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Abstract

Purpose: To develop a reliable magnetic resonance elastography (MRE)-based method for measuring regional brain
stiffness.
Methods: First, simulation studies were used to demonstrate how stiffness measurements can be biased by changes
in brain morphometry, such as those due to atrophy. Adaptive postprocessing methods were created that significantly
reduce the spatial extent of edge artifacts and eliminate atrophy-related bias. Second, a pipeline for regional brain
stiffness measurement was developed and evaluated for test-retest reliability in 10 healthy control subjects.
Results: This technique indicates high test-retest repeatability with a typical coefficient of variation of less than 1%
for global brain stiffness and less than 2% for the lobes of the brain and the cerebellum. Furthermore, this study
reveals that the brain possesses a characteristic topography of mechanical properties, and also that lobar stiffness
measurements tend to correlate with one another within an individual.
Conclusion: The methods presented in this work are resistant to noise- and edge-related biases that are common in
the field of brain MRE, demonstrate high test-retest reliability, and provide independent regional stiffness
measurements. This pipeline will allow future investigations to measure changes to the brain’s mechanical properties
and how they relate to the characteristic topographies that are typical of many neurologic diseases.
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Introduction

Magnetic resonance elastography (MRE) is a technique for
performing noninvasive and quantitative “palpation” by
measuring tissue stiffness [1]. MRE is a three-step process
beginning with the introduction of shear waves into the tissue of
interest via an external vibration source. A phase-contrast MRI
pulse sequence with motion encoding gradients synchronized
to the external vibration is used to image the resulting shear
waves as they propagate through the tissue. Finally, an
inversion algorithm is used to calculate a stiffness map (or
elastogram) from the shear wave images.

Clinically, MRE is most often used to quantify liver disease
severity from the early stages of fibrosis to cirrhosis [2]. More

recently, a number of groups have begun to use MRE to study
the mechanical properties of the brain and their potential to aid
in the diagnosis of neurological diseases such as multiple
sclerosis [3,4], normal pressure hydrocephalus [5], Alzheimer’s
disease (AD) [6], and intracranial tumors [7,8]. Unfortunately
these preliminary studies, while important to demonstrate the
potential utility of stiffness as a novel biomarker of brain
diseases, suffer from important technical limitations.

The purpose of this work was to develop a new pipeline to
address two significant limitations in the field, and to assess
test-retest reliability of this technique in a cohort of 10 healthy
control subjects. First, we used simulation experiments to
demonstrate how atrophy can produce a systematic bias in
MRE-based stiffness measurements. This issue is of critical
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importance when using MRE to study neurodegenerative
diseases, where the disease group is expected to have smaller
brain volumes on average compared to the control group. We
then developed methods to remove this bias using novel,
adaptive postprocessing techniques. Second, since diseases of
the brain have characteristic topographies, it was critical to
develop MRE as a tool to measure regional brain stiffness.
Recent publications have presented regional brain property
estimates [9,10]. We report methods to measure regional
stiffness within the lobes of the brain with high test-retest
reliability. Preliminary work has already demonstrated that
stiffness changes in AD follow the known pathological
topography of the disease [11]. These regional measurements
are necessary to evaluate the specificity of brain stiffness
changes, and also represent an initial step toward the use of
brain stiffness for the differential diagnosis of diseases with
varying topographies.

Methods

Simulation experiments
Simulated shear waves masked by spherical shells.  To

test postprocessing methods in a 3D object, we created
simulated wave images (with no attenuation) masked by
spherical shells of varying thickness. These images have the
form u=sin(2πρ/λ-2πtf), where u is the displacement field, ρ is
the distance from the point source, λ is the shear wavelength, t
is time and f is the shear wave frequency. The shear waves
were generated to simulate an object with a true stiffness of 3
kPa at 60 Hz with 3 mm isotropic image resolution. We
simulated 3 motion encoding directions (in order to calculate
the curl) by generating 3 wave images with the shear waves
propagating from point sources of varying location outside the
spherical shell masks. The wave images were masked with
spherical shells of varying thicknesses, beginning with a 15
voxel thickness down to a 9 voxel thickness in increments of 2
voxels.

Finite element model (FEM) simulations.  2D FEMs of
brains simulating progressive atrophy were constructed in
COMSOL Multiphysics (version 3.5.0.603, COMSOL AB,
Stockholm, Sweden). An axial MR image from a normal subject
was segmented to create a geometry consisting of brain tissue
(not distinguishing gray and white matter) and cerebrospinal
fluid (CSF). The FEM was a fluid-structure interaction model
involving the plane strain mode of the Structural Mechanics
Module (using a "mixed U-P" formulation for nearly
incompressible materials) for the brain tissue and the pressure
acoustics mode of the Acoustics Module for the CSF. Four
geometries were constructed, one based on the original brain
segmentation, and three others with progressive serial erosions
of the brain geometry to represent atrophy. The mesh statistics
for the four geometries are summarized in Table 1. Boundaries
between the solid (brain) and fluid (CSF) domains were
coupled in the solid domain using fluid-loading boundary
conditions that applied an edge loading force based on the fluid
acceleration, and in the fluid domain using structural
acceleration boundary conditions that applied an acceleration
to the fluid based on the acceleration of the solid. The outer

