
How to Make a Synthetic Multicellular Computer
Javier Macia1,2*, Ricard Sole1,2,3*

1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Barcelona, Spain, 2 Institut de Biologia Evolutiva, UPF-CSIC, Barcelona, Spain, 3 Santa Fe Institute, Santa Fe, New

Mexico, United States of America

Abstract

Biological systems perform computations at multiple scales and they do so in a robust way. Engineering metaphors have
often been used in order to provide a rationale for modeling cellular and molecular computing networks and as the basis
for their synthetic design. However, a major constraint in this mapping between electronic and wet computational circuits is
the wiring problem. Although wires are identical within electronic devices, they must be different when using synthetic
biology designs. Moreover, in most cases the designed molecular systems cannot be reused for other functions. A new
approximation allows us to simplify the problem by using synthetic cellular consortia where the output of the computation
is distributed over multiple engineered cells. By evolving circuits in silico, we can obtain the minimal sets of Boolean units
required to solve the given problem at the lowest cost using cellular consortia. Our analysis reveals that the basic set of logic
units is typically non-standard. Among the most common units, the so called inverted IMPLIES (N-Implies) appears to be one
of the most important elements along with the NOT and AND functions. Although NOR and NAND gates are widely used in
electronics, evolved circuits based on combinations of these gates are rare, thus suggesting that the strategy of combining
the same basic logic gates might be inappropriate in order to easily implement synthetic computational constructs. The
implications for future synthetic designs, the general view of synthetic biology as a standard engineering domain, as well as
potencial drawbacks are outlined.

Citation: Macia J, Sole R (2014) How to Make a Synthetic Multicellular Computer. PLoS ONE 9(2): e81248. doi:10.1371/journal.pone.0081248

Editor: Mark Isalan, Imperial College London, United Kingdom

Received July 12, 2013; Accepted October 10, 2013; Published February 19, 2014

Copyright: � 2014 Macia, Sole. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by and EU ERC Advanced Grant, the James S. McDonnell Foundation, the Fundaci’on Botin and the Santa Fe Institute.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: I have read the journal’s policy and have the following conflicts: co-author Ricard Solé is a PLOS ONE Editorial Board member. This does
not alter the authors9 adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: javier.macia@upf.edu (JM); ricard.sole@upf.edu (RS)

Introduction

A fundamental trait of biological systems is their capacity to

perform computations [1]. Although cells are composed of

molecules and their viability relies on extracting and using energy

to maintain them, they are not ‘‘just’’ matter and energy.

Information, and how it is processed and used, is an essential

ingredient of biology. Adaptation to environmental signals

requires the processing and proper output to incoming informa-

tion. This is of no surprise when we consider that life is strongly

tied to genetic information [2]. Similarly, a computational picture

of biological systems is at the core of important, unanswered

questions on how organisms behave [3].

How do biological systems compute? Computation is present at

multiple scales, from molecules to collective decisions [4–10].

Developmental processes [11,12], collective intelligence [13,14]

and complex decision-making in cells [15–18] can be mapped into

some class of formal computational framework. Early works in

theoretical biology, cybernetics, and Boolean dynamical systems

widely emphasized the view of molecular phenomena within cells

as the likely result of computational processes [19–22]. But beyond

the classical theoretical approach to computation, one especially

important avenue involves the engineering of cellular circuits in

order to construct given computational functions or devices

performing computations [23–31]. An example is given in figure 1,

where we show the potential implementation of a simple logic gate

using engineered regulatory networks. Here a NAND gate is built

by combining a few basic components. Two input molecules (a

and b) can be sensed by appropriate receptors or simply diffuse

into the cell where they interact with operator sites. Only in the

absence of both signals the output is produced.

In this context, it has been suggested that complex computa-

tional tasks might be obtained by engineering biological structures

(molecules and cells) in such a way that they can respond to given

sets of inputs and generate a pre-defined output response. Using

synthetic biology techniques, a great deal of examples involving

logic gates and simple combinations of them have been obtained

and some specific computational problems addressed (see

[24,32,33] and references cited). Much is expected from these

developments towards new approaches to complex diseases, for

example. But the promise of a reliable, scalable, reusable, robust

and predictable life-based technology that could allow constructing

complex living machines has been shown to be much more limited

than expected [34]. After a successful first wave of important

results, the promise of arbitrarily complex constructs obtained in a

LEGO-like fashion is far from achieved. A flexible toolbox of

reusable elements is yet to be developed and all synthetic designs

so far devised are lmited to specific tasks and can not be applied to

other problems. In particular, the combinatorial potential implicit

in standard circuit engineering has not yet been explored.

Although it is known from the basic theory of combinatorial

circuits that some particular logic gates (such as the NOR or

NAND) can be used to build any conceivable circuit, this

extrapolation has failed to succeed when applied to synthetic

biological designs. In that sense, although several authors have

been able to build such special gates and claimed that they could in

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e81248

http://creativecommons.org/licenses/by/4.0/

principle implement any potential, complex cellular circuit, the

extra engineering required makes that claim far fetched. More

specifically, the idea of constructing complex devices by just

combining logic gates in a standard manner fails due to the so-

called wiring problem. In contrast to electronics, where all wires are

identical but physically isolated, in a cellular context each

connection must be implemented by a different biochemical

element, e.g. proteins. Even relatively simple devices, such is a

MUX circuit (figure 2a), are difficult to obtain [35]. This circuit

involves three inputs, one of which (a) is the so called selector signal.

As can be seen, the state of this selector element determines which

one of the two inputs (b and c) is ‘‘chosen’’ as the final output. Its

use is widespread in electronics and it is part of many different

applications. In figure 2b we show a standard implementation of

this circuit obtained by connecting several NAND gates (here

shown as AND+NOT elements). Despite its simplicity, this circuit

requires a considerable engineering effort in order to follow

standard circuit design principles within a single cell. For

illustrative purposes we show a possible implementation of this

circuit in figure 2c. We can easily appreciate that the internal logic

of our proposed circuit requires several promoters to be connected

through different molecular ‘‘wires’’. Such limitations pose

immediate constraints to the possibility of creating robust, scalable,

and flexible devices with higher computational capacities. Hence,

the development of decision-making circuits performing complex

functions and, in general, the path towards living computers seems

compromised by the failure of standard design principles.

