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Abstract

Studies on coral communities have typically been conducted in shallow waters (,5 m). However, in the face of climate
change, and as shallow coral communities become degraded, a greater understanding of deeper coral communities is
needed as they become the main reef remnants, playing a central role in the future of coral reefs. To understand the
dynamics of deeper coral assemblages, the recruitment and taxonomic composition of different life-stages at 5 and 15 m
depths were compared at three locations in Lyudao, southeastern Taiwan in 2010. Coral recruits (,1 cm diameter, ,4
months old) were examined using settlement plates. Juvenile corals (1–5 cm, several years old) were examined with
quadrats, and adult corals (.5 cm, several years to decades old) were examined using transect lines. Pocilloporid and
poritid corals had similar and higher numbers of recruits at 5 m compared to 15 m, whereas acroporid recruits were more
abundant at 15 m. The primary cause for the former may be larval behavior, such that they position themselves in shallow
waters, while that for the latter may be the dominance of brooding acroporid species (Isopora spp.) at 15 m. The taxonomic
composition, especially between recruits and juveniles/adults, was more similar at 15 m than at 5 m. These results suggest a
change in the relative importance of pre- and post-settlement processes in assemblage determinants with depth; coral
assemblages in shallow habitats (more disturbed) are more influenced by post-settlement processes (mortality events),
while those in deeper habitats (more protected) are more influenced by pre-settlement processes (larval supply).
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Introduction

Many coral communities have deteriorated as a result of various

anthropogenic disturbances, including climate change, and further

change is predicted in the future [1,2]. This ongoing trend of

deterioration, mainly observed in shallow coral communities, has

directed the attention of researchers to deeper coral communities,

which are thought to inhabit less disturbed conditions [3–6] and

are therefore likely to survive better in an increasingly hostile

environment in the future [7–10]. If this prediction is true, deeper

coral communities would become the main remnants of future

coral reefs, playing a more central role than degraded shallow

coral communities, and may also serve as a source of coral recruits

for the recovery of shallow coral communities [7,9,10]. Despite a

growing need for information concerning deeper coral communi-

ties, this knowledge is limited since coral studies have mainly been

conducted in shallow waters (,5 m) [10]. Therefore, information

on deeper coral communities is valuable, especially information

related to their dynamics and interactions between shallow and

deep corals.

With recent advances in deep-water survey technologies, new

studies of deeper coral communities have begun. However, most

of these studies are focusing on ‘‘mesophotic coral communities’’

that occur deeper than 30 m [8,10], and studies of coral

communities on reef slopes at 10–30 m depth have not been

given equal attention. Given the dramatic change in environmen-

tal gradients in the upper 10–20 m of water, especially regarding

light intensity and wave action, and associated biotic/abiotic

changes with depth (e.g., movement of sand gravels, algal

abundance, herbivores and coral growth) [3–5,11,12], the

dynamics of deeper coral communities (10–30 m) cannot be

assumed to be the same as those of shallow coral communities

(,5 m). In fact, coral assemblages at 10–30 m depth possess the

highest coral diversity, presumably due to the less disturbed

conditions, lower competition for space and sufficient larval supply

[4].

The objective of this study was to investigate the recruitment

process of deeper coral assemblages to understand their dynamics

at Lyudao, southeastern Taiwan. Coral recruitment was examined

using settlement plates at 5 m and 15 m depth. Data on the

taxonomic composition of juvenile (1–5 cm) and adult corals

(.5 cm) were also collected to examine changes in assemblage

structure among different life stages (recruits, juveniles and adults).

In Southeast Asia, coral recruitment patterns in deeper water

(.10 m) have been measured in only a single location (Okinawa,

Japan) [13–15], and most studies at similar depths have been

undertaken in other regions of the world [6,12,16–23]. The

aforementioned studies generally found a higher density of coral

recruits at 10–20 m, and argued the importance of the pre-
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settlement process (larval supply) in relation to the richer coral

assemblages at this depth range [4]. In the present study, we

observed that coral recruitment varied with depth and that this

variation also differed among coral taxa. We also found that

similarities in taxonomic composition among the three life-stages

varied with depth, and argue that the relative importance of pre-

and post-settlement processes in assemblage determinants may

vary with depth.