edges of the brain geometry were prescribed a 10 micron
vertical (anterior-posterior) displacement. The Young's modulus
for the brain tissue was set to 8+3i kPa, the density was 1000
kg/m3, and the Poisson's ratio was 0.49995. The density of the
CSF was set to 1000 kg/m3 with a speed of sound of 1540 m/s.
The models were solved using a frequency-response analysis
at 60 Hz using quadratic Lagrange elements and a direct solver
(UMFPACK). The FEM solves for the in-plane (x and y)
components of the motion in the tissue. The inversion
algorithms described below are designed for 3D vector
displacement data. To process the 2D FEM data, it was
assumed that the z component of the motion was zero
everywhere and that all derivatives in the z direction were zero.

Image processing: traditional MRE postprocessing
methods.   A number of methods exist for calculating stiffness
from the acquired wave images. The approach we use in the
brain can be summarized by three steps. First, we calculate the
first temporal harmonic of the vector curl of the acquired wave
images. Applying the inversion algorithm to the first temporal
harmonic ensures that the shear waves only contain
displacements at the frequency of interest, while calculating the
curl removes the effects of longitudinal waves that would
otherwise produce artifacts in the inversion results [12]. For
traditional postprocessing techniques, the partial derivatives for
the curl calculation are estimated by central differences (i.e.,
convolution with a [-1, 0, 1] kernel in the direction of interest).
Although the curl was not necessary for accurate inversion of
the simulated shear waves, it was applied to maintain a
consistent postprocessing point spread function between the
simulation and in vivo data. Second, the curl images are
smoothed to make the stiffness estimate more resistant to
noise. We use a filter of the form (1-x2)2(1-y2)2(1-z2)2 where x, y
and z are linearly spaced from -1 to 1 over the chosen window
size [13]. Typically we use a 5x5x5 window, which is effectively
a 3x3x3 filter since the filter will be 0 at the edges of the
window. In the third and final step, three elastograms (one for
each component of the curl) are calculated from the smoothed
curl images using a direct inversion of the Helmholtz equation
that is assumed to model the shear wave propagation [14].
These elastograms are combined into a single estimate using a
weighted average based on the amplitude of shear wave
motion in each of the components of the curl. Direct inversion

Table 1. Mesh statistics for the 4 Finite Element Model
geometries.

 Geometry 1  Geometry 2  Geometry 3  Geometry 4
Number of degrees of
freedom

183,767 230,223 297,696 260,043

Number of mesh points 22,026 28,112 37,301 33,191
Number of triangular
elements

42,741 53,827 71,607 63,631

Number of boundary
elements

2,325 3,469 4,470 4,223

Number of vertex elements 587 881 998 952
Minimum element quality 0.237 0.757 0.763 0.342

doi: 10.1371/journal.pone.0081668.t001
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calculates a complex shear modulus with the storage modulus
as the real part and the loss modulus as the imaginary part. We
convert the complex modulus to shear stiffness (the product of
wave speed squared and density where density is assumed to
be that of water) since shear stiffness is more resistant to noise
and all three of these quantities (shear stiffness, storage
modulus and loss modulus) are highly correlated with each
other in these data. The stiffness is then calculated as the
median value within the region of interest (ROI). Using this
approach, stiffness in a given voxel is calculated using
information from a 7x7x7 neighborhood (a 3x3x3 kernel for
each of the curl calculation, smoothing and Laplacian
calculation), which would be expected to introduce an edge
artifact that is 3 voxels wide. For display purposes only,
elastograms were smoothed with a 3x3x3 median filter, while
quantitative measures were extracted from the unsmoothed
elastograms.

Image processing: adaptive MRE postprocessing
methods.   Adaptive MRE postprocessing follows the 3 major
steps described above: 1) calculate the first temporal harmonic
of the curl of the wave data; 2) smooth the curl images; and 3)
calculate stiffness by direct inversion. However, after an ROI
has been defined for analysis, adaptive methods use unique
convolution kernels for edge voxels in steps 1 and 2 in order to
reduce edge artifacts in the final elastogram. To calculate the
curl, central difference estimates of the partial derivatives are
used for any voxels whose convolution kernel lies completely
within the ROI mask. For voxels that lie along the edge of the
mask, derivatives are calculated using a nearest neighbor
estimate. The smoothing filter can likewise be made adaptive
by creating a unique filter for each voxel that sets any elements
outside the mask to 0, and then normalizes the filter to the sum
of its non-zero elements.