One way of approaching the problem of complex wiring is to

use a cellular consortium, where different types of engineered cells

are at work. Such cellular consortia are common in nature [37–39]

and provide a more flexible scenario for building complex

synthetic circuits [23,40–43]. Once a library of engineered cells

has been constructed, it is possible to combine them in different

ways to obtain different circuits. This is illustrated by the work of

Tamsir et al. [44] where the authors used a set of NOR-like gates

constructed on Escherichia coli by using two specific promoters,

where the inputs and outputs are controlled by expression of

different quorum-sensing molecules without cross-talk among the

different cells. Here, as in conventional circuits, the colonies were

spatially distributed on agar plates and connected through

quorum-sensing wires. A reporter colony is used to indicate the

final output response. By arranging the colonies in different spatial

configurations, all of the elementary two-input logic gates can be

implemented. This example provides an instance of the applica-

tion of standard engineering principles to synthetic multicellular

systems. However, because of its construction, it is once again

limited in complexity, scalability, and flexibility.

In [45,46] we proposed a very different approach, which we

named distributed multicellular computation (DMC). Under this

approach, circuits are also divided into different cell types, but

the similarities with standard electronics ends here. Roughly

speaking, we allow circuits to be broken into pieces with the

component indicating output scattered over the different pieces.

Several types of reporter cells can be present and do not need to be

connected. Upon this assumptions, it was shown [46] that complex

circuits can be built from very simple cellular consortia. Each cell

requires only a small amount of engineering and additional cell-

cell communication molecules can be used (but are not always

needed) to exchange information among cells. Multicellular

implementation is conceptually appealing. It conceals the imple-

mentation details of each encapsulated logic gate, which can be

individually designed and optimized. As such, it can facilitate

circuit implementation and reduce interference with the host cell’s

physiology by minimizing the number of components introduced

Figure 1. Simple logic gates can be implemented out from minimal sets of logic units. The NAND gate (a) is obtained as a sequential
combination of AND and NOT gates. The compressed symbol is shown in (b) along with the truth table. An example of a synthetic implementation of
the NAND logic can be made (c) using genetic regulatory elements A and B forming a regulatory heterodimer complex that prevents the expression
of the reporter gene. In conventional electronics, combinations of such gates allow to construct more complex circuits and chips (d), which are then
used as basic modules for further circuit designs.
doi:10.1371/journal.pone.0081248.g001

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e81248

into each cell strain. Therefore, to assemble a complex multicel-

lular circuit, the experimenter needs to be concerned with only

two factors: the input-output function of each cellular gate and the

output-input matching between layers. Moreover, another benefit

of multicellular computing is that it allows the suppression of noise

in each layer. Because the wiring-molecule output from each gate

is mixed, and represents the sum over a population, spurious or

‘noisy’ responses within a small proportion of cells can be filtered

out in subsequent layers [47].

Instead of using NAND gates, the reduction of wiring

requirements was achieved by combining the standard AND

and NOT gates with the non-standard logic gates called inverted

implies (N-implies, NI). There are two possible NI logic gates

(hereafter indicated as NI1 and NI2) defined in tables 1 and 2

which describe a Boolean function where the underlying circuit

decides which of two bits is (strictly) larger than the other. In that

case the first table would correspond to I1vI2 whereas the second

defines I1wI2. Despite these gates not being commonly used in

standard designs, they have a clear biological meaning found in

Figure 2. Standard and non-standard circuit design. Combinatorial circuits are constructed in conventional electronic design by using
predefined gates and wiring them in order to execute a given input-output table. This is illustrated by the so called multiplexer (MUX) circuit, whose
representation and logic table is shown in (a). Using AND and NOT gates, a standard implementation is displayed in (b). In (c) we show an example of
a synthetic gene network implementing a single-cell multiplexer. The output signal is a GFP reporter. A very different design of the MUX system is
shown in (d). Here the circuit can be easily designed by splitting the computation into two separated and disconnected engineered cells, both able to
display the output signal. A simplified diagram that summarized the logic of (d) is shown in (e).
doi:10.1371/journal.pone.0081248.g002

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e81248

many regulatory genetic networks, i.e. one of the inputs triggers

the expression of an output gene whereas the other blocks this

expression.

Additionally, under this new approach, the gates (NOT, AND

and NI) are connected in a new way. Whereas in electronics design

rules try to minimize the number of gates but do not address to the

number of wires or the complexity of the resulting network of

connections, here the number of wires is minimized and the

network of connections is reduced to a simple, fixed topology. This

was experimentally implemented using engineered yeast cells,

which allowed building a library of cell types that could be

combined in multiple ways in order to create different types of

combinatorial circuits [45,46].

As a example, in figure 2d we present an alternative

implementation for the MUX circuit based in DMC with distributed

output production. As we can see, the two-cell implementation is

made by using two disconnected elements, both being able to express

the reporter gene. In electronics, it would mean breaking the

circuit into two pieces; each one having a light bulb to indicate the

output. Even though it makes little sense for electronic engineer-

ing, it solves a problem when dealing with a living computational

device.

Considering these previous results, the goal of this paper is two-

fold. On the one had we want to present a general picture of

optimized circuits implementing arbitrary Boolean functions based

on the combination of DMC and distributed output production. Such a

picture would be helpful in guiding the choice and development of

components and wires in synthetic constructs. On the other hand,

we also want to see how far the analogies made between standard

electronic circuits and their cellular counterparts can be stretched.

The previous choices make the potential set of designed circuits

simple by construction. As shown below, searching for circuit

designs compatible with our proposal leads to simple solutions.

Such solutions largely combine a subset of logic gates that departs

from the standard designs in several ways. Previous work has

obtained optimal solutions in different systems [48] by using

evolutionary algorithms, and the networks which evolved were

simpler in some ways to hand-designed synthetic biology networks.

Similarly, here we perform our analysis by means of an

evolutionary algorithm exploring the space of possible designs

for logic circuits. It is important to mention that our approach

implicitly assumes that the underlying engineering associated with

these multicellular consortia is not affected by a number of

relevant problems, including cross-talk, noise, and population

dynamics. Some of these problems were addressed in [45,46]

where it was shown that the DMC approach is able to overcome

some of these problems. The analog, noisy, and population-

dependent extensions of the work presented here will be explored

elsewhere.

Materials and Methods

0.1 Boolean Models of Cellular Computation
The simplest theoretical framework to define biological

computation is a Boolean approximation. In such framework,

the set of possible states to be observed is limited to two, i. e.

