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Abstract

Background: Changes in the blood lymphocyte composition probably both mediate and reflect the effects of
natalizumab treatment in multiple sclerosis, with implications for treatment benefits and risks.

Methods: A broad panel of markers for lymphocyte populations, including states of activation and co-stimulation, as
well as functional T cell responses to recall antigens and mitogens, were assessed by flow cytometry in 40 patients
with relapsing multiple sclerosis before and after one-year natalizumab treatment.

Results: Absolute numbers of all major lymphocyte populations increased after treatment, most markedly for NK and
B cells. The fraction of both memory and presumed regulatory B cell subsets increased, as did CD3-CD56¢™ cytotoxic
NK cells, whereas CD3-CD56"" regulatory NK cells decreased. The increase in cell numbers was further associated
with a restored T cell responsiveness to recall antigens and mitogens in functional assays.

Conclusions: Our data confirms that natalizumab treatment increases the number of lymphocytes in blood, likely
mirroring the expression of VLA-4 being highest on NK and B cells. This finding supports reduction of lymphocyte
extravasation as a main mode of action, although the differential effects on subpopulation composition suggests that
cell-signalling may also be affected. The systemic increase in T cell responsiveness reflects the increase in numbers,
and while augmenting anti-infectious responses systemically, localized responses may become correspondingly
decreased.

Citation: Mellergard J, Edstrém M, Jenmalm MC, Dahle C, Vrethem M, et al. (2013) Increased B Cell and Cytotoxic NK Cell Proportions and Increased T
Cell Responsiveness in Blood of Natalizumab-Treated Multiple Sclerosis Patients. PLoS ONE 8(12): €81685. doi:10.1371/journal.pone.0081685

Editor: Markus Reindl, Innsbruck Medical University, Austria
Received March 14, 2013; Accepted October 25, 2013; Published December 2, 2013

Copyright: © 2013 Mellergard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was supported by grants from The Swedish Association of Persons with Neurological Disabilities, The University Hospital of Linkdping,
The County Council of Ostergétland and Linképing University. The study was further supported by an unrestricted grant from Biogen Idec Sweden. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: J. Mellergard has received speaker honorary from Biogen Idec. M. Edstrom has received speaker honorary from Biogen Idec. C.
Dahle has received speaker honoraria from Biogen Idec and Merck Serono. M. Vrethem has received an unrestricted grant for research from Biogen Idec
and speaker honoraria from Biogen Idec and Merck Serono. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and
materials.

* E-mail: johan.mellergard@lio.se

@ These authors contributed equally to this work.

Introduction

The pathogenesis of multiple sclerosis (MS) has been linked
to T cells-mediated immune regulation, involving both CD4* T
helper and CD8* T cytotoxic cells [1]. However, the pathogenic
scenario has become more diverse including B cells [2,3],
dendritic cells, natural killer (NK) cells and T cells with NK cell
properties (NKT) [4]. Natalizumab, a humanized monoclonal
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antibody approved for the treatment of relapsing MS, is
directed against the a4-chain of VLA-4 (a4B1) and a4B7
integrins present on lymphocytes. Natalizumab blocks the
binding between these integrins and their endothelial receptors,
vascular cell adhesion molecule-1 (VCAM-1) and mucosal
addressin-cell adhesion molecule 1 (MadCAM-1) [5].
Consequently, treatment leads to a decline in the migration of
potentially disease-promoting lymphocytes into the central

December 2013 | Volume 8 | Issue 12 | e81685


http://creativecommons.org/licenses/by/3.0/

nervous system (CNS), resulting in reduced intrathecal
inflammation [6-8] and improvement in magnetic resonance
imaging (MRI) measurements [9]. As a result of the decreased
extravasation, a systemic accumulation of circulating NK cells
[10], B cells [11] and pro-inflammatory T cells [12] has been
observed after natalizumab treatment. In addition to reduced
extravasation of lymphocytes and given the central role of
integrins in cell-cell interactions, other immunomodulating
mechanisms [13,14] probably contribute to the treatment
outcome, including benefits and risks.

Since the first cases of progressive multifocal
leukoencephalopathy (PML) in natalizumab-treated patients, it
has been debated whether this JC-virus infection is merely a
result of reduced immune surveillance in the CNS, or if other
treatment mechanisms affecting lymphocyte populations may
contribute. To further elucidate the mechanisms of treatment,
the effects on lymphocyte populations have been investigated.
However, several earlier reports were based on limited patient
numbers and focused on restricted and specific blood
lymphocyte populations such as CD4* and CD8* T cells
[15-17], regulatory T cells (Treg) [18] and B cells [11,17], but
did not address the simultaneous effects of natalizumab
treatment on a broader panel of different lymphocyte
populations and their expression of activation and co-
stimulation markers. Furthermore, treatment effects as to
functional capacity of lymphocytes have not previously been
evaluated longitudinally in patients with MS.