ROI selection.   To evaluate the impact of these
postprocessing methods on edge-related bias, we measured
stiffness in these simulations as a function of ROI size. The
ROI began as a full mask of the object of interest, and then
was serially eroded by 1 voxel from all edges up to 3 times.
Erosion was performed with a 6-connected neighborhood for
the 3D spherical shell simulations, and with a 4-connected
neighborhood for the 2D FEM simulations.

In vivo experiments
Subject recruitment.   This study was approved by the

Mayo Clinic Institutional Review Board. All subjects were
scanned after obtaining informed written consent. We scanned
10 volunteers (8 males and 2 females, ages 23 to 55) without
known neurological disease 3 times each on one day to assess
test-retest reliability. The subjects were removed from the
scanner table, and the MRE apparatus was disassembled and
reassembled between each MRE exam.

MRE data acquisition.   MRE data were collected using a
modified single-shot, spin-echo EPI pulse sequence (SIGNA
Excite, GE Healthcare, Waukesha, WI). Shear waves of 60 Hz
were introduced using a pneumatic active driver (located
outside of the scanner room) and a soft, pillow-like passive
driver placed under the subject’s head as previously described
[6]. The resulting motion was imaged with the following

parameters: TR/TE=3600/62 ms; field of view (FOV)=24 cm;
BW=±250 kHz; 72x72 imaging matrix reconstructed to 80x80;
frequency encoding in the right-left direction; 3x ASSET
(SENSE) acceleration; 48 contiguous 3 mm thick axial slices;
one 4 G/cm, 18.2 ms, zeroth- and first-order moment nulled
motion encoding gradient on each side of the refocusing RF
pulse synchronized to the motion; motion encoding in the
positive and negative x, y and z directions; and 8 phase offsets
sampled over one period of the 60 Hz motion. The resulting
images had 3 mm isotropic resolution and were acquired in
less than 7 minutes. Two additional phase offsets with the
motion turned off were collected for subsequent signal-to-noise
ratio (SNR) calculations.

Image processing: wave image calculation.   For each of
the x, y and z motion encoding directions, complex-valued
phase difference images for each phase offset were calculated
by taking the product of the complex-valued MR images with
positive motion encoding and the complex conjugate of the
images with negative motion encoding. These resulting images
have a magnitude equal to the product of the magnitudes of the
positive- and negative-encoded images, and phase equal to
the difference of the phases of the positive- and negative-
encoded images. To minimize slice-to-slice phase
discontinuities, constant and slowly varying phase in the
acquisition plane was removed by first filtering the complex-
valued phase difference images with a 2D lowpass filter (3x3
rectangular window function in k-space) and then calculating
the difference between the phase of the original complex-
valued images and the phase of the low pass filtered images
[15].

Image processing: brain mask and region assignment.  
A brain mask and atlas regions for each subject were obtained
using a separately acquired 3D IR-SPGR T1 weighted image
(sagittal orientation; frequency encoding in the superior-inferior
direction; TR/TE = 6.3/2.8 ms; flip angle = 11 degrees; TI = 400
ms; FOV = 27 cm; 256x256 acquisition matrix; BW = ±31.25
kHz; 1.75x ASSET acceleration in the anterior-posterior
direction; and 200 1.2-mm slices). This image was segmented
to calculate gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) content for each voxel as previously
described [16]. A lobar atlas in a standard template space was
warped to the subject’s T1 weighted image using a unified
segmentation algorithm implemented in SPM5 [17]. The T1
weighted image was then registered to the magnitude data
from the MRE exam (a T2 weighted image) with a 6 degree of
freedom rigid body transformation, along with the segmentation
images and the warped atlas. Finally, these images were
resliced to calculate the GM, WM and CSF content (using
trilinear interpolation), as well as the regional assignment of
each voxel (using nearest neighbor interpolation) in MRE
space. The brain mask was generated by marking any voxel
where GM content plus WM content was greater than CSF
content.

Image processing: regional stiffness calculation.  The
ROIs investigated included global (whole brain excluding
cerebellum), frontal lobes, occipital lobes, parietal lobes,
temporal lobes, deep GM/WM (insula, deep gray nuclei and
white matter tracts) and the cerebellum. Each ROI was
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generated as the intersection between the brain mask and the
warped atlas region. To calculate regional stiffness, the
displacement data were first masked by the ROI for reasons
which will be discussed later. Adaptive methods were used for
calculating the curl and smoothing the masked data. As above,
elastograms were calculated for each component of the curl
using a direct inversion algorithm, which were then combined
into one elastogram using a weighted average as above.
Finally, the complex modulus was converted to shear stiffness
and the stiffness was then summarized as the median over the
ROI excluding 1 voxel from the edge of the ROI.