S~f0,1g. A given input string I made of zeros and ones can be

written as an element of

SN~ f0,1g| . . . |f0,1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

ð1Þ

Such an input string would correspond to a set of present or

absent input signals, which can be molecules but also physical

variables. Let us focus on a given Boolean function W involving N
inputs and one output. This is formally indicated as a mapping

W : SN?S1 ð2Þ

This function defines a input-output mapping between any

given binary string of N bits I[f0,1gN
and the two possible output

values f0,1g. Complex circuits can be obtained out from a

combination of several smaller sub-circuits called logic gates, and

this can be done in multiple ways. These logic gates are two

particularly relevant subsets of Boolean functions, namely i) the 16

two-input one-output logic gates defining the set G(2,1)~fgk
ijg

where gk
ij represents the k-st gate responding to inputs i and j, and

ii) the one-input one-output gates, i. e. the set G(1,1)~fg1
i0,g2

i0g
where g1

i0 is the negation (NOT) and g2
i0 is the identity function (Id)

in response to i -st input. It is well known that multiple subsets of

logic gates can be used to implement any possible combinatorial

circuit. These are known as functionally complete sets (FCSs). Typical

examples of these sets are the pairs {AND,NOT} and {OR,-

NOT} but since the NAND and NOR gates are obtained from the

combination of these previous pairs, it actually occurs that the

single-function sets {NAND} and {NOR} are themselves FCSs.

This statement can be proven [49] using the rules of Boolean

algebra.

As mentioned above, the single-cell implementation, although

possible in principle, has two drawbacks. The first involves the

unavoidable design problem associated with the use of several

molecular wires associated with each gene-gene connection. The

second is the limited flexibility of a single-purpose design. Most

typical designs cannot be recycled in any way, but a flexible and

scalable system should allow for combination among components

such that multiple functions could be implemented. We must keep

in mind, as we have pointed out before, that the standard methods

for circuit design focus on the minimization of the number of logic

gates but do not pay attention to the number of wires or to the

complexity of the pattern of connections. This becomes a

Table 1. Truth table for a NI1 Boolean function.

I1 I2 GFP

0 0 0

0 1 1

1 0 0

1 1 0

doi:10.1371/journal.pone.0081248.t001

Table 2. Truth table for a NI2 Boolean function.

I1 I2 GFP

0 0 0

0 1 0

1 0 1

1 1 0

doi:10.1371/journal.pone.0081248.t002

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e81248

limitation for the application of standard rules for cellular circuit

design, and hence a novel methodology for cellular circuit designs

seems necessary.

To reach this goal, we propose a different approach according

to the following criteria.

1. the circuit can be distributed in a network of different

engineered cell types (distributed computation),

2. the output production can take place in differently cell types

simultaneously (distributed output production),

3. the set of wires connecting the different cell types must be

minimal, and

4. the pattern of connections between cells must be as simple as

possible.

Distributed computation allows for a minimization of circuit

complexity, since each cell carries a small amount of engineering,

limited to implementing one given logic gate. Logic gates (cells)

generate an output responding to an external input or at the most

to an external input and to the output produced by other different

cell, i.e. a wire, according to the logic of one of the possible

functions from the set G(1,1)|G(2,1). This output can be the final

output of the circuit or a new wire. Of note, this assumption

implies a significant difference with respect to standard method-

ologies because there are no hidden gates, i.e. gates responding

only to internal signals (wires), typically present in standard

circuits. Every feed-forward circuit implemented by our system is

based on three basic motifs, shown in Figure 3. These motifs

involve engineered cells (colour balls) and links ai connecting

them. By splitting different parts of the circuitry over different

cells, we can take advantage of the intrinsic modularity of cells as

units. Furthermore, distributed output production allows for a

strong relaxation of wiring requirements. The connections

between different cell types can be implemented by producing

small diffusible molecules that can be secreted by a given cell type

and sensed by another cell type. Our analysis is centred on the

minimal scenario for combinational digital circuits, where

feedback connections are not allowed.

0.2 Evolving Distributed Circuits
The efficient design of synthetic biocomputers faces a complex

optimization problem. As the number of potential elements grows

with circuit complexity, so does the potential number of solutions.

Such combinatorial explosion can be managed by using automat-

ed methods of design [50]. This has been done in some special

cases, most of which consider the analog nature of genetic systems.

They include small memory devices (flip-flops, [51]), pulses and

bandwidth detectors [52], and are generalized to different

scenarios through simulated annealing [53], non-linear program-

ming methods [54] standard growth and selection procedures

[55], evolutionary optimization of a set of independent circuits

[56], and in silico automated design inspired by standard

minimization techniques borrowed from electronic design [57].

All of these methods exhibit advantages and limitations, and the

predicted circuits, especially when dealing with a large number of

biological parts, involve complex wiring diagrams and are not

expected to be reused for multiple functions.

In this paper we show the potential of DMC for evolving

complex decision-making circuits that would be very difficult to

implement using inspiration from standard electronics. Along with

Figure 3. A general circuit design can be obtained by starting from a multicellular system where each virtual cell is a given logic
gate. Here each engineered cell is indicated as Cq and wires generated by Cq are indicated as aq . Cell Cq will produce an output according with the
logic defined by gk

ij . Here gk
ij represents the k-th logic gate responding to two inputs, the external one Ii and the internal wire aj secreted by cell Cj .

The upper layer involves single-input gates, i.e. gk
i0 (thus only the identity or NOT are possible). Different motifs of connections can emerge according

with the criteria introduced, such as independent strings of connected cells, where each cell responds to different wire (a), the same wire can be
sensed by more than one cell (b), or a given cell responds to wires produced in more than one cell (c). In this last case, due to cells only can sense two
inputs (one external and one internal) all wires produced in different parts of the circuit but sensed by the same cell must be implemented using the
same diffusible molecule, i.e. wire a7 and a8 are implemented by the same molecule, which can be produced in cells C7 and C8 independently. This
situation corresponds to an implicit implementation in C9 of the OR logic with respect to wires a7 and a8 . Yellow cells (C3 , C5 , C6 and C9) can
produce independently the final output signal e.g. a GFP.
doi:10.1371/journal.pone.0081248.g003

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e81248

the previously mentioned MUX circuit, we show the result of

evolving five different standard circuits of increasing complexity.

