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Abstract

We examined rates of N, fixation from the surface to 2000 m depth in the Eastern Tropical South Pacific (ETSP) during El
Nifo (2010) and La Ninha (2011). Replicated vertical profiles performed under oxygen-free conditions show that N, fixation
takes place both in euphotic and aphotic waters, with rates reaching 155 to 509 umol N m~2 d™" in 2010 and 24*14 to
118+87 umol N m 2d "' in 2011. In the aphotic layers, volumetric N, fixation rates were relatively low
(<1.00 nmol N L=" d™"), but when integrated over the whole aphotic layer, they accounted for 87-90% of total rates
(euphotic+aphotic) for the two cruises. Phylogenetic studies performed in microcosms experiments confirm the presence of
diazotrophs in the deep waters of the Oxygen Minimum Zone (OMZ), which were comprised of non-cyanobacterial
diazotrophs affiliated with nifH clusters 1K (predominantly comprised of a-proteobacteria), 1G (predominantly comprised of
y-proteobacteria), and 3 (sulfate reducing genera of the &-proteobacteria and Clostridium spp., Vibrio spp.). Organic and
inorganic nutrient addition bioassays revealed that amino acids significantly stimulated N, fixation in the core of the OMZ at
all stations tested and as did simple carbohydrates at stations located nearest the coast of Peru/Chile. The episodic supply of
these substrates from upper layers are hypothesized to explain the observed variability of N, fixation in the ETSP.
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Introduction widespread in the tropical ocean and has a macroscopic growth
form [4], may fix from 60 [5] to 80 Tg of N per year [6]. Until the
last decade, this organism was the focus of the bulk of research as it
is conspicuous and easily collected [4]. However, since then,
studies of the abundance and diversity of the nifl{ gene required
for N, fixation have elucidated the importance of unicellular pico-

The efficiency of oceanic carbon (C) sequestration depends
upon many factors, among which is the availability of nutrients to
support phytoplankton growth in the illuminated surface ocean. In
particular, large amounts of nitrogen (N) are required, as it is an
essential component of proteins, nucleic acids and other cellular
constituents. Dissolved N in the form of nitrate (NO3; ) or
ammonium (NH,") is directly usable for growth, but concentra-
tions of fixed N are low (<1 umol I.™!) and often growth-limiting
in most of the open ocean euphotic zone [1]. Dinitrogen (Ny) gas
dissolved in seawater, on the other hand, is very abundant in the
euphotic zone (ca. 450 umol L™!) and could constitute a nearly
inexhaustible N source for the marine biota. However, only

and nano-planktonic cyanobacteria [7,8], extending the geograph-
ical extent of diazotrophy beyond tropical waters [9], and
potentially narrowing the gap between direct measurements and
geochemically-based global marine N fixation rates [5]. These
molecular tools have also revealed the presence of putative non-
cyanobacterial diazotrophs (possessing and potentially expressing
the nifH{ gene) in diverse aquatic environments [10], including
surface seawater, hydrothermal vents and lakes [11] and
references therein). In marine waters, these diazotrophs seem to
be almost ubiquitous [12], but few studies e.g. [13,14] have
focused on these non-cyanobacterial diazotrophs, and our
knowledge of their distribution in the ocean and their biogeo-

certain prokaryotic ‘No-fixers’ (or diazotrophs) are able to use this
N source since they can break the triple bond between the two N
atoms of the Ny molecule, and convert it into a usable form (i.e.
NH3;) for assimilation.

The focus of much recent marine Ny fixation research has been chemical importance for the marine N budget is still very limited.
on the NOs -poor environments of the surface tropical ocean,
where it may sustain up to 50% of ‘new’ primary production [2,3].
The filamentous cyanobacterium Trichodesmium spp., which is

The N budget for the global ocean is poorly constrained, with
some suggestions that sinks (denitrification and anammox) exceed
sources (No fixation) [15]. The high energy and iron (Fe)
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requirements [16,17] of the Ny fixation reaction have implied that
this process occurs mainly in the large oligotrophic areas of the
ocean that are depleted in fixed N, and where fixing Ny gives an
ecological advantage. This may be particularly the case in areas
which receive high Fe-rich Saharan dust such as the North
Atlantic [18], or which are under the influence of terrigenous and
submarine Fe sources, such as the North Pacific near Hawaii
[19,20] or the South West Pacific [20,21,22,23]. However, recent
studies [24,25] have hypothesized that Ny fixation might also be
associated with denitrified surface waters over oxygen minimum
zones (OMZs), which have measureable NO5 , but are depleted
in N relative to phosphorus (P). This hypothesis has been recently
confirmed in the coastal surface waters of the Peruvian-Chilean
upwelling [26,27] as well as throughout the eastern tropical South
Pacific Ocean (ETSP) [28], where depth-integrated rates over the
upper water column were comparable to those found in
subtropical gyres. niyfHH sequences recovered from these areas
within the upper 200 m of the ocean were mostly non-
cyanobacterial and clustered with known heterotrophic sequences
[26]. This led us to explore Ny fixation in the aphotic zone of the
ETSP.

Previous studies conducted in surface waters of the ETSP
indicated that Ny fixation was highly variable in space and time,
with depth-integrated rates varying from 10- to 30-fold between
cruises performed at the same locations [26,28]. Although the
activities of heterotrophic diazotrophs might potentially be
contributing to this high temporal variability, very few studies
have examined the regulation of Ny fixation by heterotrophic
bacteria in marine waters. Organic C availability has been
hypothesized to control marine heterotrophic Ny fixation [29] as a
consequence of the high energy requirements of the reaction, but,
to our knowledge, the effect of organic molecules on heterotrophic
N fixation has never been studied in OMZs.