Image processing: correction of stiffness for noise-
related bias.   In the final step of the pipeline, brain stiffness
was corrected for potential bias due to noise. To begin this
process, we calculated SNR maps (one for each component of
the curl) as previously described [6]. Briefly, we calculated the
amplitude of the first temporal harmonic of the curl images as
the signal. We then calculated the curl of the motion-free data,
which should be identically zero in every voxel if the data are
noise-free. The noise level of each voxel was estimated by
calculating the standard deviation of the motion-free curl
images in sliding 3x3x3 windows excluding voxels outside the
ROI mask. Finally, SNR was then calculated as the voxel-by-
voxel ratio of these two quantities.

Based on simulation experiments, low SNR is known to lead
to underestimated stiffness measurements using a direct
inversion technique when calculating stiffness as the median
over an ROI. We implemented an SNR correction algorithm
that uses simulated data with known SNR to correct for this
bias. As in the spherical shell-masked simulations above, these
simulations have the form u=sin(2πρ/λ-2πtf), where u is the
displacement field, ρ is the distance from the point source, λ is
the shear wavelength, t is time and f is the shear wave
frequency. The point source was placed outside the FOV, and
the resolution and number of time offsets were set to mimic the
in vivo data. Based on simulated data, the relationship between
the true stiffness (μtruth), stiffness calculated from noise-free
data (μ∞), and stiffness calculated at a particular SNR (μSNR) is
shown schematically in Figure 1a. A slight overestimate can
exist in the noise-free stiffness estimate (μ∞) due to
discretization errors [18]. Stiffness then systematically drops
with increasing noise levels since noise has high spatial
frequencies that are interpreted by the inversion algorithms as
low wave speeds (i.e., soft tissue). The shape of this stiffness
versus SNR relationship is dependent on the true stiffness, as
softer materials have a flatter relationship while the stiffness
measured in stiffer materials will decrease more quickly with
decreasing SNR. The SNR correction algorithm presented here
accounts for this stiffness dependency using an iterative
approach to estimate the corrected stiffness given the
measured stiffness (μm) and the measured SNR. The approach
is summarized as follows:

1. Initialize the stiffness of the simulation (μsim) as the
measured stiffness (μm).

2. Calculate the simulated shear wave field with a
wavelength corresponding to the simulated stiffness. This
shear wave field has the same FOV and resolution as the
in vivo data.

3. Apply the smoothing filter described above and calculate
an elastogram using the direct inversion algorithm.
Calculate the stiffness in the noise-free simulation (μ∞) by
taking the median of this elastogram excluding 3 voxels
from each edge.

4. Add noise to the simulated shear wave field by adding
Gaussian noise with zero mean and a standard deviation
equal to the inverse of the measured SNR.

5. Apply the smoothing filter and calculate an elastogram
using the direct inversion algorithm. Calculate the stiffness
in the noise-added simulation (μSNR) by taking the median
of this elastogram excluding 3 voxels from each edge.

6. Calculate a correction factor (CF) as the ratio of the
stiffness calculated in the noise-free simulation to the
stiffness calculated in the simulation with SNR equal to the
measured SNR (CF= μ∞/μSNR).

7. Calculate the difference between the measured stiffness
multiplied by this correction factor and the stiffness
calculated from the noise-free simulation (Δμ=CF*μm - μ∞),
and increment the simulated stiffness μsim by Δμ.

8. Repeat steps 2 through 7 until Δμ is less than the
tolerance (0.001 kPa for this work).

9. Report the corrected stiffness as the current simulated
stiffness (μsim).

This procedure converges quickly, typically requiring no
more than 3 iterations. The difference between the uncorrected
and corrected stiffness is typically on the order of hundredths of
kPa.

Image processing: evaluation of SNR correction
algorithm.  The SNR correction algorithm was evaluated by
testing the resistance of the stiffness measurements to
additional artificial noise. Each MRE exam was reconstructed
twice (once using the original data and once with additional
noise). For the noise-added images, Gaussian noise with zero
mean was added to the data in k-space prior to wave image
calculation. The standard deviation of this noise was chosen to
cut the median SNR in the global ROI to 50% of the original
SNR. Stiffness in each region was then calculated using the
original (μ0) and noise-added (μn) data for each of the 30
exams (10 volunteers with 3 repeated exams), and the error in
the inversion was calculated as (μ0- μn)/μ0*100. Ideally the
errors would be centered about 0 and have no relationship with
the measured SNR. Therefore, the algorithm was tested by a
paired Wilcoxon rank sum test between μ0 and μn, and by a
Spearman rank correlation between the inversion error and the
measured SNR within each ROI.