These are a binary comparator, a three-bit adder, the 3-bit parity

circuit (see description below), and two 4-input circuits (see below).

In order to compare the expected networks resulting from

electronic design principles with our (much less complex) proposed

DMC constructs, in figures 4a, b, c we show their traditional

implementation using logic gates. The left and right columns

correspond to the implemented wiring diagrams using different

one- and two-input logic gates and NAND gates with arbitrary

inputs, respectively. We can clearly appreciate how rapidly the

Figure 4. Examples of standard engineering designs of three cases studies. (a) Two-bit comparator (b) the three-bit adder and (c) a 3-bit
parity circuit. Here the set of inputs appears indicated as open squares and the single-output element is marked as GFP. The left and right columns
are different implementations of the same circuits design (Boolean table) but they have been constructed used diverse logic gates (left) or only using
NAND gates with variable numbers of inputs. These circuits have been generated using the Logisim software package. Once the truth table is
provided, it builds the logic circuits, either choosing the appropriate set of two-input logic gates or using just NAND gates. If the NAND gates were
chosen such that they only include two inputs, the circuits would be much more complex.
doi:10.1371/journal.pone.0081248.g004

Table 3. Truth table for a Two-bits magnitude comparator.

I1 I2 GFP

0 0 1

0 1 0

1 0 0

1 1 1

doi:10.1371/journal.pone.0081248.t003

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e81248

Figure 5. Examples DMC designs obtained by using an evolutionary algorithm to find solutions to given computational functions,
as defined by Boolean tables of the examples shown in figure 4. The coloured balls represent the basic set of engineered cells indicating
their internal Boolean functions. The dashed boxes indicate subsets of cells linked through the same communication signal (wire) represented by
coloured dashed arrows. In (a) the binary comparator circuit is shown, after all simplifications have been performed. Figure (b) shows a DMC circuit
implementing a binary three-bits adder using distributed logic. Finally, in (c) we display the minimal three-bit parity circuit is shown. Although the
standard circuit is quite complex, a cell consortia involving six different cell types is enough to implement this complex function. Of note, these
examples involve two different wires at the most in the most complex circuit and hence a real wet lab implementation is feasible.
doi:10.1371/journal.pone.0081248.g005

Table 4. Truth table for a Three-bit adder.

I1 I2 I3 I1 + I2 + I3

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

doi:10.1371/journal.pone.0081248.t004

Table 5. Truth table for a 3-Parity bit circuit.

I1 I2 I3 Paritybit

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

doi:10.1371/journal.pone.0081248.t005

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e81248

wiring complexity increases once we consider three input

functions. The dramatic increase in circuit complexity is especially

well illustrated by the expected designs based on NAND gates

(right column). Here we allow these gates to receive multiple

inputs. If we force them to include only two inputs, the number of

gates and links rapidly explodes.

In order to design a given circuit implementing an arbitrary

Boolean function W, we start with a simple feed-forward

architecture. We define a set of input signals fI1,:::,INg with

Ii[f0,1g and a library V~fCq(gk
ij)g of different cells. Each cell

implements the k -st Boolean function gk
ij , responding to both an

external input Ii and to an internal wire aj , or only responding to

an external input, i.e. gk
i0.

To explore the potential sets of gates to be used in designing

arbitrary circuits, we have used an evolutionary algorithm as our

search engine for optimal synthetic circuits. We start with a set

C~fC1,:::,Csg of randomly wired circuits. Here s different

potential solutions are considered and each circuit will have N

inputs and one output. The total number of possible functions

implementable by this circuits is thus 22N

. Each circuit will be

composed by a random number of logic gates, which are also

randomly chosen from the set G(1,1)|G(2,1) which includes

21z24~18 different potential choices (for general definitions,

further information and classification, see [36]). Once a given

input-output function is defined, many possible combinations can

implement it.

0.2.1 Fitness function. Each of these circuits is characterized

by a fitness function F(Cm). This fitness function is defined as the

combination of two different terms, i.e.

F (Cm)~f (FW(Cm),Fc(Cm)). The first term, FW(Cm), measures

how good the computation of W performed by the circuit Cm is.

However, good computations are not enough but it is necessary

minimize the complexity of the circuit’s design. This can be

achieved in several ways. The second term of the fitness function,

Fc(Cm), accounts for additional evolutionary scenarios satisfying

the criteria presented in section 2 in order to safely translate them

into an experimentally feasible construct.

Specifically, FW(Cm) is defined as the normalized distance

FW(Cm)~1{
1

2N

XN

j~1

jOm
j {wj j ð3Þ

where Om
j and wj are the observed and expected outputs

associated to the j-th input string (i. e. wj~W(Ij)), respectively.

The highest value, FW(Cm)~1, will be obtained when perfect

matching is achieved.

We have explored different scenarios imposing a selection force

described by the second term of the fitness function, Fc(Cm),
namely:

0.2.2 Evolutionary algorithm. The evolutionary process

starts from a set C of s circuits. Each one of these circuits is formed

by a random number T of logic gates, with T[f1,N:2Ng, where N

is the number of external inputs. These gates are randomly wired

and the process follows several different steps.

Step 1: For each circuit the computational term of the fitness

(FW(Cm)) is evaluated according to expression (3) upon the

different input strings Ij .

Step 2: For all circuits with highest FW(Cm) values, the second

term Fc(Cm) is evaluated. This criterion prevents possible biases

associated with the constrained component Fc(Cm), favouring

good computation.

Step 3: The total fitness is calculated according to

F (Cm)~

Fc(Cm) if FW(Cm)~maxfFW(Ci)g

0 otherwise

8><
>: ð4Þ

where FW(Ci)~fFW(C1),:::,FW(Cs)g. Each on of these circuits has

a probability to pass to the next round proportional to the total

fitness, i.e.

2(Cm)~
F (Cm)Ps
i~1 F (Ci)

ð5Þ

Step 4: Random mutations are introduced in the circuits.

Random mutations can occur at different levels, namely i) addition

of a new wire with probability ma, ii) deletion of a wire with

probability md , iii) addition of a new logic gate with probability ha,

iv) deletion of an existing gate with probability hd , and v)

modification of a logic gate with probability c. More specifically,

modifications of a logic gate are implemented by inverting a

randomly chosen output bit in the truth table that defines the logic

function.