In this study, we investigated Ny, fixation along a transect across
the ETSP in 2010 and 2011 through temperature, oxygen and
nutrient gradients. We quantified Ny, fixation throughout the 0 to
2000 m depth range in order to evaluate its potential biogeo-
chemical impact on the marine N budget, and we conducted
aphotic nutrient addition bioassays in the core of the aphotic
OMZ in order to investigate which nutrients might control Ny
fixation in this environment. We also phylogenetically character-
ized the diazotrophs community composition in the core of the
OMZ and how it responded to some of the nutrient amendments.

Methods

Our research was carried out during two cruises in the ETSP,
aboard the R/V Atlantis in February and March 2010, and the
R/V Melville in March and April 2011. Experiments were
performed along a transect that began in northern Chile and ran
west along 20°S, from the nutrient-rich waters at 82°W to the
more oligotrophic and low-NO3~ waters at 100°W, and returned
along 10°S (Fig. 1). No specific permissions were required for these
locations/activities as both cruises took place in international
waters. This study did not involve endangered or protected
species. The coastal waters of this region of the ETSP are
characterized by a permanent wind-driven upwelling of cool
nutrient-replete water (Fig. 1), which supports high primary
productivity and a persistent subsurface OMZ, where Oq
concentrations are low enough to induce the anaerobic processes
of the N cycle, such as denitrification and anammox [30,31,32].
These Og-deficient waters are carried by Eckman transport
westward beyond the limit of our transect. The ETSP is subjected
to the inter-annual climactic variability of the El Nifio-Southern
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Oscillation (ENSO), which modulates the strength of the
upwelling. The 2010 cruise took place during an El Nifio event
(Multivariate ENSO index: 1.52) and the 2011 cruise during a La
Nifia event (Mutivariate ENSO index: —1.49) [NOAA Climate
Diagnostics Center, Wolter and Timlin (1993, 1998); data from
http://www.esrl.noaa.gov/psd/enso/mei.table.html].

Hydrographic and nutrient measurements

Hydrographic and nutrient measurements were performed at 6
stations in 2010 and 7 stations in 2011 (Fig. 1). Vertical profiles of
temperature, chlorophyll «, fluorescence and dissolved oxygen
were obtained using a Seabird 911 plus C'TD equipped with a
model 43 oxygen sensor and a Wetlabs ECO-AFL/FL chlorophyll
fluorometer. Oxygen values were calibrated by micro-Winkler
[33]. Seawater samples were collected at selected depths using a
rosette equipped with 24 12-L Niskin bottles. Samples for
inorganic nutrient (NO3~ and PO,*” concentrations) analyses
were collected in acid-washed 20-mL plastic bottles. Nutrient
concentrations were determined using standard colorimetric
techniques [34] on a Bran Luebbe AA3 autoanalyzer. Detection
limits for the procedures were 0.02 to 0.52 pmol L™ for NO,
[nitrite (NO, }+NO3 "] and 0.005 to 0.083 pmol L™" for PO,*~.

Vertical profiles of N, fixation

Rates of N, fixation were measured using the N, tracer
method [35]. Water samples were dispensed into acid-leached
4.5-L polycarbonate bottles. During the 2010 cruise, this work was
exploratory and unreplicated (except for nutrient addition
bioassays, see below) measurements were made at 12 to 14 depths
between the surface and 2000 m at stations 1, 9 and 11. During
the 2011 cruise, samples were collected at stations 1, 5, 6, 7, 9 and
11 in triplicates at 12 depths between the surface and 2000 m,
with a specific focus on Oy gradients. Depths were chosen in order
to sample the oxycline, at least 3 depths within the core of the
OMZ, as well as an additional 3 within the second increasing
oxygen concentrations below the OMZ. Most of these depths were
located in the aphotic zone.

On both cruises, specific care was taken to avoid Og
contamination and to perform incubations under strict oxygen-
free conditions as described in [36]. Briefly, before each profile,
the 36 4.5-L bottles were filled with deionized water, then the
deionized water was flushed with argon and finally filled with
seawater via tubing into the bottom of the argon-filled bottles to
minimize gas exchange. Bottles were then closed with septa and
spiked with 3 mL "N, (99 atom % EURISO-TOP) via a gas-tight
syringe. Each bottle was shaken 30 times to fragment the '°N,
bubble and facilitate its dissolution. Recent work has suggested
that with this method, there may be incomplete equilibration of
the added '°Nj gas bubble with the seawater sample, resulting in a
dissolved '°Nj concentration in the sample that is lower than the
equilibrium value assumed in the calculation of '°Nj fixation rates
[37]. This may lead to a potential underestimate of Ny fixation
rates [38,39]. Therefore, the values given in the present study
should be considered as minimum estimates (discussed below).
Bottles were then incubated either in on-deck incubators at
irradiances specific from the sampling depth using blue screening
and cooled with circulating surface seawater (photic samples), or in
dark rooms at 12°C or 5°C depending of the sampling depth. After
incubation, the triplicate bottles from each depth were filtered
onto precombusted (4 h at 450°C) 25-mm GF/F filters. Filters
were stored at —20°C until the end of the cruise, then dried for
24 h at 60°C and stored dry until mass spectrometric analysis.
During the 2011 cruise, an extra 4.5-L bottle was collected at each
depth of the profile, spiked with '°N, and immediately filtered in
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Figure 1. Location of stations superimposed upon seawater temperature at 75-m-depth. (A) the 2010 cruise (R/V Atlantis), and (B) the
2011 cruise (R/V Melville). Station numbering are identical to that of 2 companion papers [28,42]).

doi:10.1371/journal.pone.0081265.g001

order to determine the initial background 8'°N in the particulate
organic N (PON) for calculations of Ny fixation rates. During the
2010 cruise, the value of 8'°N in air (0.00366) was used as a
reference value for these calculations, which may introduce a
potential bias, except at Station 1 where °N atom % of the PON
at depth was available.