Materials and Methods

Study site
This study was conducted in 2010 at 5 m and 15 m depth on

reef slopes at three locations (Chai-kou, Guei-wan, You-zi-hu)

around Lyudao (Green Island), southeastern Taiwan (Fig. 1).

Permits for this study were granted by Taitung county govern-

ment. At each depth/site combination, surveys were performed in

an area of ,50650 m. Lyudao is an offshore islet located in the

middle of the Kuroshio Current [24] that may transport various

marine organisms, including coral larvae, from the up-current

coral triangle area. Lyudao is surrounded by clear water, and has

well-developed fringing reefs to ,30 m depth containing approx-

imately 250 scleractinian coral species [25]. Several tropical

typhoons pass through the vicinity of Lyudao every year, causing

significant disturbance of its marine biota [26,27].

Coral recruitment survey
Settlement plates with a ‘‘refuge structure’’ were used to assess

coral recruitment. Although settlement plates have been used in

coral recruitment studies since the 1970s, most settlement plates

have consisted of flat surfaces [except 23], without refuge

structures like crevices, pits, and grooves. These substrata often

result in no or low recruitment on exposed, upward plate surfaces

most likely due to grazing by herbivores [22,28,29]. Previous

studies that examined settlement plates with refuges found more

coral recruits with a higher taxonomic diversity compared to the

traditional settlement plates with plain surfaces [[30,31], Nozawa,

Y. unpublished data]. As coral species with small-sized and/or

slow-growing recruits are predicted to depend more heavily on

refuge structure for post-settlement survival [32], the use of

settlement plates with refuges is expected to provide less biased

and more artifact-free results in comparison with a plain

substratum which is uncommon in coral reef habitats. For this

study, we used commercially available unglazed terracotta plates

(10 cm610 cm62 cm) with two grooved surfaces (14 grooves

surface21, groove size: 5 mm wide, 100 mm long, 2 mm deep).

The dimensions of the refuge structure on the settlement plates

were determined according to Nozawa [33]. By using settlement

plates with refuges in this study, we had more numerous and

taxonomically diverse coral recruits than in a previous study using

plain settlement plates conducted at the same location [34].

At each depth/site combination, 15–18 settlement plates were

deployed haphazardly. Settlement plates were fixed to the sea

bottom a few centimeters above the substrata using stainless bolts

and nuts. To avoid sediment deposition filling the refuges on plate

surfaces and negating their effect [28], settlement plates were fixed

at an angle of ,45u to the bottom.

Settlement plates were deployed in early April, approximately 2

to 3 weeks before the main coral spawning period (April–June)

[[35], Y. Nozawa unpublished data] in order to biologically

condition the plate surfaces. Settlement plates were retrieved 4

months later to cover the main period of coral recruitment

predicted for southern Taiwan. The number of settlement plates

retrieved at the 5 m and 15 m sites was as follows, respectively: for

Guei-wan, 17 and 18; for Chai-kou, 15 and 15; for You-zi-hu, 16

and 16. Environmental data (temperature and light intensity

depth21 site21) were collected during the period in which

settlement plates were deployed in 2010, using HOBO pendant

temperature/light data loggers (Onset Computer Corp., USA).

Retrieved settlement plates were soaked in a dilute chlorine bleach

to remove algae and soft-bodied epibenthos. Coral recruits

(skeletons) on the top and bottom plate surfaces were counted

under a stereomicroscope and taxonomically identified into four

family groups (Acroporidae, Pocilloporidae, Poritidae, and others)

according to Babcock et al. [36].

Coral juvenile and adult assemblage survey
Coral juvenile and adult assemblage surveys were performed in

the same areas used for the deployment of settlement plates at 5 m

and 15 m depths at the three sites. Quadrats (25 cm625 cm) were

used to assess juvenile corals. At each depth/site combination, 28–

71 quadrats were haphazardly placed on rocky substrata. Juvenile

corals (1–5 cm in diameter) that appeared in the quadrats were

photographed with a scale and taxonomically identified later.