Step 5: In order to maintain a constant population s of circuits

in each round, the set of circuits coming from the previous round

is completed by new randomly generated circuits.

Step 6: Go to to Step 1.

In order to illustrate the potential for constructing simple,

nonstandard circuits from the DMC metaphor, let us consider

several representative examples. These examples belong to the

most standard set of components used within electronic devices,

but they are also relevant to potential applications of synthetic

consortia. The circuits shown below are, among others, the

minimal designs obtained simultaneously under the different

scenarios described by the function Fc(Cm) in section 3.1.

Simulations were run 500 times for each Fc(Cm) conditions with

the set of parameters fma,md ,ha,hd ,cg randomly chosen in the

interval (0:001,0:1) in a population of s~1000 circuits. The logic

circuits obtained have been tested using the Logisim software

package (see http://ozark.hendrix.edu/ burch/logisim/ for de-

tailed information).

1. Minimal gate number: Given a library of cells to be used, our

goal is to make the total number of circuit elements as small as

possible. Of note, thinking in terms of wet lab implementation,

minimization of gate diversity can be useful in order to reduce

the library of engineered cells. Here, Fc(Cm) is defined as

Fc(Cm)~
1

jm

ð6Þ

where jm is the total number of gates forming in the circuit Cm.

2. Minimal wire number: The implementation of wires, i.e.

connections between elements (e.g. cells), is one of the strongest

limitations for synthetic designs [34,46]. Here we minimize the

total number of wires used in the circuit by defining Fc(Cm) as

Fc(Cm)~
1

1zvm

ð7Þ

where vm is the total number of different wires present in Cm.

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e81248

∼

http://ozark.hendrix.edu/~burch/logisim/

3. Minimal complexity: This optimization procedure looks for a

structurally minimal wiring pattern [46,58] as the fitness

function, in terms of information processed by the circuit.

Roughly speaking, this complexity measure Cm weights the

contribution of modularity versus integration [58]. We define

Fc(Cm) as

Fc(Cm)~
1

1zCm

ð8Þ

where Cm is defined as [41].

Cm~
1

2

XZ

i~1

SI(X
q
i ,X{X

q
i)T ð9Þ

Here, Z is the number of gates in the circuit and I(X
q
i ,X{X

q
i) is

the mutual information between the q{st subset of the circuit

formed by i gates, i.e. X
q
i , and the rest of the circuit (i. e. X{X

q
i).

The symbols ST indicate the average among all possible subsets

formed by i gates. Finally, the index i covers all possible sizes, form

subsets formed by one gate (i~1) to the whole circuit (i~Z).

Interestingly, as shown below, all these different constraints

converge into essentially the same basic space of possible solutions.

Results

0.3 Multiplexer
Our first example was the MUX circuit. The MUX circuit

obtained following our method is extremely simple. The resulting

construct requires just two different engineered cell types. Instead

of a complex set of engineered regulatory interactions within a

single cell, we can create a consortium involving just two cells.

The most important feature to be noticed (aside from the simple

design) is that the cells are not connected as a consequence of the

distributed output. The whole system performs the computation

and thus both pieces are required, but there is no need to couple

them.

0.4 Comparator
In many relevant applications, a given device might need to

evaluate when two or more signals are equal or not. A comparator

circuit performs such an evaluation. Table 3 describes the Boolean

function for a problem involving two bits (corresponding to the

XNOR logic).

The minimal implementation in terms of number of logic gates

is a single XNOR gate. However, in a biological context,

implementation of complex gates such as XOR and XNOR

require the layering of multiple genetic circuits, thus necessitating

substantial efforts in circuit construction and tuning [59]. As a

standard alternative, this circuit can be built by combining several

NOT, AND and OR gates. Comparators are a widespread

Figure 6. Scaling up DMC. In (a) we consider a complex, nontrivial 4-input 1-output Boolean function analysed in Marchisio and Stelling 2011 [57].
Figure shows the truth table and the standard design using two-input gates along with NOT gates. Below (b) we display a minimal circuit
implementing this function. In (c) a two-bits comparator circuit is implemented according with the standard methodology, whereas in (d) an
alternative design obtained by evolution is shown involving less gates an wires Only two communication signals (wires) are required for this
implementation. Two colours (red and yellow) are used to indicate the two reporter molecules associated to each possible output (either AwB or
AvB).
doi:10.1371/journal.pone.0081248.g006

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e81248

component in most electronic devices and are commonly used in

converters, detectors, and oscillators. Their potential for synthetic

biology applications seems clear if we consider that most potential

decision-making circuits performing complex tasks are likely to

require this type of operation.

Here, we have evolved this circuit imposing a minimization of

circuit complexity. The minimal configuration obtained involves

three different cell types implementing the AND, NOT and NI

gates, and one wire (see figure 5a). As it occurs with the MUX

system, two subsets of cells that do not exchange signals can be

used to implement the Boolean function, whereas five NAND

gates would be needed in the NAND-based logic. Of note,

implementation of logic gates such as NOT, AND and NI

are easier than implementation of XNOR gates [59], and

the circuit implementation combining these gates (despite one

wire being required) can be easier from an experimental point of

view.

0.5 Three-bit Adder
An additional operation that is essential in most devices is the

binary addition of several input numbers described by the truth

table. Let us consider the three-bit adder, as defined in table 4.

This circuit requires a large number of gates (in both scenarios)

and wires that make it almost prohibitive for real scenarios.

Because of this, it provides a perfect illustration of the potential for

strongly reducing circuit complexity by combining non-standard

gates with distributed output production. Here the standard

implementation would be highly difficult to implement, whereas

the consortium solution is completely feasible (see figure 5b).

0.6 3-Parity Bit Circuit
Our fourth example is another three-input, one-output circuit

that implements the parity bit circuit, described in table 5. An even

parity bit circuit generates an output of 0 if the number of 1 s in

the input sequence is even and 1 if the number of 1 s in the input

sequence is odd. Because of its simplicity, parity is used in many

applications where an operation can be repeated in case of

difficulty, or where simply detecting an error is helpful. Parity can

be used as a control to check whether the input string is the

expected one or some error (wrong bit) is present. Figure 5c shows

the minimal implementation found by the evolutionary algorithm.

In this case two different wires are required.