Nutrient addition bioassays in the core of the OMZ
Nutrient addition bioassays of Ny fixation were performed at
one single depth in the core of the OMZ (based on Oy-CTD
profiles) at 3 stations (Stations 5, 7 and 11, between 140- and 450-
m depth) during the 2010 cruise and at 6 stations (Stations 1, 5, 6,
7, 9 and 11, between 320- and 475-m depth-) during the 2011
cruise. All experiments were performed in triplicate and under
strict oxygen-free conditions (using the argon flushing method
described above) to avoid inhibition of Ny fixation by oxygen.
Immediately after collection, bottles were capped with septa and
amended with nutrients via syringes. During the 2010 cruise, at
cach of the 3 stations, triplicate bottles were left as unamended
controls, and a second set of bottles was amended with glucose
to obtain a final concentration of 10 umol L', During the
2011 cruise, triplicate bottles were left as unamended controls,
and a second set of triplicate bottles was amended with a mixture
of three simple carbohydrate substrates (39% glucose, 29%
acetate and 32% pyruvate, final total concentration of 1 pumol
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carbohydrate L-1) to test the effect of a source of dissolved organic
C (DOC) on Ny fixation. A third set was amended with a mixture
of three amino acids as a source of both DOC and dissolved
organic N (DON) (20% leucine, 23% glutamic acid and 56%
alanine) to reach a final concentration of 1 pmol amino acids L.
The proportion of each carbohydrate and amino-acid has been
chosen in order to add the same quantity of organic C in the two
treatments (4 pmol L™"). A fourth set was amended with ATP
(source of dissolved organic P, DOP) to reach a final concentration
of 1 nmol L™!, and a fifth set was amended with 8 pmol L™" of
NOs;™ to test its potential inhibitory effect on heterotrophic Ny
fixation. Bottles were then incubated in a dark cold room at 12°C
for 24 h in order to leave enough time to induce any potential
nutrient stimulation. After 24 h, all bottles were spiked with '*Ny
as described above, and incubation was continued under the same
conditions for an additional 24 h. At the end of each incubation,
the three treatments and control replicates were filtered as
described above in order to measure N, fixation rates, and
amplification of the nifl{ gene (2010 only). Samples were also
collected from bottles sacrificed at time zero in order to quantify
background NOy and PO,>” concentrations at every station. NOy
concentrations were also measured just after the NO3~ additions
in order to confirm the added concentrations at the beginning of
the incubations (data not shown).
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Mass spectrometric analyses

The isotopic enrichment of particulate N after the incubation of
seawater with >Ny was measured by continuous flow isotope ratio
mass spectrometry of pelletized filters (Europa Integra-CN),
calibrated every 10 samples using reference material (International
Atomic Energy Agency [AIEA], Analytical Quality Control
Services). The linearity of '’N atom % as a function of increasing
sample PON mass was verified as detailed in [40] on both
natural and "’N enriched material. This step is critical in ultra-
oligotrophic environments or deep waters, where suspended PON
concentrations are low. "N atom % was lincar (Fisher test,
p<<0.01) between 0.20 and 39 umol N, which is within the range
of PON measured in all of our samples (0.27 to 4.91 umole N
depending on the station and depth).

Detection and quantification limits for particulate N were
calculated daily, as 3 times and 10 times the standard deviation of
N analysis of blanks, respectively. Detection limits ranged from
0.10 to 0.17 umole N, and quantification limits ranged from 0.13
to 0.26 pmole N, depending on the station. The "N isotope
enrichment of a sample was calculated using the "N atom %
excess over the "N atom % in samples taken from the same
station at time zero, which was determined on bottles filtered
immediately after adding '°N,. We considered the results to be
significant when '°N excess enrichments were greater than $ times
the standard deviation obtained with ten AIEA references (*°N
atom % >>0.0005). The quantification limit of Ny fixation in this
study was 0.01 nmol ™' d™". If only one of the 3 replicate
measurements was quantifiable, the average of the 3 replicates was
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forced equal to zero, in order to provide minimum estimates of Ny
fixation.

In order to determine areal rates, Ny fixation measurements
were trapezoidally depth-integrated from the summed products of
the average of two adjacent rate measurements (including those
equal to zero) with the depth interval between them. The standard
deviation on the triplicates (2011 cruise) was also used for a
trapezoidally depth-integration in order to obtain the standard
deviation on integrated rates.

Statistical analysis

Controls and experimental nutrient treatments were compared
using a 2-tailed non parametric Mann-Whitney mean comparison
test (n=3, o =0.05, unpaired samples).

Phylogenetic characterization of diazotrophs

In order to characterize the potential diazotrophs present in the
core of the OMZ that responded to the addition of glucose, nucleic
acid samples were collected from triplicate bioassays during the
2010 cruise for amplification of the nifl{ gene. At TO and at the
termination of the experiment, bottles were immediately filtered as
described in [41] onto 25-mm, 0.2-um Supor filters (GE Osmotics,
Minnetonka, MN), and immediately flash frozen in liquid Ny. All
filters were stored at —80°C thereafter.

DNA samples were extracted using the Qiagen All Prep kit
(Valencia, CA), according to manufacturer’s guidelines, with
modifications to include freeze-thaw and bead-beating steps to
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Figure 2. Horizontal and vertical distributions of hydrological and biogeochemical parameters during the 2010 cruise (R/V
Atlantis). (A, B) temperature, (C, D) dissolved oxygen, (E, F) chlorophyll fluorescence in the northern transect (left panels) and southern transect

(right panels).
doi:10.1371/journal.pone.0081265.9002
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disrupt the cells [42]. The wash steps of this protocol were
automated using a QIAcube (Qiagen). DNA extracts were stored
at —20°C until use.

Nested PCR amplification targeting a fragment of the nif{ gene
was carried out using degenerate primers nyff{1-4 [43,44] using the
reaction and thermocycling conditions described in [42]. Ampli-
cons were purified using a QIAquick Gel Extraction Kit (Qiagen)
and cloned using the TOPO TA Cloning Kit for Sequencing
(Invitrogen, Carlsbad, CA) according to the manufacturer’s
guidelines. Purified recombinant plasmids containing partial ngff{
sequences were recovered from clones using the Montage Plasmid
Miniprep96 Kit (Millipore, Billerica, MA) and sequenced using
Sanger technology at the UC Berkeley DNA Sequencing Center.
All DNA extractions and as PCR preparations were performed in
a PCR-amplicon free facility at UCSC described in [42].