We longitudinally followed 40 patients with MS before and
after one-year natalizumab treatment, examining the numbers
and proportions of circulating CD4* and CD8* T cells, Treg
cells, B cells, NK cells, NKT cells as well as markers of
activation and co-stimulation. In addition, functional studies of T
cell responses to recall antigens and mitogens were performed.
The aims were to explore changes in circulating lymphocyte
subpopulation compositions and to assess the functional
capacity of T cell responses during natalizumab treatment.

Methods

Ethics statement

The study was based on written informed consent, and
approved by The Regional Ethics Committee in Linkdping (Dnr
M180-07 T130-09).

Patients and controls

Natalizumab treatment (300 mg once a month) was initiated
in 40 patients with MS (Table 1). Initiation of treatment was
based on clinical and MRI parameters, suggesting an active
relapsing disease. All included patients fulfilled the McDonald
criteria of MS [19] and were consecutively recruited from the
Department of Neurology at the University Hospital, Linkdping.
Sampling of peripheral blood was obtained before (median
0.75 months, range 0-5.0) and after one year (median 12.0
months, range 10-17) of treatment. Definition of Expanded
Disability Status Scale (EDSS) [20] score and Multiple
Sclerosis Severity Score (MSSS) [21] were done by a
neurologist (CD, MV or JM). The Symbol Digit Modalities Test
(SDMT) [22] and the Multiple Sclerosis Impact Scale (MSIS-29)
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Table 1. Patient demographics and disease characteristics
at baseline.

Number of subjects 40

Median age (years) 36.5 (range 22-62)
Sex (M/F) 22/18

9.5 (range 0.9-30.0)

Median disease duration (years) a

Diagnosis (RRMS / PRMS) 34/6

EDSS (no. of subjects)

0-3.5 32

4.0-5.5 4

6.0-7.0 4

Median EDSS 2.5 (range 0-7.0)
Median MSSS 3.82 (range 0.19-8.55)
Treatment °

Interferon-3 25

Glatiramer acetate 4

IVIG 1

Corticosteroids ° 3

No treatment 10

Median number of relapses last two years 2.0 (range 0-8)
Number of patients with relapse last two months 10

a. Median number of years from first symptoms of MS to inclusion.

b. Treatment within 4 months before inclusion.

c. Three patients were treated with high-dose corticosteroids due to relapse, in
addition to interferon-B (1 patient) and glatiramer acetate (2 patients) respectively.
Abbreviations: RRMS=relapsing-remitting MS, PRMS=progressive MS with
EDSS=Expanded  Disability
IVIG=Intravenous Immunoglobulins

doi: 10.1371/journal.pone.0081685.t001

superimposed relapses, Status Scale,

[23] were also performed. In the lymphocyte activation assay
(see below) personnel (n=23) at the Department of Clinical
immunology and transfusion medicine were recruited as
controls, median age 45 years (range 35-59), 21 women and 2
men. All controls were healthy and without drug therapy.

Flow cytometry

Whole blood was drawn in EDTA tubes. FACS Lysing
Solution (BD Biosciences, San José, CA) was added for
removal of erythrocytes. In total, five tubes were used, with the
following antibody combinations. Tube A; anti-CD45-PerCP,
anti-CD3-FITC, anti-CD4-PE-Cy7, anti-CD8-APC-Cy7, anti-
CD16/56-PE,anti-CD19-APC, tube B; anti-CD3-PerCP, anti-
CD4-PE-Cy7, anti-CD8-APC-Cy7, anti-CD28-PE, anti-CD56-
APC, anti-CD57-FITC, tube C; anti-CD3-PerCP, anti-CD4-PE-
Cy7, anti-CD8-APC-Cy7, anti-CD56-APC, anti-HLA-DR-FITC,
anti-CD69-PE, tube D; anti-CD3-PerCP, anti-CD4-PE-Cy7,
anti-CD8-APC-Cy7, anti-CD25-FITC, anti-OX40L-PE, tube E;
anti-CD45-FITC, anti-CD19-PE-Cy7, anti-CD5-PerCP-Cy5.5,
anti-CD25-APC, anti-CD27-PE and anti-HLA-DR-APC-Cy7 (all
antibodies from BD Biosciences). For analysis of absolute cell
numbers, Truecount™ tubes (BD Biosciences) were used for
tube A. Collection of data was performed using a FACS Canto
Il with the FACS Diva software (BD Biosciences). Data was
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analyzed using the Kaluza software v 1.1 (Beckman Coulter,
Brea, CA).