0.7 4-Inputs: Two Illustrative Examples
In order to emphasize the advantages of DMC combined with

distributed output production, we have analyzed one of the most

complex functions involving four inputs. This function, described

by the truth table shown in figure 6a, is complex due to the fact

that the canonical form does not allow for Boolean simplifications,

as analysed in [57]. The function involves a rather complex

computation, which cannot be reduced nor decomposed in

simpler components and, as a result, has a complex associated

standard circuit. Here 17 two-input gates (and four NOT gates)

are needed to construct the circuit based on electronic design rules.

As we can see, the number of wires rapidly explodes. Such circuit

complexity makes a mapping between these designs and a

synthetic construct highly unlikely to even be possible.

Again the solutions found by using our evolutionary algorithm

minimizing the number of wires involve a reduced number of

wires and cells. Figure 6b shows the minimal circuit obtained,

involving seven wires and thirteen cells, all of them with the

minimal engineering required for our method. This is the worst

case scenario that can be found. Another circuit of great

importance in electronic engineering, the so called two-bit

comparator, which processes 4-bit input strings and has a two-

bit output, is shown in figure 6c. The standard circuit is again very

large, with 14 two-input gates and four inverters. In figure 6d the

corresponding DMC design is shown, requiring only eight cells. Of

note, it is interesting to see that the minimal circuits are formed by

a non-standard combination of AND and N-Implies gates. The

large number of the later type is a characteristic trait of DMC

evolved circuits, as shown below.

0.8 Bias Towards Non-standard Gates
A more general analysis has been performed by considering the

whole set of possible random 3-input, 1-output functions. Our

evolutionary algorithm was used to search for evolved DMC

designs minimizing circuit size and circuit complexity. The

resulting optimized circuits involve different abundances of

different gates and have different topological arrangements. Our

results are summarized by means of a graph that captures both the

Figure 7. Graphs showing the frequency of gates in a MUX
circuit. (a) Weighted graph showing the frequency of gates used in the
generation of evolved MUX circuits under DMC. The diameter of the
nodes is proportional to the frequency of the gate. Links indicate that
two gates have been wired together within a circuit. The weights
provide a measure of how frequently a given pair has been used. Note
the disproportionate frequency of N-implies (NI1) which are typically
connected to NOT and AND gates, much less with NOR gates. Note also
the vanishing frequency of NOR-NOR links (see text). In (b) we
summarize the relative frequencies of different gates. The two N-
Implies gates (here NI = N1+IN2) have been added together. These and
the NOR abundances are highlighted with distinctive colours. Circuits
were evolved imposing minimal number of wires.
doi:10.1371/journal.pone.0081248.g007

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e81248

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e81248

frequency of gates used in the final design and how often they are

found together within a given solution.

Again, let us start with the MUX circuit, which is a good

representation of a complex design. Figure 7a shows the weighted

graph associated to the frequency of gates used in the generation of

evolved MUX circuits imposing wires minimization. These

frequencies are the average of 500 independent runs of the

evolutionary algorithm evolving MUX circuits.

The diameter of the nodes is proportional to the frequency of its

abundance and the thickness of the links represents the probability

that two gates are present in the same circuit. The graph allows us

to draw to important conclusions.

We can observe an overabundance of a few gates. The

histogram shown in figure 7b allows comparing these frequencies

easily. The most common 2-input 1-output gate is clearly non-

standard from the point of view of engineering principles. The

second is that neither combinations of the standard gates NOR or

NAND seem to be very relevant here. Their frequency is much

smaller than other gates, particularly the non-conventional N-

IMPLIES (NI1), which is the most common choice, followed by

AND and NOT gates. The fact that the most common gates

define a non-standard set of logic functions (which has been shown

to be complete, see [45]) suggests that we must consider a whole

alternative landscape of combinatorial logic designs under our

distributed computation paradigm.

This analysis can be extended to the whole set of 3-input 1-

output functions, i.e. for each possible function the evolutionary

algorithm has found a possible solution under different constraints.

This experiment has been repeated 500 times and the frequencies

shown in figure 8 are the average of these independent runs of the

evolutionary algorithm. Figure 8a shows the different frequency of

appearance of logic gates in circuits evolved without additional

constrains (red bars), i.e. the unique imposition is a proper

computation, and the corresponding results obtained by evolution

imposing minimal size (green bars) and minimal complexity (blue

bars). As the figure shows, the patterns are significantly different.

In the absence of additional constraints, the most frequent gates

are NOT, AND, and not surprisingly NOR and NAND gates.

However, in the presence of additional constrains, patterns change

and the abundance of NOR and NAND gates is reduced, whereas

the NI1 and NI2 gates emerge as an alternative for improved

circuits.

Despite the NOR gate is a functional complete set by itself,

circuits involving only, or dominantly, NOR gates are not the

optimal solutions found as the thin auto-link in the NOR node of

the graphs indicate (figures 8b–c). Similar arguments can be

applied to the NAND gate. Of note, the similarity between graphs

obtained imposing minimal size and minimal informational

complexity is remarkable, suggesting that the optimization of

one aspect could be related with an implicit optimization of the

other. Future work should be devoted to analyse these implications

carefully.

Discussion

The continuous advance towards the design and synthesis of

biocomputers shows that there is an enormous potential for

innovation [60,61]. One of the goals of ongoing synthetic designs

is the construction of complex living circuits able to perform

complex decision-making tasks. Here we present a promising

approach to this problem, which requires reliable and flexible

approximations and the potential for extensive reuse and

combination of basic units.

We have explored the landscape of circuit designs associated to

a number of complex decision-making constructs based on

distributed multicellular computation [45,46]. Such circuits

include a large number of potentially important scenarios,

including among them many related to biomedical applications,

bioremediation scenarios, and several kinds of bioengineering

problems. Engineering biofilms, tissue architecture, and growing

biomaterials all deal with multiple interacting cell types and it is

precisely its multicellular character that makes our method

scalable and easy to implement. Our results suggest that the

potential associated with multicellular consortia, which have been

explored in different scenarios [62–65], can be used for designing

complex computational devices.

The results described above suggest that, according to the

design rules proposed, other functional complete sets, such as

AND and NI, can be more optimal for cellular implementation

than the standard ones, indicating that the optimal functional

complete set dependents on constraints imposed on the circuit

topology. Our approximation strongly departs from standard

electronic design and in doing so we are able to greatly reduce the

connectivity requirements as well as provide a source of flexible

combinatorial power.