Sequencher 5.1 sequence analysis software (Gene Codes
Corporation, Ann Arbor, MI) was used to remove vector
contamination and low-quality reads from raw sequences. All
resulting partial nifl{ sequences were imported into a curated ngff{
database (http://pmc.ucsc.edu/~wwwzehr/research/database/),
translated into amino acid sequences, aligned to the existing
hidden Markov model alignment using the Quick Align function,
and nucleic acids were realigned to the aligned amino acids in the
ARB software environment. Sequences generated from the
nutrient addition bioassays were clustered at 97% nucleotide
similarity using CD-HIT-EST [45]. Nucleic acid trees used the
Jukes-Candor correction for branch length. Trees generated in
ARB were exported into ITOL for the display of associated
metadata. All partial ni/H sequences recovered were submitted to
Genbank under Accession numbers KF515738 - KI515848.
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Results

Hydrographic and nutrient profiles

During both cruises, oceanographic conditions were consistent
with active wind-driven upwelling off the coast of Northern Chile
and Peru (Fig. 1), associated with a vertically and horizontally
extensive OMZ (Fig. 2C and 3B). During the 2010 cruise (R/V
Atlantis, El Nifio), the zone of decreasing dissolved oxygen
(oxycline) was located at ca. 70-100 m at stations 11 and 9, and
suboxic conditions ([Os] <20 pmol kg_1 [46]) were reached at
125 m and 130 m respectively at these two stations. The suboxic
zone expanded from 130-750 m at Station 11. During the 2011
cruise (Fig. 3B, R/V Melville, La Nifia conditions), the oxycline
was shallower (ca. 3040 m) at stations 11 and 9 compared to
2010, and suboxic conditions were reached at 65 m at both
stations. The suboxic zone expanded from 70-850 m at Station
11. On the southern transect (Stations 1, 3 and 5, Fig. 2D and 4B),
the water column was well oxygenated during both cruises (ca.
200 umol kg™ ') over the first 200 m, and O, concentrations
decreased with depth to reach minimum values of ca.
80 pumol kg~ ' at 300 m depth.

During the 2011 cruise, on the northern transect at Stations 7
and 9 (Fig. 3D), surface NO, concentrations were ca. 6 imol L™,
increased quickly with depth (nitracline ca. 50 m) to reach ca.
37 umol L™" in the core of the OMZ. Close to the coast (Station
11), the nitracline was shallower (ca. 25 m) than that of the oceanic
stations, and NOy concentrations increased quickly to reach
concentrations of ca. 30-40 umol L™ in the core of the OMZ.
On the southern transect (Fig. 4D), NO, concentrations were ca.
0.10 umol L™! over the first 100 m of the water column. The
depth of the nitracline was 85 m and 130 m at Stations 1 and 5,

PO4 (umol/L)

N2 fixation (nmol L-1 day-1)

St9 St 11

Figure 3. Horizontal and vertical distributions of hydrological and biogeochemical parameters during the 2011 cruise (R/V Melville)
- Northern transect (10°S). (A) temperature, (B) dissolved oxygen, (C) chlorophyll a fluorescence, (D) NO3~ concentrations, (E) PO43_

concentrations, (F) Mean N, fixation rates (n=3).
doi:10.1371/journal.pone.0081265.9g003
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Figure 4. Horizontal and vertical distributions of hydrological and biogeochemical parameters during the 2011 cruise (R/V Melville)
- Southern transect (20°S). (A) temperature, (B) dissolved oxygen, (C) chlorophyll a fluorescence, (D) NO;~ concentrations, (E) PO~

concentrations, (F) Mean N, fixation rates (n=3).
doi:10.1371/journal.pone.0081265.g004

respectively, and concentrations increased progressively to reach
values of ca. 40 umol L™! below the oxygen minimum and down
to 2000 m. PO, concentrations (Fig. 3E and 4E) followed the same
trend as NOy in the northern transect, with surface concentrations
of 0.40-0.60 umol L' and a shallower phosphocline near the
coast (Station 11) compared to open ocean stations. In the
southern transect, surface PO, concentrations were lower com-
pared to those of the northern transect (0.03-0.30 pmol L™ ") and
the phosphocline was located deeper (ca. 150 m).

During both cruises, chorophyll a fluorescence (Fig. 2E-F, 3C,
4C) was highest at stations located along the northern transect. It
was much lower in 2010 compared to 2011, especially at stations
nearest the coast of Peru on the Northern transect.

Vertical profiles (0 to 2000 m) of N, fixation

During the 2010 cruise, Ny fixation was detected in 34 of 40
samples representing all three stations (Fig. 5). The overall range of
rates measured over the cruise was from the detection limit to
0.80 nmol L' d~'. The highest rates were measured in O,
deficient waters at the oxyclines or in the core of the OMZ (Fig. 5),
and reached values up to 0.57 nmol L' d™!, 0.6 nmol L™! d ™!
and 0.53 nmol L™ d™" at Stations 1, 11 and 9, respectively.
Below the OMZ, rates were always measurable and were at
1000 m depth  0.16 nmol L™" d™', 0.23 nmol L' d™" and
0.06 nmol ™" d™" at these stations. Integrated rates over the
2000 m water column were 155 pmol N m~2 d™! at Station 1,
288 umol N m ™2 d ™" at Station 9, and 509 pmol N m 2d ™" at
Station 11 (Table 1). The average integrated rate over the cruise
was 317 pmol N m~? d~". Integrated N, fixation rates in the

PLOS ONE | www.plosone.org

aphotic zone accounted for 73 to 99% of the rates measured over
the entire water column depending on the station. When
considering all the stations, the average areal rate in the aphotic
zone was 87% of the total rate over the entire water column
(Table 1).