Lymphocytes were gated through forward and side scatter
properties, in tubes A and E with the support of a CD45* gate.
Populations were defined on the basis of forming discrete
populations or by using other populations as negative or
positive populations. In tube A, T cells were selected through
CD3* expression, and thereafter gated for CD4 and CD8
expression. NK cells (CD16/56*) and B cells (CD19*) were
gated from the CD3- population. For tube B, C and D, CD3* T
cells were divided into CD4* and CD8"* populations. In tube B,
the negative gate for CD28, defining CD4'CD28- and
CD8*CD28- cells, were set through CD28 expression on CD3-
cells, and included cells were analyzed for CD56/CD57
expression. For tube C, CD3-CD56* NK cells were further
gated as CD3-CD56Y¢" or CD3-CD56m. CD3-CD56,
CD3*CD4* and CD3*CD8" cells were analyzed for CD69 and
HLA-DR expression. Tube D CD3*CD4* and CD3*CD8* cells
were analyzed for CD25 and OX40L expression. In addition,
regulatory (CD3*)CD49mCD25 9" [24] T cells were analyzed.
Finally, in tube E, CD19* B cells were gated for CD25 and
CD27 expression, respectively. Polymorphonuclear cells were
used to set the gate for CD25* and CD27* B cells.

Lymphocyte activation assay

To evaluate lymphocyte function we used, with some
modifications, the previously described FASCIA method [25].
Briefly, peripheral blood was drawn in Heparin tubes; 50 pL
were diluted 1:10 in culturing media, consisting of RPMI 1640
(Gibco BRL, Paisley, Scotland, UK) supplemented with L-
glutamine 584 ug/mL (Sigma Aldrich, Stockholm, Sweden),
penicillin 200 IE/mL and streptomycin 200 ug/mL (both from
Cambrex, New Jersey, USA). Cultures were stimulated with
influenza antigen 1:1000 (Vaxigrip; Sanofi Pasteur, Solna,
Sweden), purified protein derivate (PPD) 10 pg/mL (SSI,
Copenhagen, Denmark), a mix of cytomegalovirus (CMV)
peptides 0.125 ug (BD Biosciences), tetanus toxin 5.7 Lf/mL
(SSI), phytohaemagglutinin (PHA) 5 pg/mL (Sigma Aldrich),
pokeweed mitogen (PWM) 10 pg/mL (Sigma Aldrich) or myelin
basic protein (MBP) 100 pg/mL (Sigma Aldrich). Negative
controls without antigen were cultured separately. Culturing
ensued for seven days at 37°C with 5% CO,, after which cells
were harvested and labeled with anti-CD3-FITC, anti-CD4-
PerCP, anti-CD8-APC and anti-CD108-PE. After labeling,
erythrocytes were lysed by incubating cells with 0.8% NH,CI.
Collection and analyses of data were performed using a FACS
Canto Il system running the FACS Diva software.

First, lymphocyte and lymphoblast gates were set using
unstimulated samples (RPMI). The numbers of cells were
calculated using Truecount™ tubes. Lymphoblasts were further
gated into CD3*, CD3*CD4* and CD3*CD8* T cells. For each
stimulus, the mean number of lymphoblasts in unstimulated
cultures was subtracted from the number of lymphoblasts in the
stimulated cultures, thereby compensating for baseline
activation of cells. The numbers of CD4*, CD8* and activated
CD108* cells for each stimulus were compared for patients
before and after treatment.

PLOS ONE | www.plosone.org

Natalizumab and Blood Lymphocyte Composition in MS

To be able to make a baseline comparison regarding
available cell numbers in blood between patients and controls,
we calculated the numbers of total lymphocytes, CD3*, CD4*
and CD8* T cells in unstimulated cultures after seven days of
culture.

To further explore the responsiveness of cells before and
after treatment, we calculated the fraction of lymphoblasts
responding to different stimuli. Again, unstimulated (RPMI)
cultures after seven days of culture were used to set gates for
total lymphocytes and lymphoblasts based on FSC and SSC
properties. Using these gates, we calculated the fractions of
responsive lymphoblasts for the different stimuli, expressed as
percentage of lymphocytes. This was achieved by dividing the
number of gated blasts by the number of total lymphocytes
after seven days of culture.

