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Abstract

Plant-pollinator coextinctions are likely to become more frequent as habitat alteration and climate change continue to
threaten pollinators. The consequences of the resulting collapse of plant communities will depend partly on how
quickly plant functional and phylogenetic diversity decline following pollinator extinctions. We investigated the
functional and phylogenetic consequences of pollinator extinctions by simulating coextinctions in seven plant-
pollinator networks coupled with independent data on plant phylogeny and functional traits. Declines in plant
functional diversity were slower than expected under a scenario of random extinctions, while phylogenetic diversity
often decreased faster than expected by chance. Our results show that plant functional diversity was relatively robust
to plant-pollinator coextinctions, despite the underlying rapid loss of evolutionary history. Thus, our study suggests
the possibility of uncoupled responses of functional and phylogenetic diversity to species coextinctions, highlighting
the importance of considering both dimensions of biodiversity explicitly in ecological studies and when planning for
the conservation of species and interactions.
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Introduction

Current rates of anthropogenic habitat alteration have raised
awareness of a global biodiversity crisis [1]. Declines in species
numbers have been reported for a wide variety of taxa [2,3],
and extinction rates are expected to increase due to predicted
global changes [4]. In addition to direct effects on ecosystem
services such as nutrient cycling and primary production [5],
species extinctions may lead to the loss of interactions on
which other species depend for food, shelter, dispersal and
reproduction [6,7]. That is the case for most flowering plants,
which depend on animal pollinators for reproduction [8]. While
data on pollinator richness and abundance is scarce for many
parts of the globe, there is growing concern that pollinators
may be declining due to habitat fragmentation, invasion by
alien species, use of pesticides and global warming [9-11].

Disruption of pollination by animals may lead to decreased
plant productivity and reproductive success [12,13]. Eventually,
pollinator extinctions may trigger coextinction cascades in
which secondary extinctions of plants cause further extinctions
of pollinators and so on [6,7]. Thus, predicted pollinator
declines may ultimately lead to the disruption of plant
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communities, which in turn leads to the collapse of the
ecosystem services they maintain [1,5]. Since plant functional
diversity is strongly related to ecosystem functioning [14,15],
the intensity of the decline in ecosystem functioning will depend
partly on how quickly plant functional diversity decreases
following plant-pollinator coextinctions.

In parallel to declines in plant functional diversity, plant
extinctions due to the loss of their pollinators imply the loss of
the phylogenetic diversity of the plant assemblage [16,17].
Because functional traits are often similar among closely
related species [18] functional diversity should be strongly
related to phylogenetic diversity, so that the functional and
phylogenetic consequences of plant-pollinator coextinctions
should be similar. However, some studies have shown that
congruence between patterns of functional and phylogenetic
diversity does not always occur [19,20]. While simulated
coextinctions in mutualistic networks (including pollination
networks) may lead to relatively fast declines in phylogenetic
diversity [17], the consequences of plant-pollinator
coextinctions to plant functional diversity remain to be
investigated. If functionally unique plant species are particularly
prone to suffer coextinctions, then plant functional diversity
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should decline rapidly following pollinator losses. On the other
hand, if functionally unique plant species are unlikely to suffer
secondary extinctions compared to more redundant species,
plant functional diversity should be robust to the disruption of
pollination services.

Here, we investigated the loss of plant functional and
phylogenetic diversity following pollinator extinctions by
simulating coextinctions in empirical, quantitative plant-
pollinator networks. We contrasted simulated declines in
functional and phylogenetic diversity under a realistic
coextinction scenario with declines resulting from optimistic,
pessimistic and random scenarios for the loss of functional and
phylogenetic diversity. We also looked for possible
relationships between species functional and phylogenetic
uniqueness and their susceptibility to coextinctions. Finally, we
asked whether functionally or phylogenetically similar plant
species are at similar risk of being lost in a plant-pollinator
coextinction scenario.