During the 2011 cruise, Ny fixation rates were significantly
greater than zero in 140 of the 216 measurements made (Fig. 3F,
Fig. 6). The overall range of rates measured was from detection
limit to 0.26+0.12 nmol ™' d”!. In the northern transect
(Fig. 3F, Fig. 6), the highest rates of Ny fixation over the vertical
profiles were measured in the oxycline as in 2010, and mean rates
(n=3) reached 0.15=0.13 nmol "' d™' at Station 7 and
0.19%0.28 nmol L.™' d™" at Station 9 at the oxycline. At station
11, the highest rates were found in surface waters
(0.220.19 nmol L™" d™") but rates at the oxycline were also
measurable (0.06+0.03 nmol L™' d™"). Below the OMZ (ca.
400-2000 m), rates were also measurable and ranged from
0.00%0.01 to 0.21%0.13 nmol ™" d™", the highest rates being
measured at station 9 at 1000 m depth. In the southern transect
(Fig. 4F, Tig. 6), the rates ranged from 0.00£0.01 to
0.26=0.12 nmol L.”" d™', the highest rates being observed at
Station 1 just below the second oxycline at 750 m depth. At this
station, aphotic rates were measurable at 450 m, 750 m, 1000 m
and 1500 m depth. Integrated rates over the 2000 m water
column ranged from 2414 pmol m 2 d~' at Station 5 to
118+87 umol m 2 d ™" at Station 1 (Table 1). The average
integrated rates over the 2011 cruise were 64 pmol m 2 d™".
Integrated Ny fixation rates over the aphotic zone accounted for
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90% of total rates measured over the entire water column (Table 1)
over the cruise.

Nutrient addition bioassays in the core of the OMZ
During the 2010 cruise, nutrient concentrations in the core of
the OMZ (140 to 450 m) where experiments were performed
ranged from 24.0 to 87.0 pmol L' for NO, and 1.20 and
3.00 pmol L™! for PO~ (data not shown). Mean N, fixation
rates in control bottles at Stations 5, 7 and 11 were 0.12%+0.02,
0.16+0.04 and 0.17%0.02 nmol N L' d™!, respectively (n=3;
Fig. 7). At the 2 most oceanic Stations 5 and 7, glucose
amendments did not result in any significant increase of Ny

fixation (p>0.05). At Station 11 near the Peruvian coast,
glucose amendments resulted in a significant (p<<0.05) increase
in Ny fixation rates by a factor of 3.2, to reach 0.56=*
0.04 nmol N L™ d ™" (Fig. 7).

During the 2011 cruise, nutrient concentrations in the core of
the OMZ (320 to 475 m) where experiments were performed
ranged between 33.12 and 38.72 umol L™" for NOy and from
2.33 to 3.03 umol ™! for PO,. Mean N, fixation rates in the
control bottles ranged from 0.00+0.01 at Station 11 to 0.07£0.01
and 0.07%0.04 nmol N L™" d™" at Stations 9 and 5, respectively
(n=3; Fig. 8). At Stations 1 and 9, N, fixation rates were
significantly (p<<0.05) stimulated by simple carbohydrate additions

PLOS ONE | www.plosone.org

Table 1. Areal N, fixation rates (umol N m~2 d™") calculated from measurements performed in the euphotic and aphotic zones
during the 2010 and 2011 cruises.

Station Total 0-2000 m (umol Nm™2d™") Euphotic (umolNm2d™") Aphotic (umolNm2d™")
2010

Station 9 288 49 239

Station 11 509 8 501

Station 1 155 71 84

Average 317 43 (13%) 275 (87%)

2011

Station 7 50+39 10+10 40+29

Station 9 101+79 09+04 92+74

Station 11 25x17 04+02 21£14

Station 5 24+14 05+05 1909

Station 1 11887 01£01 117+86

Average 64 06 (10%) 58 (90%)

Uncertainties are derived from the standard errors of triplicate measurements for the 2011 cruise.

doi:10.1371/journal.pone.0081265.t001
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by a factor of 5.5 and 4.6, to reach 0.14*0.07 and
0.30%0.30 nmol N L' d™ !, respectively (Fig. 8). At all stations,
the addition of amino acids resulted in a significant (p<<0.03)
increase in Ny fixation rates, by a factor of 4 to 7. The highest
rates were reached at Station 9 after AA additions with
0.27%0.08 nmol N ™' d™'. ATP addition never resulted in
any significant increase of Ny fixation rates (p>>0.05) and NO3;
additions never resulted in any decrease of N, fixation rates
(p>0.05). However, at Station 7, NO3 additions resulted in a
significant (p<<0.05) increase of Ny fixation by a factor of 7 to
0.07+0.02 nmol N L™ " d™ ",

Phylogenetic characterization of diazotrophs in 2010
glucose addition bioassays

A full phylogenetic characterization of diazotrophs in the upper
200 m of the ET'SP water column was performed during the same
cruises and is detailed in a companion paper [42]. In this study we
report the complementary phylogenetic characterization of
samples from the core of the OMZ (Fig. 8). Partial ni/H sequences
recovered during deep glucose addition bioassays during 2010 at
Stations 5, 7 and 11, indicated that diazotrophs were present in the

PLOS ONE | www.plosone.org

deep waters of the OMZ. The diazotrophic community was
comprised of non-cyanobacterial diazotrophs affiliated with ngff{
clusters 1K (predominantly comprised of a-proteobacteria), 1G
(predominantly comprised of 7y-proteobacteria), and 3 (sulfate
reducing genera of the d-proteobacteria as well Clostridium spp.,
Vibrio spp, etc.) (Fig. 9). Clear differences exist between OMZ
diazotrophic community composition at each station. The Station
5 community was dominated by nifH cluster 1K sequences, many
of which are closely related to a phylotype (94-97% nucleic
acid similarity) originally reported at Hydrostation S (North
Adtlantic) from a depth of 1000 m (BT5167A10 (DQ481253) [47]),
although a few putative y-proteobacteral (1G) sequences were also
recovered that affiliated with YETSP3, a cluster recovered from
the ETSP [42]. Although the lowest number of total sequences was
recovered from Station 7, they were mainly affiliated with cluster
1G, along with a few 1K sequences. In contrast, clone libraries
from Station 11 were dominated by cluster 3 sequences, along with
a few 1G sequences, but no 1K sequences (Fig. 9).