Statistics

For comparisons of flow cytometry and lymphocyte activation
assay data, paired samples t-test was performed. Bi-variate
correlation analyses (Pearson) were used to examine possible
associations between flow cytometry and clinical variables.
Flow cytometry data is given as mean values + standard
deviation (SD). For comparison between lymphocyte
subpopulations at one-year follow-up, independent samples t
test was used. For analyzing lymphocyte activation assay data,
ANOVA with Tukey’'s post-hoc test was used. Testing of
activated lymphocyte fraction was analyzed with Kruskall-
Wallis U test with Dunn’s post-hoc test. Due to multiple
comparisons, p<0.01 was considered statistically significant
and p<0.05 was considered a tendency. All statistical
calculations were performed in SPSS 20.0 software (SPSS
inc., Chicago, IL, USA).

Results

Clinical and CSF variables; changes after one year of
natalizumab treatment

Although this was an observational study with the purpose of
evaluating immunological effects of treatment, also clinical and
CSF variables were recorded in a prospective manner. During
the one-year follow-up, 34 patients were free from relapses,
four patients had one relapse and two patients had two
relapses. Four patients had a relapse within one month before
follow-up sampling of peripheral blood, and two of these
patients received treatment with methylprednisolone. The
annualized relapse rate decreased from 1.0 to 0.1 on
treatment. There was a significant improvement in clinical
scoring systems as well as a decrease in CSF total white blood
cell counts and IgG index at follow-up (Table 2).

Changes in lymphocyte populations after one year of
natalizumab treatment

Main lymphocyte populations. Absolute numbers of all
investigated lymphocyte populations were significantly
increased at follow-up (Table 3). However, the relative size
(percentage of parent population) of the increase differed
across lymphocyte populations, leading to increased fractions
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Table 3. Changes in main lymphocyte populations in peripheral blood before (baseline) and after one year (follow-up) of

treatment with natalizumab.

Number (cells/ul)

Percentage of parent population (%)

baseline follow-up change baseline follow-up change P
Lymphocytes 1989 + 630 3889 +1163 +96 % <0.0005 27.7+6.8 40.3+7.0 +45 % <0.0005
T cells 1501 + 554 2591+ 915 +73 % <0.0005 75.0+7.0 66.1+6.7 -12% <0.0005
CcD4* 896 + 285 1435 + 397 +60 % <0.0005 61.3+9.7 56.6 +7.7 -8 % <0.0005
cp8* 502 + 316 975 + 599 +94 % <0.0005 31.8+84 35.9+8.6 +13 % <0.0005
NK cells 277 + 145 816 + 248 +195 % <0.0005 143+6.6 214+52 +50 % <0.0005
B cells 258 + 182 528 + 296 +105 % <0.0005 125+6.4 13.2+51 +6 % 0.3

Mean + SD, n=40 except for CD4* where n=38. p values refers to paired samples t test comparing number of cells and percentage of parent population, respectively, at

baseline and follow-up. Change refers to difference between baseline and follow-up mean, given in % of baseline values.

doi: 10.1371/journal.pone.0081685.t003

Table 2. Clinical and CSF data at baseline and at follow-up
after one year of natalizumab treatment.

Clinical /ICSF parameters  Baseline Follow-up P

EDSS 2.5 (0-7.0) 2.5 (0-8.0) 0.08
MSSS 3.82(0.19-8.55) 3.20 (0.17-9.20) <0.0005
MSIS-29

physical 2.18 (1.00-4.75) 1.40 (1.00-4.20) @ <0.0005
psychological 2.11 (1.00-4.56) 1.44 (1.00-4.56) @ <0.0005
SDMT 48 (5-66) 50 (11-65) P 0.03
Total CSF wbc count 2.55(0.2-28.0) ¢ 1.1 (0.0-4.0) 9 <0.0005
19G index 0.92 (0.48-3.0) ¢ 0.77 (0.45-2.4) 9 <0.0005
Albumin ratio 44 (21-11.4)¢ 4.7(1.8-10.1) 9 0.3

Median values are given and range within parenthesis. n=40 unless stated
otherwise. p refers to Wilcoxon signed rank test comparing baseline and follow-up.
a =37 because of lack of follow-up data. P n=38 because of lack of follow-up data.
¢ n=38 since two patients refrained from lumbar puncture at baseline. 9 n=36 since
four patients refrained from lumbar puncture at follow-up.