Materials and Methods

Compilation of plant-pollinator networks

We performed simulations on empirical, quantitative
networks available in the literature or requested directly to
authors. A quantitative plant-pollinator network is described by
an interaction matrix whose entries a; contain the number of
times pollinator species i was recorded visiting plant species j.
Thus quantitative interaction networks report a reasonable
estimate of the total effect of each mutualistic interaction on the
interacting pair of species [21], as well as total interaction
frequency for each species. We assume that recorded
interactions between plants and insects are actual plant-
pollinator interactions; however, we note that many studies do
not discriminate between occasional flower visitors and actual
pollinators [22]. Interaction frequencies were used here to
ascribe relative risks of primary and secondary extinction to
species in simulations. Since we were interested in plant
functional and phylogenetic diversity, we could only include
quantitative networks for which information on both functional
traits and phylogeny was available for the plants. Simultaneous
availability of both kinds of information is scarce, so that our
literature search, resulted in seven networks described in
northern and central Europe: Switzerland (Albrecht et al. 2010
[23], data for the 130-year-old site), Scotland (Devoto et al.
2012 [24], old-growth site #30), England (Memmott 1999 [25];
Dicks et al. 2002 [26], Hicking site; both available as
supplementary material in [19]), Norway (Hegland et al. 2010
[27], data for 2004), and Germany (Junker et al. 2010 [28],
network 1; Weiner et al. 2011 [29], available as supplementary
material therein). We refer to each dataset by the name of the
respective first author (see Table S1 in Supporting Information
for information on network size and connectance).

Measuring plant functional and phylogenetic diversity
We estimated plant functional diversity using a suite of traits
which capture broad-scale variation in plant ecological
strategies: specific leaf area (SLA), plant height and seed mass
(LHS scheme, [30]). Each one of these ftraits represents
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important trade-offs controlling plant strategies [30] and are
related to other important traits [31]. These traits are also
associated to plant responses to soil resources, competitive
strength, and effects on biogeochemical cycles and productivity
[32-34]. Further, such traits are easily measurable, which
makes the LHS system broadly used in ecological studies
[35-37].

We searched the LEDA database (www.leda-traitbase.org)
for data on specific leaf area (SLA), canopy height and seed
mass. We included only plant species with data for at least two
traits. We removed plants with information for less than two
traits from the interaction matrices prior to the simulations and
removed any pollinators which had zero interactions after
removing such plants (see Appendix S1 in Supporting
Information for details on the compilation of trait data and the
adjustment of interaction matrices). This resulted in 0-9 plant
species being removed (0-38%, median = 8.6%).

We built a functional dendrogram for the set of plant species
in each network using a Euclidean distance matrix and the
UPGMA clustering algorithm. We obtained phylogenies for the
plant assemblages in each network using a recently published
dated phylogeny of European plants [38] encompassing all
plant species found in the pollination networks included in this
study. For consistency, we removed those plants with
insufficient data on functional traits (as defined above and in
Appendix S1) from each phylogeny and from subsequent
calculations of phylogenetic diversity.

We measured functional and phylogenetic diversity as the
sum of branch lengths needed to connect all non-extinct
species in the corresponding functional dendrogram or
phylogenetic tree: FD and PD, respectively [16,39,40]. Note
that FD for a single species assemblage is defined as zero,
whereas this is not the case for PD. Each functional
dendrogram and phylogenetic tree was built with the complete
set of plant species in each network (except for plants with
missing traits as defined above) and was not reconstructed
during the simulated coextinction sequences.

To estimate the functional and phylogenetic uniqueness of
each plant species in each assemblage, we calculated their
“originality” from the corresponding functional dendrogram and
phylogenetic tree [41]. Originality measures the relative
contribution of each species to the overall functional or
phylogenetic diversity of the assemblage, such that the values
for all species add up to 1. Both functional and phylogenetic
originality of each plant species were based on the complete
plant assemblage of the network and thus were calculated prior
to simulated extinctions. As alternative metrics for functional
and phylogenetic diversity, we used “total functional originality”
and “total phylogenetic originality”, the sum of functional and
phylogenetic originality values across all non-extinct plant
species in each network. Since results were qualitatively
consistent, we present only the results for FD and PD in the
main text.