Despite being prevalent in clone libraries, both aETSP1 and
cIII-ETSP groups were not detected at abundances great enough
to quantify using Tagman® qPCR assays during the course of
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these experiments (see Figuer S1 in File S1). Because the
abundances of these targets did not increase as a result of nutrient
amendments, it is difficult to speculate whether any of them were
responsible for the increased Ny fixation rates we measured after
glucose addition.

Discussion

Active N, fixation in deep and NOs-rich waters of the
ETSP

In this study, we measured during 2 consecutive years Ny
fixation in surface waters affected by the OMZ, but reveal that Ny
fixation below the euphotic zone is more important: 87 and 90%
of total areal Ny fixation were measured in the aphotic zone in
2010 and 2011, respectively. In these aphotic layers, volumetric Ny
fixation rates were relatively low (<1.00 nmol N L™'d™Y, but
when integrated over the whole aphotic layer, they ranged from
84 to 501 pmol Nm 2d™! in 2010 and from 19+09 to
117286 pmol N m™?d™" in 2011 (Table 1). In 2011, rate
measurements were replicated (triplicates) and calculations
performed very carefully using a real TO for every depth. These
2011 measurements are thus more reliable than those measured in
2010. These measurements in aphotic waters add new information
compared previously published studies [26,28] in the area. The
hypotheses explaining the persistence of Ny fixation in these high
NO, (ca. 40 pmol L™ ") environments are largely developed in the
companion paper [28]. First, fixed N loss processes occur in this
region [31,48], creating a deficit of N relative to P, which is
potentially favorable for Ny fixation [24]. In particular, anammox
removes NH,", which has an immediate inhibitory effect on Ny
fixation [49]. Secondly, Ny fixation is an anaerobic process [50]
due to the irreversible inactivation of the nitrogenase enzyme by
Oy [51]. It is possible that the low Oy concentrations in the OMZ
and down to 2000 m contribute to the protection of nitrogenase
[62], decrease the energy cost of maintaining intracellular
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acids, CH: Carbohydrates). Data from bioassay experiments performed in the OMZ at (A) Stations 7, (B) Station 9, (C) Station 11, (D) Station 5, (E)
Station 1, and (F) Station 6 during the Melville cruise (2011). The error bars represent the standard deviation of triplicate incubations. Treatment
means were compared using the 2-tailed non parametric Mann-Whitney mean comparison test (n =3, a=0.05, unpaired samples). Means that were
significantly different (p<<0.05) from the control are labeled with an asterisk.
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anaerobiosis [53], and thus facilitate Ny fixation. Finally, redox
conditions in the OMZ favor the equilibrium formation of the
most bioavailable form of iron Fe?* [54], which could help to
support the high Fe requirements of nitrogenase [16,17]. For these
reasons, OMZs and deeper waters may represent favorable
ecological niches for Ny fixation, as shown in this study.

Potential impacts on N budgets in the ETSP

Aphotic Ny fixation is currently ignored in oceanic N budgets
based on biogeochemical rate measurements. However, this
dataset indicates that rates in aphotic waters of the ETSP are of
the same order of magnitude than those commonly measured in
the tropical and sub-tropical NOsj -depleted surface ocean
(Table 2), where Ny fixation has commonly been studied. The
potential significance of the N, fixation rates measured in our
study can be evaluated by comparing them with fixed N losses via
denitrification and anammox measured in the same region. N
losses in the ETSP have been estimated to range from 9 to 25 Tg
N yr~! (Table 3, [31,55,56,57]) in the upwelling area extending
175 km offshore, and 1860 km along the Peruvian-Chilean coast
with an arca extant of 3.26x10'"" m? [31,56]. If we consider the
same spatial extent for Ny fixation, this process could potentially
add 0.04 to 0.9 Tg N yr ! (Table 3), counterbalancing 0.16 to
10% of the estimated N loss processes in this area (calculations
have been performed only using numbers from the 2011).
However, the anammox and denitrification measurements men-
tioned above [31] were performed under conditions of excess
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substrate availability and therefore represent maximum estimates
of N loss rates. In contrast, the N, bubble method used to
quantify N, fixation [58] may underestimate rates [38,39].

Secondly, denitrification and anammox are restricted to
subsurface suboxic or anoxic waters [59], whereas Ny fixation is
not. Further, denitrification and anammox appear to be restricted
to the coastal upwelling system within ca. 175 km of the Peruvian-
Chilean coast (the few data available at open ocean stations
indicate that N loss processes were below detection limit during the
2010 cruise, Hamersley et al., (Pers. Com.)). Ny fixation in the
ETSP is active over a much greater spatial extent than N
loss processes. If we consider the spatial extent of the Ny
fixation measurements in the ETSP covered by our cruises
(2.23x10'% m?), we estimate that N, fixation could potentially add
0.3 to 1 Tg N to the system in this area and therefore could
compensate for up to 11% of the estimated N loss processes in the
upwelling region of the ETSP (Table 3) (without taking into
account methodological under- or overestimations). These esti-
mates of N gains are the minimum ones calculated by taking into
account only the 2011 cruise. If we take into account the 2010
cruise, Ny fixation could potentially compensate up to 0.3 to 7 Tg
N to the system (Table 3) (i.e. up to 78% of N losses). Ny fixation in
deep waters of the ETSP may be a significant source of N for the
ETSP, and needs to be taken into account in future N budgets.
Further coupled measurements between N gain and loss processes
at the same stations/depths need to be performed to better
constrain the magnitude of N gains in this region.
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Table 2. Examples of published studies showing the range of oceanic N, fixation areal rates measured in some contrasting