Abbreviations: EDSS=Expanded Disability Status Scale, MSSS=Multiple Sclerosis
Severity Score, MSIS-29=Multiple Sclerosis Impact Scale 29, SDMT=Symbol Digit
Modalities Test, wbc=white blood cell, NA=not applicable

doi: 10.1371/journal.pone.0081685.t002

of NK cells and CD8* T cells, whereas fractions of CD3* T cells
and CD4"* T cells decreased (Figure 1 a-c, Table 3).

CD4+ T cells. The fraction of activated T helper cells,
expressed as CD4*CD25* (including both CD25%™ and
CD25Pi9" cells) among CD4* cells, decreased (from 23 + 7.4 to
18 + 4.6, Figure 2 a). However, the percentage of activated T
helper cells as defined by the early activation marker CD69
(CD4*CD69" cells), tended to increase (from 1.0 + 0.5t0 1.5
1.0, Figure 2 b). Fractions of CD4*OX40L*, representing
activated immunomodulatory T cells, decreased (from 1.5+ 1.5
to 0.6 + 0.5, Figure 2 d) and CD4%mCD259" Treg cells tended
to decrease (from 3.1 + 0.8 to 2.6 + 0.8, Figure 2 f). The
fractions of CD4*HLA-DR*, and CD4*CD28- subpopulations did
not change pre- to post-treatment (Figure 2 c, e).

CD8+ T cells. The fraction of late activated cytotoxic T cells,
represented by CD8*HLA-DR* cells among CD8* cells, tended
to increase (from 21 + 12 to 24 + 13, Figure 3 c). Fractions of
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CD8*OX40L* T cells, representing activated
immunomodulatory T cells, decreased from 2.4 + 2.2 to 1.1
0.8 Figure 3 d). Senescent cytotoxic CD8*CD28CD57* T cells
decreased (from 72 + 18 to 56 + 21, Figure 3 f). The fractions
of CD8*CD25*, CD8*CD69* and CD8*CD28- subpopulations
did not change pre- to post-treatment (Figure 3 a-b, e)

B cells, NK and NKT cells. The fraction of CD19*CD27*
cells, representing memory B cells, increased (from 25 + 11 to
45 * 12), as did the fraction of CD19*CD25* cells, presumably
representing regulatory B cells (Breg) (from 25 + 12 to 35 * 14,
Figure 4 a-b). The increase in the fraction of memory B cells
was higher than the increase in the Breg population (p=0.005).
Among CD3-CD56* NK cells, an increase in the percentage of
CD3-CD56m NK cells (from 89 + 7.2 to 92 + 3.3, Figure 4 c)
was accompanied by a decrease in CD3-CD56'9" NK cells
(from 11.1 £ 7.2 to 7.6 £3.3, Figure 4 d). Early activated CD3-
CD56'CD69* NK cells tended to decrease (from 9.9 + 12 to 5.8
+ 3.6, Figure 4 e). The percentages of CD3-CD56*HLA-DR*and
total CD3*CD56* NKT cells did not change pre-to post-
treatment (Figure 4 f-g), as was also true for percentages of
total NK cells and CD4*CD56* NKT and CD8*CD56* NKT
subpopulations (data not shown).

Lymphocyte activation assay

The number of influenza antigen-activated CD4*
lymphoblasts increased after treatment (from 39 + 85 cells/ul to
170 + 236 cells/pl), as did the PPD-activated lymphoblasts
(from 595 + 914 to 1060 + 1043, Figure 5 a-b). In addition, CD4
responses to both PWM (p<0.05) and CMV (p<0.05) tended to
increase (data not shown). For CD8* cells, an increased
response was observed upon stimulation with PPD (from 11 +
16 to 23 + 25), PWM (from 262 + 180 to 385 + 215) and CMV
(from 10 + 17 to 68 *+ 130, Figure 5 c-e). CD4*CD108"* activated
T helper cells showed a stronger response towards influenza
antigen post-treatment (from 3.6 + 5.1 to 9.7 + 10, Figure 5 f).
Furthermore, MBP-induced responses tended to increase
among CD4*CD108" cells in treated patients (from 0.2 £ 0.7 to
0.7 + 1.2, p=0.034). A similar tendency was seen in
CD8*CD108* activated cytotoxic cells after influenza
stimulation (0.2 £ 0.7 to 0.8 £ 1.4, p=0.013).
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Figure 1. Overview of lymphocyte populations in patients
before and after one year of natalizumab treatment. a:
Distribution of lymphocytes (% of total leukocytes).
Comparisons are pairwise. Bars denote mean values. b-c:
Relative distribution of discrete lymphocyte subpopulations
before (b) and after (c) natalizumab treatment.