Image processing: determination of regional SNR
measure.  The SNR correction algorithm above is applied on a
global or regional basis, so the SNR in each ROI needs to be
summarized by a single number (in actuality SNR varies
spatially, due mostly to wave attenuation). SNR within the brain
is not normally distributed, as seen in the example histogram in
Figure 1b. Therefore, three summary statistics were examined,
each was tested as the nominal SNR in the correction
algorithm, and we chose the metric that minimized the average
inversion error between original (μ0) and noise-added (μn) data
as defined above. The summary statistics tested include the
mode (left-most arrow in Figure 1b), median (right-most arrow),
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and the median of the most likely SNRs (intermediate arrow).
This final measure was computed by first finding the minimum
number of bins that include at least half of all the voxels within
the ROI, and then calculating the median SNR of the voxels
that fell within the range of those bins. Since this metric was
trained and tested in the same set of 30 exams, we cross-

validated the SNR correction algorithm in a separate population
(all imaging methods were the same as described above): 48
elderly subjects of age 72 to 89 including 32 cognitively normal
controls, 8 subjects with mild cognitive impairment and 8
subjects with probable Alzheimer’s disease dementia.

Figure 1.  Relationship between stiffness and signal-to-noise ratio (SNR).  a. In the noise-free case, measured stiffness will
slightly overestimate the true stiffness due to discretization errors. The calculated stiffness then drops as noise increases. The SNR
correction algorithm iteratively searches for the true stiffness that fits the measured stiffness and measured SNR. b. Example
histogram of SNR within the brain. The distribution of SNR within the brain has a long right tail. Three summary measures of SNR
were evaluated for the SNR correction algorithm: the mode (left-most arrow), the median of the most likely SNRs (middle arrow),
and the median (right-most arrow).
doi: 10.1371/journal.pone.0081668.g001
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Statistical analysis.   Test-retest repeatability in the 10
subjects was assessed by coefficient of variation (CV). To
determine if stiffness in any region was different from any other
region, we performed an ANOVA for repeated measures.
Subsequent post hoc comparisons were made with paired t-
tests. Correlations between regions were tested by Pearson
correlation.

Results

Simulation experiments demonstrate edge-related bias
due to atrophy that are eliminated using adaptive
postprocessing methods

Example images of the spherical shell simulation are shown
in Figure 2a. Note the edge discontinuities in the curl image
calculated with traditional processing (top-left). On the other
hand, curl images calculated with adaptive methods (top-right)
are significantly smoother right up to the edge of the object. In
the stiffness map calculated with traditional processing

(bottom-left), regions within 3 voxels of an edge give an
underestimated stiffness. However when using adaptive
methods (bottom-right), only regions within 1 voxel of an edge
give an underestimated stiffness. As the shells decrease in
thickness, the ratio of the number of edge-artifacted voxels to
the total number of voxels increases. As a result, if the entire
object is used as the ROI, then the calculated stiffness will
continue to decrease as the shells become thinner as shown in
Figure 2b. Figure 2b shows that when using traditional
postprocessing techniques, 3 erosions of the ROI are
necessary to eliminate the bias. The same plot is shown when
using adaptive methods in Figure 2c, indicating no edge-
related bias.

This edge-related bias was also evaluated in the FEM
simulations to test the adaptive methods in a more realistic
geometry. The left column of Figure 3a shows the true stiffness
maps given to the FEM with increasing simulated atrophy from
the top row to the bottom row. In the right column are the
corresponding elastograms after downsampling the FEM wave

Figure 2.  Spherical shell simulation.  a. A curl wave image calculated with traditional postprocessing methods is shown in the
top-left panel, while one calculated with adaptive methods is shown in the top-right. Note the edge discontinuities in the image on
the left compared with that on the right. The elastogram calculated with traditional postprocessing in the bottom-left panel shows a
larger edge-related bias (3 voxels wide) as compared to the elastogram calculated with adaptive processing in the bottom-right (1
voxel wide). b. Using traditional postprocessing methods, 3 erosions are required to completely remove edge-related bias. c. Using
adaptive methods, no edge-related bias is apparent.
doi: 10.1371/journal.pone.0081668.g002
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images to 3 mm resolution, calculating the curl, smoothing and
performing a direct inversion, as done for a brain MRE exam.
Note how the voxels near the edge of the brain indicate
stiffness below that of the true stiffness, and as atrophy
increases, the ratio of these edge voxels with artifact to the
total number of voxels increases. As above, if the entire brain
mask is used as the ROI, then the calculated stiffness will
systematically decrease with increasing atrophy as shown in

Figure 3b. Just as in the spherical shell simulations, this bias
can only be completely removed by eroding the ROI by 3
voxels from every edge of the brain when using traditional
postprocessing techniques. On the other hand, this edge-
related bias is reduced when using adaptive methods as shown
in Figure 3c. As expected, only 1 erosion from the brain mask
is necessary to remove the edge-related bias.