Location Areal rates (umol m 2d™") Integration depth (m) Reference
Hypoxic basin (Southern California Bight) 150 885 [37]

ETSP coastal OMZ 7-190 120 [26]

ETSP 0-148 150-200 [28]

ETSP subtropical gyre 12-190 150-200 [14]
Eastern North Pacific gyre 520 mixed layer [20]

North Atlantic 59-898 15 (Trichodesmium bloom) [3]

ETSP aphotic zone 19-501 2000 This study

doi:10.1371/journal.pone.0081265.t002

Effects of nutrients on N, fixation

The diazotrophic community of the ET'SP characterized in this
study, as well as in a companion study [42] is comprised of an
assemblage of non-cyanobacterial diazotrophs, and little can be
inferred about their metabolism from partial ngfH sequences.
However, we performed nutrient addition bioassays using
molecules representing common labile components of the
dissolved organic matter pool in marine waters (simple carbohy-
drates, amino-acids and ATP), which shed some light on nutrient
control of Ny fixation in the core of the OMZ. Our results
indicated that simple carbohydrate additions significantly stimu-
lated Ny fixation at stations located nearest the coast during both
cruises and at Station 9 during the 2011 cruise (Figs. 7, 8). In
OMZs, organic C is largely supplied by vertical flux of planktonic
production from shallower layers or by horizontal transport [60].
Thus this supply of organic C is not constant but rather episodic,
which could explain why Ny fixation appears so variable in space,
in time, and between cruises and years, as reported in the present
study and by [26]. This seems to be the case for N loss processes as
well, since organic C supply has been correlated with regional
denitrification [60] and anammox [31,61] rates in OMZs. Ward et
al. [62] demonstrated that denitrification rates were significantly
stimulated in the OMZ of the ETSP by organic C additions. To
our knowledge our study is the first designed to study the response
of diazotrophs to nutrient additions in the OMZ. In surface
waters, significant stimulation of Ny fixation rates by glucose
additions have been reported during the same cruise at Station 9
[28]. A significant stimulation of bacterial production after glucose
amendments in surface waters of the Chilean upwelling system
have also been reported [63]. Finally, in surface waters of the
southwest Pacific [64], reported a significant increase of nif[{ gene
copies of unicellular diazotrophic cyanobacteria such as Group A
(UCYN-A) and Crocosphaera after glucose and mannitol additions,
hypothesizing that this capacity may allow conservation of energy

by rapid uptake and recycling of sugars. However, it has to be
noted that the large variability in the response to carbohydrates
addition (high standard deviation at Station 11 for example) could
be explained by the fact that it may be coincidental whether the
taxa that benefit from the enrichment possess the nifH gene.

Because the organic C molecules tested here are also energy-
rich molecules easily entering catabolic pathways, one could
interpret our results to be indicative of limitation either by energy
or by assimilative C availability. However, in our experiments Ny
fixation was not stimulated by ATP additions at any station,
indicating that C and not energy might have been the proximate
limiting factor. In some oligotrophic P-limited environments, ATP
is also a source of P for bacteria and uptake rates of ATP exceed
those of glucose [65]; however, in OMZs, P is not limiting relative
to N, which may further restrict the ability of ATP to stimulate Ny
fixation rates in our bioassays. In contrast, the addition of free
amino acids stimulated N, fixation at all stations tested; this has
also been shown in aphotic oxynenated waters of the Red Sea
[66]. Amino acids are a source of both C and N, and it has been
suggested that it is energetically advantageous for microbes to use
preformed compounds such as amino acids rather than glucose as
C sources [67]. In terrestrial legume-rhizobium symbioses, the
diazotrophic bacteria assimilate amino acids such as glutamic acid
provided by the host, which facilitate both dicarboxylate oxidation
and ammonium assimilation into asparagine [68]. In Azospirillum
sp., additions of glutamic acid also stimulated N, fixation activity
[69] by providing a C and energy source to the diazotrophs, while
N was still provided via Ny, fixation. It may be that similar nutrient
assimilation dynamics are occurring in diazotrophs in the ETSP
OMZ.

Ambient NO, concentrations were high (ca. 30-40 umol L™
at all stations where nutrient additions were performed, and NOs
additions (8 umol L™ ") never resulted in N, fixation inhibition at
any station. As the metabolic potential of diazotrophs present in

Table 3. Comparison between estimated fixed N losses via denitrification and anammox and fixed N gains via N, fixation
(estimated from the 0-2000 m depth integrated rates measured in this study) in the ETSP.

Area considered N losses N gains (based on 2011 cruise) N gains (based on 2010+2011 cruise)
(m?) (Tg.yr ") (Tg.yr ) (Tg.yr ")

*3.26x10" *9-25 0.04-0.9 0.05-1.1

2.23x10" 9-25 0.3-1 0.3-7

**Estimates from [31,55,56,57].
doi:10.1371/journal.pone.0081265.t003
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*Upwelling area extending 175 km from, and 1860 km along the Peruvian-Chilean coast [31,56].
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the OMZ have not yet been fully characterized, we do not know if
they possess genes for reduction and assimilation of NO3;  or
NOy . Detailed studies at the single cell level would be needed to
characterize the metabolism of these organisms and understand
why microbes fix Ny in the presence of so much NO; . In
addition to possible energy and C, N and P sources derived from
molecules like amino acids, carbohydrates or ATP, electron
sources and donors are also very important to know for
characterizing the physiology of the diazotrophs present in the
ETSP. Molecules like Oy, NO3 and less favorably SO,%" are
common electron acceptor and they are used for different types of
respirations like aerobic respiration, or anaerobic denitrification
and sulfate reduction. These different respiratory pathways
potentially supporting N, fixation are performed by organisms
with different physiology which each have their own environmen-
tal sensitivities for fixing No.