Adult coral (.5 cm in diameter) surveys were performed using a

line intercept method with 10-m lines. At each depth, six transects

were placed haphazardly along the depth contour. All scleractin-

ian corals below the lines were photographed along with the line

and a scale and taxonomically identified later. For each individual,

the length of the individual that was intercepted by the line was

measured to obtain a cover estimate, and the maximum width of

the individual perpendicular to the line was measured for the

density estimate [37]. Density was calculated using the following

equation:

D̂D~
1

L

� �Xk

i~1

1

Wi

� �

where D̂D = estimate of population density, L = length of all lines

combined, Wi = perpendicular width of individuals intersected,

k = the total number of individuals intercepted on all lines. We

Figure 1. Study location. Coral assemblages at 5 m and 15 m were
examined at three locations (Chai-kou, Guei-wan, You-zi-hu) around
Lyudao (Green Island), Taiwan in 2010.
doi:10.1371/journal.pone.0081474.g001
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separated taxa of juveniles and adult corals into the four family

groups (Acroporidae, Pocilloporidae, Poritidae and others), in

which the genus Alveopora was allocated to Acroporidae following a

recent taxonomic revision [38].

Environmental conditions
Seawater temperature and light intensity were measured at 5 m

and 15 m depths during the major recruitment season (April–July)

in 2010 (Fig. 2). The temperature was higher at 5 m, and the

maximum temperature difference between the two depths reached

up to 5uC. However, in most cases (.85% of data), the

temperature difference was ,1uC. The median (25th and 75th

percentiles) of the temperature difference was 0.4uC (0.1,0.7) in

Chai-kou, 0uC (20.1,0.2) in Guei-wan and 0.2uC (0.1,0.5) in

You-zi-hu. Light intensities at 15 m (max; 4–56104 lx) were about

four to five times lower than those at 5 m (,16104 lx).

Statistical analysis
The number of coral recruits per settlement plate (recruits on

top and bottom surfaces were pooled) was analyzed using a

generalized linear model (GLM) with a Poisson error distribution

by the glm function in R (version 3.0.0) [39]. In the GLM, sites

and depths were treated as a fixed factor. Pairwise post-hoc

comparisons were performed with a Tukey test using the glht

function in the package multcomp (version 1.2–17) in R. The same

statistical analyses were applied for acroporid, pocilloporid and

poritid recruits, respectively.

Similarities in taxonomic composition between coral recruits,

juveniles and adult assemblages at 5 m and 15 m were visualized

using non-metric multidimensional scaling (MDS) based on Bray–

Curtis similarity coefficients with relative density data. A one-way

analysis of similarity (ANOSIM) was conducted to determine the

significance of any observed differences in taxonomic composition

between the three life-stages at each depth [40]. The MDS

analysis and ANOSIM test were performed using Primer software,

version 6 (Primer-E Ltd, Plymouth, UK).

Results

Coral recruitment
Results on the number of coral recruits per settlement plate are

summarized in Figure 3. Of the 97 settlement plates retrieved,

most settlement plates (.80%) had more coral recruits on the

upward plate surfaces. Among the three sites, You-zi-hu generally

had the highest number of recruits, followed by Guei-wan and

Chai-kou, in the four recruit categories examined (Fig. 3).

Comparison between the two depths (5 m and 15 m) revealed

no significant difference in the total number of recruits at Chai-

kou and You-zi-hu; however, at Guei-wan more recruits were

observed at 15 m (GLM: p,0.001). In the family level analyses, a

higher number of acroporid recruits was recorded at 15 m at all

three sites (GLM: p,0.001), whereas a higher number of

pocilloporid and poritid recruits was recorded at 5 m in Chai-

kou and You-zi-hu (GLM: p,0.001); the number of these recruits

at Guei-wan was similar at both depths.

Figure 2. Environmental condition. Seawater temperature and light intensity were monitored in 2010 at the 5 m (red) and the 15 m (blue) sites
at three study locations (Chai-kou, Guei-wan, You-zi-hu). For temperature, data were obtained during the 4-month deployment of the settlement
plates for the coral recruitment surveys. Absolute differences in temperatures between the 5 m and the 15 m sites are shown below the
temperatures. For light intensity, data from the first 3 weeks of the deployment period are shown as the values then gradually declined due to the
gradual coverage of the sensor component of the loggers by benthic organisms. Data for Chai-kou started from May due to the loss of initial data-
loggers in April.
doi:10.1371/journal.pone.0081474.g002
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Taxonomic composition of recruits and later life stages
Relative abundance data (in density) showed that the dominant

recruit groups at 5 m were pocilloporids and poritids (ca. 80% of

recruits), whereas those at 15 m were acroporids (48–65%),

followed by pocilloporids (12–38%) (Fig. 4A). In comparison with

those of juvenile and adult corals, a distinct difference was

observed between the recruit and juvenile stages at 5 m, followed

by more moderate changes between the juvenile and adult stages.