Figure 3.  Finite element model (FEM) simulations.  a. The true stiffness maps given to the FEM are shown on the left with
increasing atrophy from top to bottom. The corresponding elastograms are shown on the right after downsampling the wave images
to 3 mm resolution, calculating the curl, smoothing and calculating stiffness with a direct inversion algorithm. Voxels near the edge
of the brain provide underestimates of the true stiffness. Increasing atrophy causes a systematic bias toward underestimated
stiffness. b. Using traditional postprocessing methods, this bias can only be completely removed by eroding the ROI by 3 voxels
from every edge. c. Using adaptive postprocessing methods, the edge-related bias is removed after only 1 erosion of the ROI.
doi: 10.1371/journal.pone.0081668.g003
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Evaluation of SNR correction algorithm
Error was minimized by using the median of the most likely

SNRs as the summary metric. Using the median to summarize
SNR led to under-corrected stiffness values (i.e., positive
inversion errors), and using the mode resulted in over-
corrected stiffness values (i.e., negative inversion errors). The
inversion error as a function of region both with and without
SNR correction is shown in Figure 4a. The markers represent
the average error over the 30 scans (10 subjects, 3 repeated
scans), and the bars represent the range from a percentile of
2.5 to 97.5. In this data set, two ROIs had a significant
difference between stiffness calculated with the original data
(μ0) and stiffness calculated with the noise-added data (μn), as
well as a significant relationship between inversion error and
SNR (global and frontal lobes). One more ROI had only a
significant relationship between inversion error and SNR
(parietal lobes). However, these errors are small in absolute
terms as the largest average inversion error is 0.29%, or
equivalently in units of stiffness, 0.0093 kPa.

The SNR correction algorithm was also cross-validated in an
elderly cohort, which is summarized in Figure 4b. As above, the
error is decreased in every ROI by applying the SNR correction
algorithm. In this group, only one ROI had a significant
relationship between inversion error and SNR (parietal lobes).
No ROI demonstrated a significant difference between μ0 and
μn.

Regional brain stiffness measurement
Based on the above results we developed a pipeline to

measure regional brain stiffness, which is summarized in
Figure 5a. In our initial attempts to measure regional stiffness,
the full displacement field was used to calculate a single
elastogram that was then parceled into different ROIs to
measure regional stiffness. The downside to this approach is
that the elastogram is effectively a lowpass filtered image of the
true underlying stiffness, meaning the stiffness in a given
region will impact the stiffness calculated in any adjacent
region. Therefore, in the pipeline we have implemented, the
wave images are masked by the ROI as the very first step, and
unique curl images and elastograms are calculated for each
ROI. In this way, stiffness in a particular lobe is not only
resistant to partial volume effects from outside the brain but
also from neighboring regions of the brain. This process is
illustrated in Figure 5b. On top is an example MRE magnitude
image with the frontal lobe ROI outlined in green. Below that is
the ROI-specific curl image, followed by the ROI-specific
stiffness map. Note that this pipeline cannot be implemented in
all cohorts using non-adaptive processing methods, as 3
erosions from an atrophied brain mask will leave no voxels in
some ROIs. The edge-adaptive processing is thus a key step in
achieving highly reproducible regional stiffness estimates.

Example images for the global ROI are shown in Figure 6. A
T1 weighted image is shown in the top-left panel, while the
corresponding T2 weighted MRE magnitude image is shown in
the bottom-left. The top-center image shows the brain mask
generated from the T1 segmentations. The red voxels indicate
the full brain mask. Green voxels show the brain mask after 1
erosion and blue voxels show the brain mask after 3 erosions,

indicating how many voxels are saved by using adaptive
postprocessing methods. The regional assignment of each
voxel is shown in the bottom-center panel (red=frontal lobes,
green=occipital lobes, blue=parietal lobes, yellow=temporal
lobes, cyan=deep GM/WM). The curl wave image is shown in
the top-right panel, and the elastogram after 1 erosion is shown
in the bottom-right.

The repeatability of regional brain stiffness measurements is
summarized in Figure 7. Each region contains 10 columns
(corresponding to the 10 volunteers sorted by average global
stiffness), and each column contains 3 markers (corresponding
to the 3 MRE exams). The results indicate that the technique is
highly repeatable for measuring global brain stiffness with
median and maximum CVs of 0.67% and 1.11%, respectively.
The lobes of the brain, deep GM/WM and cerebellum regions
also indicate strong test-retest reliability with a median CV no
greater than 1.98% and a maximum CV no greater than 4.48%.
Table 2 summarizes the median stiffness, median ROI size (in
number of voxels), median CV and maximum CV for each
region. Since the subjects in this study were young volunteers,
we were also able to assess repeatability of regional brain
stiffness using traditional processing methods (requiring 3
erosions from the ROI to eliminate edge-related bias). The
average CV over the 10 subjects and the 7 ROIs was 1.35%
when using adaptive methods and 2.48% when using
traditional methods (p=1.8e-8, paired t-test).