Phylogenetic characterization of diazotrophs

Our characterization of the diazotrophic community in the core
of the OMZ revealed the presence of potential No-fixing
heterotrophs based on the presence of the nifl{ gene. We did not
detect the cyanobacterial diazotrophs commonly found in other
regions of the open ocean; in contrast, most of the nifH{ genes
amplified from the OMZ clustered with o-, y- and §-proteobac-
teria. This result is consistent with the observations of Turk-Kubo
[42] in the upper 200 m of the ETSP water column, where 96% of
sequences were also affiliated with proteobacteria. Based on these
results, and other studies conducted in the ETSP and the South
Pacific Gyre [14,26,70], it is clear that the ETSP diazotrophic
community is different from other well-studied tropical and sub-
tropical oceans such as that of the North Pacific, North Atlantic
and Indian Oceans. The cyanobacterial diazotrophic phylotypes
commonly found at high abundances in these other ocean
provinces appear to be either sporadically present at low
abundances (i.e. Trichodesmium, UCYN-A), or undetected altogeth-
er (i.e. UCYN-B, diatom-diazotroph associations) in the ETSP.

The amplification of diverse non-cyanobacterial nifH-containing
organisms from OMZ waters in the ETSP affiliated with nifH{
clusters 1K, 1G and 3, is consistent with the findings of other
studies conducted in anaerobic waters [26,36,71] and
abyssopelagic waters [47]. However, the results from this study
underscore the difficulty inherent in identifying the diazotrophic
community responsible for Ny fixation rates. It is important to note
that mfH cluster 1K sequences have been reported as contam-
inants in many studies, including a study in the ETSP [42].
However, none of the sequences recovered here had greater than
90% amino acid similarity and 83% nucleic acid similarity to
reported contaminants. Nevertheless, as a result of the use of
highly degenerate primers and nested PCR cycles necessary to
amplify this important but low-abundance gene target, contam-
ination must always be considered as a source for heterotrophic
diazotroph sequences, whether from PCR and DNA extraction
reagents or from sampling or handling procedures, despite the
screening of PCR and reagent blank controls as in this study.

Furthermore, although it is clear that a diverse assemblage of
non-cyanobacterial nifH-containing organisms are present in the
OMZ of the ETSP, the best methodologies currently available to
characterize dominant members of the diazotrophic community
(PCR amplification using degenerate nifH primers) often identify
organisms present at extremely low levels when targeted using
quantitative approaches (i.e. qPCR; Fig. S1 in File S1) [42,47,71].
This, in turn, makes it difficult to argue that these organisms are
capable of fixing Ny at cell-specific rates great enough to account
for measured bulk rates. An analysis of the expected Ny fixation

in
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rates based on abundances and plausible cell-specific Ny fixation
rates in the ETSP discussed in [42] indicate that these
proteobacteria are unlikely to be responsible for all the measured
bulk rates and therefore other Ny-fixing organisms could be
responsible for a part of Ny fixation in this region but may remain
uncharacterized. Identifying which organisms are actively tran-
scribing nyf using techniques such as reverse transcription (RT)-
qPCR might provide more insight into which diazotrophic taxa
are actively fixing nitrogen. However, the challenge of identifying
which organisms are important No-fixers remains the same when
designing qPCR primers from sequences derived from RT-PCR
based clone libraries, and are further convoluted by potentially low
transcript abundances per cell and/or the timing of sampling with
respect to diel changes in nifH expression (even in the case of
heterotrophs).

Conclusions

This study provides one of the first estimates of Ny fixation rates
in aphotic waters of the ETSP. It reveals that Ny fixation in
aphotic environments is the largest contributor to total areal Ny
fixation in ETSP. N, fixation in high [NOjs | environments
remains an enigma as it requires an additional energetic cost
relative to NO3~ or NH,". Further physiological studies are
needed to understand the physiological regulation of Ny fixation,
especially on newly discovered diazotrophic organisms. Contrary
to Ny fixation performed in euphotic layer which sustains new
primary production [3], aphotic Ny fixation may sustain organic
matter remineralization. These new sources of N could potentially
compensate for as much as 78% of the estimated N loss processes
in ETSP, indicating that they need to be taken into account in
marine N budgets. Phylogenetic studies confirm the presence of
diazotrophs in the deep waters on the OMZ, which are distinct
from cyanobacterial phylotypes commonly found in surface
oligotrophic waters of the tropical ocean. Organic and inorganic
nutrient addition bioassays reveal that amino acids and simple
carbohydrates stimulate Ny fixation in the core of the OMZ, and
the episodic supply of these nutrients from upper layers may
explain the large temporal and spatial variability of Ny fixation in
the ETSP. Research on marine heterotrophic Ny fixation is at its
beginning and significant progress needs to be made in the
refinement of the methods to estimate planktonic Ny fixation in
OMZs (15N2 bubble method versus "’No-enriched seawater) from
bulk measurements to single cells analysis. The '°N-enriched
seawater method should be coupled to oxygen-free and trace
metal-clean procedures to provide more accurate estimates.
Progress also needs to be made in the characterization of the
community responsible for Ny fixation in these deep waters, as well
as the control of their population dynamics by the supply of
organic matter. Estimates of global Ny fixation based on field
measurements [5,72] are presently lower than geochemically-
based (nutrient stoichiometry and isotopic ratio) estimates [73].
Taking into account deep Ny fixation might help to resolve some
of this discrepancy. However, progress also needs to be made in
the quantification of N loss processes, as recent studies indicate
that they may be less sensitive to oxygen than previously thought
[59], further complicating the N budget in the ETSP. In future
studies, N gain and loss measurements need to be coupled in space
and time to further resolve the N budget in the ETSP.

Supporting Information

File S1 Supporting methods, Table S1, and Figure S1.
(DOCX)
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