Coextinction model and simulations

To investigate the impact of pollinator extinctions on the
functional and phylogenetic diversity of plant communities, we
used a simulation approach based on the removal of species
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from the observed interaction matrices. This is the standard
method for estimating the robustness of interaction networks to
coextinctions [17,42—-44]. However, we acknowledge that this
approach may produce biased results for rare species due to
undersampling of interactions [22].

We developed a stochastic model of coextinctions in
mutualistic networks based on network topology and interaction
strengths. Contrary to other topological models of coextinctions
in ecological networks (e.g. 43), it allows coextinction cascades
involving an indefinite number of species to occur following a
single episode of primary extinction. We briefly describe the
model here in the context of pollination networks and shall
discuss its properties in detail elsewhere. A single event of
coextinction is modeled as follows. We let P; = Rd; be the
probability of species i suffering extinction following the
extinction of a mutualistic partner species j, where d; is the
dependence of species i on species j and R, is a constant
which reflects the intrinsic reproductive dependence of species
i on pollination (when i is a plant) or its intrinsic dependence on
floral resources for food (when i is a pollinator). We assumed R
= 1 for all plants and pollinators in this study. Thus, while
simulation models usually assume that a species goes extinct
only after losing its last mutualistic partner, we relax such
assumption in our model. We assume, however, that species
cannot establish new mutualistic interactions after the
extinction of their original mutualistic partners. Dependence of i
on j is calculated as the number of interactions recorded
between that pair of species divided by the total number of
interactions of species i [45]. Thus an interaction matrix of a
animals and p plants results in two a x p dependence matrices
which describe how much each plant depends on each
pollinator and how much each pollinator depends on each
plant.

For each pollination network, we simulated coextinction
sequences involving primary extinction episodes and possible
coextinction cascades which occurred according to the model
described above. Each simulated extinction sequence
proceeded until all species had become extinct. A simulation
step in each sequence involved the primary extinction of a
single pollinator species followed by the update of the
interaction matrix and possibly by a sequence of associated
extinctions. Extinctions were represented in the interaction
matrix by setting all entries of a row (pollinator) or column
(plant) to zero. At the beginning of each step, a single pollinator
species was chosen as a target for primary extinction. All plant
species then had a chance of suffering secondary extinction
according to the model described above: for each plant
species, a value between 0 and 1 was sampled from a uniform
distribution, and a species was considered extinct if such value
was smaller than the species P; value. If any plant species
went secondarily extinct, all of the surviving pollinator species
in turn had a chance of going extinct themselves, and so on
until the sequence was interrupted by no further extinctions
occurring. Then we assumed the community reached
equilibrium, calculated FD and PD for the set of surviving plant
species and moved on to the next primary extinction episode.
The algorithm updated the dependence matrix as the extinction
sequence moved forward. We quantified the persistence of a

PLOS ONE | www.plosone.org

Coextinctions and the Loss of FD and PD

plant species in an extinction sequence as the number of
primary extinction episodes which occurred before that species
was lost.

Primary extinctions of pollinators at the beginning of each
simulation step took place in a realistic scenario in which
pollinator species with lower total interaction frequencies had a
higher chance of suffering primary extinctions at each step. In
pollination networks total interaction frequency tends to be
strongly correlated with abundance [46,47], which is in turn a
proxy to extinction risk. We assumed that the probability of
primary extinction for each pollinator species is proportional to
the inverse of its total interaction frequency. We ran 10*
coextinction sequences and calculated the average curve
describing the decline in FD and PD for each network, as well
as the average persistence of each plant species. Each
average curve describes the decline in functional or
phylogenetic diversity as a function of the proportion of plant
species lost.