We performed ANOVA for repeated measures, which
indicated significant differences both between individuals
(p<0.01) and between brain regions (p<0.001). Post hoc
comparisons indicated that stiffness in the parietal lobes and
cerebellum were both significantly different from all other
regions. In addition, frontal lobe stiffness versus deep GM/WM
stiffness met trend level significance (p<0.1). We also
calculated a correlation matrix to demonstrate the relationship
of stiffness between regions of the brain within an individual.
The results indicate that stiffness within the four lobes of the
brain track together (5 out of 6 correlations are significant at the
p<0.05 level), but stiffness within the deep GM/WM and the
cerebellum are independent of the rest of the brain (1 out of 9
correlations significant at the p<0.05 level).

Discussion

In this work, we presented novel MRE postprocessing
methods to measure regional brain stiffness. These techniques
are resistant to noise- and edge-related biases that are
common in the field, and reveal new insights into the
topographical distribution of the mechanical properties of the
brain in healthy control subjects.

The simulation data in this work provide a causal link
between brain geometry and biased stiffness measurements
when the ROI does not properly account for edge artifacts in
the elastogram. To fairly compare brain stiffness between
subjects in varying disease states, the processing methods
used must be resistant to changes in geometry such as those
presented in this work. As mentioned earlier, this bias due to
brain geometry is particularly important when investigating
diseases of the brain that are known to cause changes in brain
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Figure 4.  Effects of the SNR correction algorithm on noise-related bias.  a. Errors for the test-retest data are shown in the top
panel. The markers represent the average inversion error over all exams before (red) and after (blue) SNR correction, and the bars
represent the range from percentile 2.5 through 97.5 for each region (F=frontal lobes, O=occipital lobes, P=parietal lobes,
T=temporal lobes, D=deep GM/WM, C=cerebellum). Two ROIs had a significant difference between μ0 and μn, as well as a
significant relationship between inversion error and SNR (global and frontal). The parietal lobe ROI had only a significant
relationship between inversion error and SNR. The absolute value of the errors was decreased by the algorithm in every ROI and
the average error was never larger than 0.29%. b. For cross-validation, errors in the elderly cohort are shown in the bottom panel.
The parietal lobe ROI had a significant relationship between inversion error and SNR, but no ROI had significant differences
between μ0 and μn in this sample.
doi: 10.1371/journal.pone.0081668.g004
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morphometry (such as brain atrophy due to neurodegenerative
disease). A correlation between brain volume and MRE-based
stiffness measurements has been previously reported [3,19],
and without methods that are resistant to changes in geometry
it cannot be known whether that correlation is a reflection of
biologically driven changes in brain stiffness, edge artifacts in
the postprocessing, or likely some combination of both factors.
Furthermore, ROI selection must consider the resolution limits
of MRE. Measuring the stiffness within small structures will not
provide an accurate stiffness estimate without significantly
improved image resolution or further advancements in
postprocessing techniques to correct for edge artifacts.

With these findings in mind, we developed a novel MRE
pipeline to measure regional stiffness within the brain. This
pipeline uses adaptive processing methods to significantly
reduce the edge artifacts discussed above, thus saving most
edge voxels. Retaining as many edge voxels as possible may
be of critical importance for detecting biological signals. For
example, amyloid is deposited in the cortex in Alzheimer’s
disease and white matter injury occurs most frequently in the

periventricular regions, both of which are along the surface of
the brain.

These developed adaptive methods also improved the
reliability of regional brain stiffness measurement. This finding
can be explained by two factors. First, due to wave attenuation,
shear wave amplitude is strongest at the outer edge of the
brain and decreases as the waves propagate toward the center
the brain. Therefore, the average SNR within any ROI will be
increased by retaining these voxels near the edge that possess
the largest shear wave amplitude. Second, increasing the
number of samples in an ROI will improve test-retest reliability.
This concept is demonstrated in simulation results that are
summarized in Figure 8. In this simulation (true stiffness of 3
kPa at 60 Hz), the SNR is spatially varied and then
summarized by the median in sliding windows (3x3x3, 5x5x5 or
7x7x7). Each blue marker represents the median stiffness in
one of these sliding windows versus its median SNR. The red
lines represent the median value of those markers as a
function of SNR, while the green lines represent the 10th and
90th percentiles. Note that the median stiffness does not

Figure 5.  Summary of the regional MRE pipeline.  a. The steps for regional stiffness measurement are summarized in the left
panel. b. Example images are shown in right panel. At the top is the magnitude image from the MRE data with the frontal lobe ROI
outlined in green. Below that image is the ROI-specific wave image, followed by the ROI-specific elastogram.
doi: 10.1371/journal.pone.0081668.g005
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change with increasing ROI size (meaning there is no
systematic bias with ROI size), but the range of the stiffness
measurements decreases with increasing ROI size (meaning
the precision of stiffness measurement improves as the
number of voxels in the ROI increases).