The overall trend at 5 m was that, from the recruit to adult stages,

the proportions of pocilloporids and poritids decreased, while

those of acroporids and others increased. In contrast, at 15 m, the

composition was more similar between the three life-stages,

especially at Guei-wan. This observation was supported by the

MDS plot of the relative density data, which showed two distinct

groups, i.e., coral recruits at 5 m and others (Fig. 4B). Within the

group of others, recruits at 15 m were also grouped together, and

juvenile and adult assemblages at 15 m were located closer

together (i.e., were more similar) than those at 5 m. The ANOSIM

results showed a significant difference among the three life-stages

at both 5 m and 15 m with a larger R statistic value (i.e., larger

difference) at 5 m (5 m: R = 0.745, p,0.01; 15 m: R = 0.407,

p,0.05).

Discussion

Recruitment patterns and water depth
Densities of coral recruits were similar at the 5 m and 15 m

sites. However, when data were partitioned by family, family-level

analyses revealed variations in recruitment patterns between

depths. Most acroporid recruits occurred at 15 m depth, while a

similar number or more pocilloporid and poritid recruits occurred

at 5 m depth.

Isopora species that release planula larvae (i.e., brooders)

dominated adult acroporid assemblages at 15 m depth (16–58%

of acroporids), and their densities (1–7.6 m22) were 5–19 times

higher than those at 5 m depth (0.2–0.7 m22). This result would

largely account for the higher number of acroporid recruits at the

15 m sites, assuming that many were Isopora recruits, because a

strong correlation between density of adults and recruits is

common in brooding corals [30,41,42].

In contrast, the higher recruitment densities of pocilloporids and

poritids at 5 m could not be explained by adult distribution as

densities were similar at both depths [0.6–3.2 m22 (5 m) and 0.2–

3.5 m22 (15 m) for Pocilloporidae, 1.7–6.8 m22 (5 m) and 1.6–

4.2 m22 (15 m) for Poritidae], and the dominant species of the two

families were spawners in Lyudao (Pocillopora verrucosa, P. eydouxi

Figure 3. Coral recruits at two depths. The numbers of coral recruits per settlement plate at the 5 m (open circle) and the 15 m sites (closed
circle) are shown. The horizontal bar denotes the median. The data were analyzed using a generalized linear model (see the method section for
details), and results with a significant difference are highlighted with a grey background (p,0.001). Results on the comparison of recruit numbers
between the sites are also presented for each taxonomic group below the heading; CK = Chai-kou, GW = Guei-wan, YZH = You-zi-hu; *** p,0.001, *
p,0.05.
doi:10.1371/journal.pone.0081474.g003
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Figure 4. Taxonomic composition of three life-stages at two depths. A) Relative densities of the three dominant families at three life-stages
(recruits, juveniles and adults) are shown for the 5 m (above) and 15 m sites (below) at three locations. The number on the left-hand side of each bar
denotes the density (m22). B) Multi-dimensional scaling (MDS) ordination, based on Bray–Curtis similarity coefficients, for the relative density data in
Fig. 4A. Juvenile and adult stages of each site are connected by a dashed line. Data for the 5 m sites are shown in red, and data for the 15 m sites are
in blue. CK = Chai-kou, GW = Guei-wan, YZH = You-zi-hu.
doi:10.1371/journal.pone.0081474.g004
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and massive Porites spp.; Y. Nozawa, unpublished data). A

potential cause of the recruitment patterns with depth may be

larval behavior. Previous studies have reported positive phototaxis

and/or negative geotaxis in planula larvae of several coral species,

including two pocilloporid species, P. damicornis and Seriatopora

hystrix [43–46]. With a rapid reduction in light intensity with

depth, the larval swimming behavior could have created a negative

depth gradient in larval supply, enhancing recruitment at the

shallow sites [44]. Planula larvae of some coral species are also

known to show depth-dependent settlement behavior in response

to benthic communities [15,47] and a certain light environment

[48–50]. Similarly, it is possible that the larval behavior of

acroporids, in addition to the depth gradient of adult Isopora

density, influenced their recruitment pattern (either enhancing or

weakening it).