doi: 10.1371/journal.pone.0081685.g001

As controls, we analyzed the response of cell cultures in
peripheral blood of healthy individuals. We found a stronger
response in healthy individuals compared with pre-treatment
levels of patients regarding influenza antigen-induced CD4*
and CD4*CD108" T cell responses (166 + 247 versus 39 * 85

PLOS ONE | www.plosone.org

Natalizumab and Blood Lymphocyte Composition in MS

N
Qo
o

CD4+CD25+ CD4+CD69+
40 p<0.0005 4
1 =
4 30 3 s ol )
@) a)
O 20 o 2
2 10 S 1
RN X
0 0
pre post pre post
C. d.
CD4+HLA-DR+ CD4+0OX40L+
20 s 4 p=0.003
4 | + 1
< 15 < 3
m) a)
O 10 o 2
S 5 S 1
X 3
0 0
pre post pre post
e. f.
CD4+CD28- CD4dimCD25br
10 n's. 5 p=0.017
+ 8 + 4
D 6 5 3
(©) O
o (o]
° 2 Q 1
0 0
pre post pre post

Figure 2. Phenotypic characteristics of CD4+ peripheral
lymphocyte subpopulations in MS patients before and
after one year of natalizumab treatment (pre and post,
respectively). p<0.01 is considered statistically significant.
Comparisons are pairwise. Bars show mean values, whiskers
denote SD.

doi: 10.1371/journal.pone.0081685.g002

and 9.7 + 14 versus 3.6 + 5.1, respectively, Figure 6 a).
However, post-treatment levels of patients were in the same
range as those for controls. Since the FASCIA method used for
these analyses takes into account both the total number of
cells in the culture, as well as the responsiveness of these
cells, we wanted to further explore the nature of the decreased
response observed in pre-treatment patients compared to that
of healthy controls. Analysis of unstimulated (RPMI) cultures
revealed that numbers of cells were comparable between pre-
treatment patients and controls, while post-treatment patients
exhibited significantly increased cell numbers compared to pre-
treatment patients, as well as compared to controls (see Figure
S1 a-d). This finding implies that the decreased
responsiveness in pre-treatment patients is not dependent on a
low number of cells in culture and indicates that the increase in
cell numbers post-treatment has a major impact on the
increase in responsiveness.
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Figure 3. Phenotypic characteristics of CD8+ peripheral
lymphocyte subpopulations in MS patients before and
after one year of natalizumab treatment (pre and post,
respectively). p<0.01 is considered statistically significant.
Comparisons are pairwise. Bars show mean values, whiskers
denote SD.

doi: 10.1371/journal.pone.0081685.g003

Furthermore, to evaluate the function on a cell-by-cell basis,
the fraction of lymphoblasts responsive to stimuli (expressed as
proportion (%) of lymphoblasts out of lymphocytes) revealed
that the fraction of cells responding to Influenza antigen and
CMV were lower in pre-treatment patients compared to controls
(p<0.005 for Influenza, p<0.01 for CMV, Figure 6 b-c). The
fractions of stimulated cells tended to increase in post-
treatment compared with pre-treatment samples (p<0.05 for
both Influenza and CMV, Figure 6 b-c), and post-treatment
there was no difference between patient and controls. Thus,
the increased responsiveness seen in patients post-treatment
might in part be attributable to a component of increased per-
cell responsiveness, in addition to increased lymphocyte cell
numbers.
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Figure 4. Phenotypic characteristics of CD19+ B cell and
CD3-CD56+ NK cell subpopulations in MS patients before
and after one year of natalizumab treatment (pre and post,
respectively). p<0.01 is considered statistically significant.
Comparisons are pairwise. Bars show mean values, whiskers
denote SD.

doi: 10.1371/journal.pone.0081685.g004

Lymphocyte population composition versus clinical
variables

No associations were found between pre-treatment
peripheral blood composition of major lymphocyte population
numbers (total lymphocytes, T, B and NK cells, CD4* and CD8*
cells) or subpopulation fractions of lymphocytes (CD3*CD56*
NKT, CD3CD569" and CD3CD56%" NK cells,
CD4d9mCD259" Treg cells, CD19*CD27* memory B cells,
CD19*CD25* Breg cells) versus pre-treatment clinical data
(disease duration, number of relapses last two years, MSSS)
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Figure 5. Lymphocyte activation responses towards antigens and mitogens in different T cell populations.
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comparisons between patients before and after one year of natalizumab treatment. n=37 in both groups.

doi: 10.1371/journal.pone.0081685.g005

(data not shown). Furthermore, no associations were found
between one-year change in different lymphocyte population
numbers (total lymphocytes, CD3*, CD4*, CD8*, CD3-CD19*,
CD3CD56") or subpopulation fractions of T cells (CD3*CD56*,
CD3CD56be,  CD3-CD56%™, CD4*CD25vsn, CD19*CD27+,
CD19*CD25*) versus number of relapses during one-year
treatment (data not shown).