In this work, we found a median global brain stiffness of 2.99
kPa at 60 Hz (range: 2.83 to 3.23 kPa) in young to middle aged
normal volunteers, which is in close agreement with the most
recent brain MRE literature. Johnson et al. scanned 3 young
volunteers to evaluate their newly developed mulitshot, spiral
EPI pulse sequence and reported an average shear modulus of
2.43+1.21i kPa in white matter at 50 Hz [20]. This complex

modulus corresponds to a shear stiffness of 2.86 kPa [14].
Streitberger et al. performed a multifrequency MRE study of
brain viscoelasticity using a two-parameter springpot model to
study chronic-progressive multiple sclerosis. In the younger of
their two control groups (most comparable to our subjects),
they reported a shear modulus of 3.545 kPa and an α value of
0.2928, which is a measure of how viscous or elastic the tissue
may be [3]. Evaluating their model at 60 Hz indicates a shear
modulus of 2.42+1.20i kPa, or a shear stiffness of 2.85 kPa.
Finally, Zhang et al. measured the shear modulus in both the
cerebrum and the cerebellum at 80 Hz in 8 subjects [21]. In the
cerebral WM they reported an average shear modulus of

Figure 6.  Example images of the global ROI.  A T1 weighted image is shown in the top-left, and the corresponding T2 weighted
magnitude image from the MRE data is shown in the bottom-left. In the top-center panel is the full brain mask in red, the brain mask
after 1 erosion in green and the brain mask after 3 erosions in blue. The difference between the green and blue masks indicates the
number of voxels saved by using adaptive methods while incurring no edge-related bias. In the bottom-center panel is the warped
atlas in MRE space (red=frontal lobes, green=occipital lobes, blue=parietal lobes, yellow=temporal lobes, cyan=deep GM/WM, the
global ROI is the union of all ROIs except for the cerebellum). The wave image is shown in the top-right panel, and the resulting
elastogram after 1 erosion is in the bottom-right panel.
doi: 10.1371/journal.pone.0081668.g006
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2.41+1.21i kPa (shear stiffness of 2.85 kPa), and in cerebellar
WM they reported a modulus of 1.85+1.10i kPa (shear stiffness
of 2.31 kPa). Relative to global stiffness, we likewise observed
lower stiffness in the cerebellum (median: 2.38 kPa, range:
2.32 to 2.44 kPa). We should note that the works outlined
above assume an isotropic material, which may introduce
errors particularly in the anisotropic white matter. These errors
may be reduced by using an anisotropic model to solve for
brain stiffness such as the method introduced by Romano et al.

[22]. Furthermore, the inversion used in this work assumes
linear elastic behavior. While the mechanical properties of the
brain are non-linear, the displacements and strains generated
by this method are so small (maximum shear displacements on
the order of tens of microns and maximum shear strains on the
order of tenths of a percent) that the effect of non-linear
behavior on the stiffness calculation is expected to be
negligible.

Figure 7.  Summary plot of the repeatability of regional brain stiffness measurements.  Each region contains 10 columns
(corresponding to the 10 volunteers sorted by average global stiffness) and each column contains 3 markers (corresponding to the 3
MRE exams). The results indicate high test-retest repeatability (summarized in Table 2).
doi: 10.1371/journal.pone.0081668.g007
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This work has provided new insights into the topographical
distribution of stiffness within the brain. Based on these results,
we observed that on average (considering the 4 lobes of the
brain), stiffness is greatest in the occipital lobes, followed by
temporal, then frontal (though stiffness was similar in these 3
regions) and finally the parietal lobes. Whether lobar variation
in stiffness is explained by fundamental brain architectural
differences at the lobar level is the subject of future
investigation. Perhaps more importantly, these methods will
allow us to investigate disease-related changes in brain
stiffness on a regional basis to demonstrate that brain stiffness

Table 2. Summary of repeatability data by region.

Regional

Median
stiffness
(kPa)  

Median ROI
size   (number
of voxels)

Median CV
(%)

Maximum CV
(%)

Global 2.99 27,153 0.67 1.11
Frontal lobes 3.15 8,413 1.27 2.18
Occipital lobes 3.21 2,474 1.25 3.08
Parietal lobes 2.87 4,313 1.11 2.44
Temporal lobes 3.17 4,914 1.41 2.03
Deep GM/WM 3.41 1,424 1.99 4.48
Cerebellum 2.38 3,431 1.14 2.33

doi: 10.1371/journal.pone.0081668.t002

is not only sensitive to biological processes but also offers
specificity (i.e., brain stiffness only changes in regions of the
brain known to be impacted by the disease), as has been
indicated by preliminary work on Alzheimer’s disease [11].

In conclusion, we used two types of simulations to
demonstrate how atrophy can bias MRE-based stiffness
measurements toward an underestimate of the true stiffness.
We then developed adaptive techniques to reduce these edge
artifacts. Using the simulations to test these methods, we
demonstrated that the edge-related bias can be eliminated by
eroding the ROI by only 1 voxel from the brain’s surface.
Finally, we used these methods to develop a pipeline to
measure regional brain stiffness in 10 healthy control subjects.
These results indicate high test-retest reliability, and also that
brain stiffness follows a characteristic topography.
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