Our work provides a robust approach to building more complex

computations, is predictable and scalable, and opens the door to

the future design of multicellular chips. It also allows for re-

thinking the way cells and tissues process information beyond

man-made metaphors. Its general nature makes it easily extend-

able to other forms of molecular interactions and model organisms

or even protocellular systems [25,66] and can take advantage of

additional techniques, such as microencapsulation [67,68]. Our

results provide a proof of concept that the expectations of synthetic

biology in terms of creating complex computational functions from

simple ones can be reached, and allows for the exploration novel

forms of optimization beyond standard engineering [69].

Despite the promising previous results obtained so far under the

multicellular consortia approximation [44,45], future work should

be devoted to analyse possible drawbacks that can limit the

potentiality of multicellular circuits, such as stochastic effects on

low cell number populations, the impact of different growth rates

in a multicellular consortia, circuit stability in long term

experiments, and experimental implementation of different wire

molecules. These limitations will be strongly dependent upon the

specific embodiment of the future synthetic devices. For instance,

the same logic circuit can be implemented by using transcriptional

or post-transcriptional regulatory genetic circuits hosted in

Figure 8. Frequency of appearance of different logic gates for circuits evolved without evolutionary pressure. In (a) the graph displays
the frequency of appearance of different logic gates for circuits evolved without any specific evolutionary pressure (red), imposing minimum size
(green), and under minimal circuits complexity (blue). These frequencies have been calculated as the average results for 500 runs. In (b) the graph
displays the average results for 500 runs of an evolutionary pressure towards minimum size. The frequency of a given gate is proportional to node
diameter, whereas the probability of finding two gates in the same circuit is given by the link weights. In (c) we show the corresponding results for
evolved networks under minimal circuits complexity. In both cases, the most represented gates are NOT, AND, NI1 , NI2 and NOR.
doi:10.1371/journal.pone.0081248.g008

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e81248

prokaryotes or eukaryotes organisms, and depending on these

aspects the same circuit can behave in a different way.

Moreover, other layers of the hierarchy of computational

systems, including memory and more complex integrated circuits,

should also be explored. Although still far from a complex

architecture that we could identify with a ‘‘computer’’, our method

shows enormous potential to achieve such goal.

Acknowledgments

We thank Alfred Borden and the members of the Complex Systems Lab

for useful discussions.

Author Contributions

Conceived and designed the experiments: JM RS. Performed the

experiments: JM RS. Analyzed the data: JM RS. Contributed reagents/

materials/analysis tools: JM RS. Wrote the paper: JM RS.

References

1. Hopfield M (1994) Physics, Computation, and Why Biology Looks so Different.

J. Theor. Biol. 171: 53–60.

2. Nurse P (2008) Life, logic and information. Nature 454: 424–426.

3. Brenner S (2012) Turing centenary: Life’s code script. Nature 482: 461.

4. Bray D (1995) Protein molecules as computational elements in living cells.

Nature 376: 307–312.

5. Amos M (2004) Cellular Computing. Oxford University Press, New York.

6. Amos M (2005) Theoretical and Experimental DNA Computation. Springer,
New York.

7. Reed MA, Tour MJ (2000) Computing with molecules. Sci. Am. 282: 86–93.

8. Simpson ML, Sayler GS, Fleming JT, Applegate B (2001) Whole-cell
biocomputing. Trends Biotechnol. 19: 317–323.

9. Sauro HH, Khodolenko BN (2004) Quantitative analysis of signaling networks.
Prog. Biophys. Mol. Biol. 86: 5.43.

10. Istrail S, Ben-Tabou S, Davidson EH (2007) The regulatory genome and the
computer. Dev. Biol. 310: 187–195.

11. Hogeweg P (2002) Computing an organism: on the interface between informatic
and dynamic processes. Biosystems 64: 97–109.

12. Deneubourg JL (1989) Collective patterns and decision-making. Ethol. Ecol. and

Evol. 1: 295–311.

13. Solé RV, Delgado J (1996) Universal Computation in Fluid Neural Networks.

Complexity 2: 49–56.

14. Fernando CT, Liekens AM, Bingle LE, Beck C, Lenser T, et al. (2009)

Molecular circuits for associative learning in single-celled organisms. J. R. Soc.
Interface 6: 463–469.

15. Perkins TJ, Swain PS (2009) Strategies for cellular decision-making. Mol. Syst.
Biol. 5: 326.

16. Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural

networks and Turing machines. Proc Natl Acad Sci USA. 88: 10983–10987.

17. Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and

orthogonal genetic logic gates for robust digital-like synthetic biology. Nature
Communications 2: 508. doi: 10.1038/ncomms1516.

18. Wang B, Barahona M, Buck M (2013) A modular cell-based biosensor using
engineered genetic logic circuits to detect and integrate multiple environmental

signals. Biosensors and Bioelectronics 40: 368–376.

19. Kauffman SA (1993) The origins of order. Oxford U. Press, New York.

20. Kauffman SA, Peterson C, Samuelsson S, Troein C (2003) Random Boolean

network models and the yeast transcriptional network. Proc. Natl. Acad. Sci.
USA 100: 14796–14799.

21. Klemm K, Bornholdt S (2005) Topology of biological networks and reliability of
information processing, Proc. Natl. Acad. Sci. USA 102: 18414–18419.

22. Andrianantoandro E, Basu S, Karig D, Weiss R (2006) Synthetic biology: new
engineering rules for an emerging discipline. Mol Syst Biol. 2: E1–E14.

23. Goni-Moreno A, Amos M, de la Cruz F (2013) Multicellular Computing Using

Conjugation for Wiring. PLoS ONE 8(6): e65986.

24. Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from

modules to systems. Nature Reviews Molecular Cell Biology 10: 410–422.

25. Solé RV, Munteanu A, Rodriguez-Caso C, Macia J (2007) Synthetic protocell

biology. From reproduction to computation. Phil. Trans. R Soc. B Biol Sci. 362:
1727–1739.

26. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, et al. (2004)
Programmable cells: Interfacing natural and engineered gene networks. Proc.

Natl. Acad. Sci. USA 101: 8414–8419.

27. Kramer BP, Fischer C, Fussenegger M (2004) BioLogic gates enable logical
transcription control in mammalian cells. Biotechnol. Bioeng. 87: 478–484.

28. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous
molecular computer for logical control of gene expression. Nature 429: 423–429.

29. Tan CM, Song H, Niemi J, You LC (2007) A synthetic biology challenge:
making cells compute. Mol. Biosyst. 3: 343–353.

30. Benenson Y (2009) Biocomputers: from test tubes to live cells- Mol. BioSyst. 5:
675–685.

31. Friedland AE, Lu TK, Wang X, Shi D, Church G, et al. (2009) Synthetic gene

networks that count. Science 324: 1199–1202.

32. Ruder WC, Lu TK, Collins JJ (2011) Synthetic Biology Moving into the Clinic.

Science 333: 1248–1252.

33. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic

biology. Nature Rev. Gen. 13: 21–35.

34. Kwok R (2010) Five hard truths for synthetic biology. Nature 463: 288–290.

35. Moon TS, Clarke EJ, Groban ES, Tamsir A, Clark RM, et al. (2011)

Construction of a genetic multiplexer to toggle between chemosensory pathways
in Escherichia coli. J Mol Biol. 406: 215–27.

36. Tinder RF (2000) Engineering digital design: Revised Second Edition 317319.

ISBN 0-12-691295-5.

37. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Systems Biology:

Functional analysis of natural microbial consortia using community proteomics

Nature Reviews Microbiology 7: 196–205.

38. Bernstein HC, Carlson RP (2012) Microbial Consortia Engineering for Cellular

Factories: in vitro to in silico systems Computational and structural biotechnol-
ogy journal 3: e201210017. Available: http://dx.doi.org/10.5936/csbj.

201210017.

39. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial
development. Annu Rev Microbiol. 54: 49–79.

40. You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by

cell-cell communication and regulated killing. Nature 428: 868–871.

41. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic

multicellular system for programmed pattern formation. Nature 434: 1130–
1134.

42. Shou W, Ram S, Vilar JMG (2006) Synthetic cooperation in engineered yeast

populations. Proc. Natl. Acad. Sci. USA 104: 1877–1882.

43. Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional

communication mediates a consensus in a microbial biofilm consortium. Proc.

Natl. Acad. Sci. USA 104: 17300–17304.

44. Tamsir A, Tabor JJ, Voigt CA (2010) Robust multicellular computing using

genetically encoded NOR gates and chemical wires. Nature 469: 212–215.

45. Regot S, Macia J, Conde N, Furukawa K, Kjelln J, et al. (2011) Distributed
biological computation with multicellular engineered networks. Nature 469:

207–211.

46. Macia J, Posas F, Solé RV (2012) Distributed Computation: The New Wave of

Synthetic Biology Devices. Trends Biotech. 30: 342–349.

47. Li B, You L (2011) Division of logic labour. Nature 496: 171–172.

48. McGregor S, Vasas V, Husbands P, Fernando C (2012) Evolution of Associative

Learning in Chemical Networks. PLoS Comput Biol 8(11): e1002739.

doi:10.1371/journal.pcbi.1002739.

49. Enderton H (2001) A Mathematical Introduction to Logic, second edition.

Harcourt Academic Press.

50. Marchisio MA, Stelling J (2009) Computational design tools for synthetic
biology. Curr. Opin. Biotech. 20: 479–485.

51. Rodrigo G, Jaramillo A (2007) Computational design of digital and memory
biological devices. Syst. Synth. Biol. 1: 183–195.

52. Cao H, Romero-Campero FJ, Heeb S, Camara S, Krasnogor N (2010) Evolving

cell models for systems and synthetic biology. Syst. Synth. Biol. 4: 55–84.

53. Rodrigo G, Carrera J, Jaramillo A (2007) Genetdes: automatic design of

transcriptional networks. Bioinformatics 23: 1857–1858.

54. Huynh L, Kececioglu J, Koppe M, Tagkopoulos I (2012) Automatic Design of
Synthetic Gene Circuits through Mixed Integer Non-linear Programming. PLoS

ONE 7(4): e35529.

55. François P, Hakim V (2004) Design of genetic networks with specified functions
by evolution in silico. Proc. Natl. Acad. Sci. USA 101: 580–585.

56. Dasika MS, Maranas CD (2008) Optcircuit: an optimization based method for

computational design of genetic circuits. BMC Syst Biol 2: 24.

57. Marchisio MA, Stelling J (2011) Automatic Design of Digital Synthetic Gene

Circuits. PLoS Comput. Biol. 7: e1001083.

58. Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and
redundancy in biological networks. Proc. Natl. Acad. Sci. USA 96: 3257–3262.

59. Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory
in living cells. Nature Biotechnology. doi:10.1038/nbt.2510.

60. Benenson Y (2012) Biomolecular computing systems: principles, progress and

potential. Nature Rev. Genet. 13: 455–468.

61. Ausländer S, Ausländer D, Muller M, Wieland M, Fussenegger M (2012)

Programmable single-cell mammalian biocomputers. Nature 487: 123–127.

62. Weber W, Daoud-El Baba M, Fussenegger M (2007) Synthetic ecosystems based
on airborne inter- and intrakingdom communication. Proc. Natl. Acad. Sci.

USA 104: 10435–10440.

63. Brenner K, Arnold FH (2008) Engineering microbial consortia: a new frontier in
synthetic biology. Trends Biotech. 28: 483–489.

64. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse.
Genes Dev. 24: 2603–2614.

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 13 February 2014 | Volume 9 | Issue 2 | e81248

http://dx.doi.org/10.5936/csbj.201210017
http://dx.doi.org/10.5936/csbj.201210017

65. Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of

biodiversity in a synthetic-mediated ecosystem. Nat. Chem. Biol. 5: 929–935.
66. Smaldon J, Romero-Campero FJ, Fernandez Trillo F, Gheorghe M, Alexander

C, et al. (2010) A computational study of liposome logic: towards cellular

computing from the bottom up. Syst. Synth. Biol. 4: 157–179.
67. Chang TMS (2005) Therapeutic applications of polymeric artificial cells. Nature

Rev. Drug Discov. 4: 221–235.

68. Ausländer S, Wieland M, Fussenegger M (2012) Smart medication through

combination of synthetic biology and cell microencapsulation. Metab. Eng. 14:

252–260.

69. Banga JR (2008) Optimization in computational systems biology. BMC Syst.

Biol. 2: 47.

How to Make a Synthetic Multicellular Computer

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e81248