Discussion

In this one-year longitudinal observational study, by
assessing changes in circulating lymphocyte compositions of
40 patients with relapsing MS treated with natalizumab, we
demonstrated a significant increase in absolute numbers of all
major populations, most markedly for NK cells and B cells, as
well as restored CD4* and CD8* T cell responsiveness to recall
antigens and mitogens.

An increase in numbers of circulating lymphocytes during
natalizumab treatment corroborates with the natalizumab’s
blocking effect on lymphocyte extravasation [5]. The parallel
findings of a reduction in leukocyte counts and IgG index
intrathecally also support the blocking effect of natalizumab on

PLOS ONE | www.plosone.org

CNS cell-trafficking [6,7]. VLA-4 (a4p1) is widely expressed on
many different lymphocyte populations including T cells, B
cells, NK cells as well as on a majority of monocytes and
macrophages. The interaction of VLA-4 and its ligands is not
specific for the blood-brain barrier (BBB) since VCAM-1 is
expressed on activated endothelium throughout the body [26].
Thus, the overall effect of VLA-4 interference on lymphocyte
populations measured in blood is not only a result of reduced
migration across the BBB but also across endothelium in other
peripheral tissues. Furthermore, considering the low numbers
of lymphocytes intrathecally compared with numbers in the
periphery, it is unlikely that reduced migration to the CNS may
account for the total increase in circulating lymphocytes during
natalizumab treatment. In addition, it was found that
natalizumab mobilizes hematopoietic progenitor cells out of the
bone marrow [27]. Also, besides effects on cell migration, a co-
stimulatory effect on VLA-4 by natalizumab, may also
contribute to changes in circulating lymphocyte subsets [28].
VLA-4 expression varies between different lymphocyte
populations, being higher on B cells than on T cells, and higher
on CD8* than on CD4* T cells [13]. Furthermore, the amount of
natalizumab binding to CD3- NK cells may be higher than the
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Figure 6. Lymphocyte activation responses in patients and controls. a: Responses towards antigens and mitogens in healthy
controls and patients before and after one year of natalizumab treatment. For visualization purposes, data are normalized to the
average of the healthy controls for the respective antigens. Analysis performed with one-way ANOVA with Tukey’s post hoc test. *
p<0.05, comparison between controls and pre-treatment patients. §] p<0.05, comparison between pre- and post-treatment patients.
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hoc test. Median and interquartile range are shown. * p<0.05, ** p<0.01, *** p<0.005.

doi: 10.1371/journal.pone.0081685.g006

amount binding to CD19* B cells and CD3* T cells in a
descendant scale [29]. This diversity in binding preference of
natalizumab is well in line with our observation of the highest
increase in the number of NK cells after treatment (195%
increase compared with baseline), followed by B cells (105%
increase compared with baseline) and T cells (73% increase
compared with baseline).

NK cells are part of the innate immune system and have both
cytotoxic and regulatory properties [30]. Even though NK cells
were observed to have the most pronounced relative increase
of all circulating lymphocytes, the fraction of regulatory NK cells

PLOS ONE | www.plosone.org

(CD3- CD569") decreased with a concomitant increase in
cytotoxic NK cells (CD3- CD569m). Based on different
expression of chemokine receptors and adhesion molecules,
cytotoxic NK cells and regulatory NK cells have different
migration preferences with CD569™ migrating to inflammatory
sites while CD56%¢" preferentially home to secondary lymphoid
organs [31]. Our novel finding of an increase in the fraction of
cytotoxic NK cells in blood after treatment seems logic when
considering these cells preference for homing to inflammatory
sites but now sequestered in the circulation due to
natalizumab. Since VCAM-1 is up-regulated at sites of
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inflammation, cytotoxic NK cells may be relatively more
affected by the blocking effect on VLA-4 compared with
regulatory NK cells.