As an alternative explanation, variation in recruit mortality with

depth could have created the same recruitment patterns for the

three dominant families. However, this explanation is less likely

because previous studies rejected the hypothesis of different

mortality between depths (0–11 m) [14,48,51]. A recent genetic

study also supported the larval behavior hypothesis, demonstrating

some evidence of larval migration from deep to shallow habitats in

S. hystrix [7].

The pattern of higher recruitment of pocilloporids and poritids

at shallow sites (,6 m) has also been reported by several previous

studies [21,23] but many found higher recruitment at 10–20 m

[16–19,52]. These studies attributed the decline in recruits at

shallow depths to higher post-settlement mortality caused by

intense grazing of herbivores [cf. 22]. Of these studies, Wallace

[23] and the present study are the only studies using settlement

substrata with refuges that protect coral recruits from grazers,

while others used plain settlement plates. It is therefore likely that

the decline in recruits at shallow sites was caused by an absence of

refuge structure on the settlement substrata used in previous

studies [28,30,31, Y. Nozawa, unpublished data]. Given the

complex surface structure seen on natural substrata in coral reef

habitats, the recruitment pattern detected by settlement substrata

with refuges may better reflect natural patterns.

Assemblage determinants and water depth
Previous studies have demonstrated the importance of pre- and

post-settlement processes in determining coral assemblage struc-

ture [4,5,13–16,44,47,51,53–56]. In the present study, we found

that the relative importance of pre- and post-settlement processes

changed with depth in coral assemblages. At the shallow sites, the

large change in assemblage structures among the three life-stages,

especially when comparing recruits and juveniles, suggested that

post-settlement processes (mortality events) had a strong influence,

whereas at the deep sites, the less prominent difference among the

life-stages suggested a prevalence of pre-settlement processes

(larval supply and behavior).

Higher disturbance frequencies and competition in shallower

habitats are common on most reefs [5,12,16,44,55], and are

attributed to the fact that the richest coral species-diversity occurs

at 10–30 m [4]. In Taiwan, typhoons are generally the most

serious natural disturbance affecting shallow reefs, and three to

four typhoons typically impact the study locations each year

[26,27]. Strong wave action created by typhoons causes serious

damage to shallower coral assemblages [27,53,57]. In particular,

the movement of sand gravels that wear down coral tissues during

typhoons and smother coral recruits and juveniles after typhoons

has been implicated in the high coral mortality of early life-stages

in shallow reef habitats [5,53,58]. In Lyudao, the 5 m sites were

dominated by encrusting acroporid corals (mainly Montipora spp.)

and domed faviid corals, while various other corals inhabited the

15 m sites, including tabular and branching corals. As the

disappearance of non-encrusting corals from shallow habitats is

commonly observed after typhoons [[59], Nozawa, Y. unpublished

data], the success of the dominant coral taxa at the 5 m sites in

Lyudao may largely be attributable to the frequent typhoon

disturbance typical in Taiwanese waters.

Connell et al. [53] concluded that ‘‘the dynamics of coral

assemblages can be understood through the variation in types and

scales of disturbances and other ecological processes where

disturbances are rare’’. This may be applicable to the dynamics

of coral assemblages at different depths, which are exposed to a

negative depth gradient of disturbance, and may explain the

change with depth in assemblage determinants. Although this

observed change in assemblage determinants with depth may be a

generality at most reef sites, as the negative depth gradient of

disturbance is a general pattern [4], the conclusion of Connell et

al. [53] also suggests that the relative importance of pre- and post-

settlement processes at each depth may vary (i.e., are not fixed),

depending on the variation in type and scale of disturbance. When

(and where) disturbances reach deeper habitats, the influence of

post-settlement mortality may prevail over depth, and vice versa.
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