onsets are

synchronized in time. The video shows that too early or false

movement predictions by BR are irrelevant for the control of the

system. Only correct movement predictions ease the handling of

the exoskeleton by the operator.

(MP4)

Video S4 Online detection of failure and success in the
recognition of important information in the Labyrinth

oddball scenario. It is shown how BR is able to detect the

success and failure in the recognition of important, i.e., task-

relevant, information. P300 related processes that are evoked by

target recognition processes are detected online in the Labyrinth

Oddball scenario.

(MP4)
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