The 0OX40-OX40L interaction has been ascribed an
important role in promoting survival and clonal expansion of
effector and memory T cells, regulating T cell-mediated
cytokine production [32] and facilitating Th2 immune responses
[33]. In the murine model of MS, experimental allergic
encephalomyelitis (EAE), blocking the OX40-OX40L interaction
ameliorated the disease [34]. We here report a significant
decline in proportions of both CD4*OX40L* and CD8*0OX40L*
cells after natalizumab treatment, indicating an attenuation of
effector T cell responses in the periphery. Since OX40-OX40L
interactions favor Th2 immune responses [33], our result may
also have implications on the Th1-Th2 balance systemically.

Absolute numbers of B cells also increased after treatment.
Interestingly, the fractions of both memory B cells
(CD19*CD27*) and presumed Breg cells (CD19*CD25") [35]
increased. In contrast to naive B cells (CD19*CD27-), memory
B cells secrete the pro-inflammatory cytokines tumor necrosis
factor (TNF) and lymphotoxin (LT) upon stimulation [36], and
Breg cells suppress CD4* T cell proliferation and enhance Treg
cell properties [37]. The increase was higher in memory B cells
than in presumed Breg cells, which may have implications for B
cell responses both in the periphery and in the CNS. The
increase in the fraction of memory B cells is in accordance with
recent reports where an increase in memory B cells was
observed while the population of naive B cells decreased
[17,38]. The latter finding was suggested to depend on
differences in a4-integrin expression between these two B cell
subsets. Taken together, the marked increase in circulating B
cells during natalizumab treatment is a consistent finding
throughout many studies and further yields this lymphocyte
population a probably essential role in treatment effects and
side effects.

In addition to the profound changes in lymphocyte
populations, we observed increased CD4* and CD8* T cell
responses to recall antigens and mitogens in whole blood
during treatment. Although different subpopulations of T cells
showed some variations in responses to different antigens, the
overall pattern was consistent with higher responses post-
treatment. Prevention of immune cell entry into tissues by
natalizumab may lead to an increase in the number of reactive
memory cells in the circulation, in accordance with the
observation by Bornsen et al. [16], for T cells and our present
observation for B cells. Furthermore, the overall reduction in T
cell responsiveness noted in pre-treatment MS patients
compared with healthy controls, was restored by natalizumab
treatment.

The FASCIA method that we used reckons both the number
and function of cells, thus providing a measure of the total
functional capacity, which indeed is of clinical relevance. A
detailed analysis taking into account both total numbers of cells
available in the sample and the proportion of cells responding
to stimuli showed that the increase in responsiveness observed
after natalizumab treatment to a large extent was explained by
an increase in cell numbers but there was also an increase in
function on a cell-by-cell basis. This finding is not in full
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agreement with the finding of Bornsen et al [16], since they
found no functional difference between untreated and
natalizumab-treated MS patients regarding responses to
tetanus and MBP. This discrepancy may be explained by
material selection, as for example the untreated group [16]
comprised mainly early-phase MS patients. Although our
finding of lowered T cell responsiveness in MS patients
compared with controls was not included as an aim of the
study, it is an interesting observation that is in line with some
previous literature indicating a defect responsiveness in MS for
example to anti-CD3 stimulation [39] to PWM [40] as well as to
stimulation by viral antigens [40,41]. However, our finding of
lowered responsiveness in MS patients compared to controls
may also depend on treatment prior inclusion, since 30 patients
out of 40 received immunomodulating treatment within four
months before baseline.

In conclusion, our findings indicate a preserved or increased
ability for immune responses systemically after one-year
natalizumab treatment. However, since natalizumab reduces
lymphocyte extravasation not only to the CNS, immune
surveillance and responses in peripheral tissues may be
insufficient, which should be accounted for in treatment
considerations. The systemic increase in the major populations
(NK cells more than B cells more than T cells, respectively)
may be explained by expression levels of VLA-4 on these
populations, thus reflecting the effect of natalizumab on cell
trafficking. However, the differential effects on subsets of these
populations, including markers of activation and co-stimulation,
are unlikely to be explained by cell traffic effects alone,
indicating additional effects of natalizumab involving also cell-
signalling.

Supporting Information

Figure S1. Absolute number of unstimulated cells after 7
days of culturing. Mean and SD values are shown.
Differences shown mark comparisons between pre- and post-
treatment patients, and for post-treatment patients and
controls, respectively. All comparisons were made using one-
way ANOVA with Tukey’s post-hoc test. No significant
differences were observed when comparing pre-treatment
patients and controls. **: p<0.01, ***: p<0.005.

(TIF)
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