In order to provide a framework to interpret declines in plant
functional and phylogenetic diversity, we calculated a second
set of curves for each network which described the decline in
FD and PD when plant species were lost independently of their
pollinators and according to three reference scenarios: (1) a
best-case scenario in which plants species were removed
deterministically in increasing order of originality (functional or
phylogenetic, separately); (2) a worst-case scenario in which
plants species were removed deterministically in decreasing
order of originality; and (3) a random scenario (10*
simulations). Best- and worst-case scenarios set boundaries
within which any decline in FD and PD should lie. We
implemented all simulations in R [48] using package ‘ade4’ to
calculate originality [49] and package ‘picante’ to calculate FD
and PD [50].

Statistical analyses

We performed Spearman correlation tests to assess whether
persistence was associated with functional and phylogenetic
originality. To assess the degree to which functionally or
phylogenetically similar plant species shared similar risk of
suffering coextinction, we performed autocorrelation analyses
by calculating Moran’s correlograms for persistence using
distance matrices built from the functional dendrograms and
phylogenetic trees for each network [51]. Also, because
coupled responses of functional and phylogenetic diversity
require functional traits to be conserved to some degree along
lineages, we quantified phylogenetic signal in the functional
originality of species by calculating phylogenetic correlograms
for functional originality in each network. We conducted all
autocorrelation analyses in PAM v0.9 (Phylogenetic Analysis in
Macroecology; [52]).

Results

Declines in FD and PD associated with simulated plant-
pollinator coextinctions are shown in Figures 1 and 2 (see also
Figures S1 and S2 in Supporting Information for results
obtained using total functional and phylogenetic originality,
respectively). In six out of seven networks, FD decreased
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Figure 1. Declines in functional diversity (FD) following simulated plant-pollinator coextinctions in seven pollination

networks (A-G). Circles: declines following plant-pollinator coextinctions. Dotted lines: declines following random plant extinctions
in the absence of coextinctions. Solid lines above and below the dotted lines represent best- and worst-case scenarios, respectively.

doi: 10.1371/journal.pone.0081242.g001

consistently more slowly than expected under a random
scenario (Figures 1, 3A). In those cases, the relative extra
amount of functional diversity preserved in comparison with the
random scenario ranged from 3.1% (Memmott network;
Figures 1F, 3A) to 11.9% (Dicks network; Figures 1C, 3A) at
the point when 50% of all plant species had been lost. In the
Devoto network, however, FD decreased consistently faster
than expected under the random scenario (Figure 1B) and was
22.9% smaller than the random expectation at the point when
50% of plant species had been lost (Figure 3A).

In all networks except Devoto, PD decreased faster than FD
when both were compared to their respective random
expectation (Figure 3). In four networks (Albrecht, Devoto,
Dicks and Memmott), declines in PD were consistently faster
than expected under the random scenario of plant extinctions
(Figures 2A-C,F; Figure 3B), so that PD was 3.0-14.2 %
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smaller than the random expectation at the point when 50% of
plant species had been lost. Consistently slower-than-random
declines in PD occurred in only one network (Junker), so that
PD was 3.5% greater than expected under the random
scenario following the loss of 50% of plant species (Figures 2E,
3B). The two remaining networks exhibited slower-than-random
declines in PD up to the point when about 55% (Weiner; Figure
2G) and 67% (Hegland; Figure 2D) of plant species had
suffered coextinction, and negative deviations from the random
curve after that point.

Species functional originality showed strongly asymmetric
frequency distributions in all pollination networks, with most
plant species having very low functional originality and single
species accounting for 17.0-41.1% of the total (Figure S3). We
found no correlation between species persistence and species
functional originality in any of the networks (Figure S3; Table
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Figure 2. Declines in phylogenetic diversity (PD) following simulated plant-pollinator coextinctions in seven pollination
networks (A-G). Circles: declines following plant-pollinator coextinctions. Dotted lines: declines following random plant extinctions
in the absence of coextinctions. Solid lines above and below the dotted lines represent best- and worst-case scenarios, respectively.

doi: 10.1371/journal.pone.0081242.g002

S2). Phylogenetic originality was more evenly distributed
across plant species in pollination networks, with the single
most phylogenetically original species in each network
accounting for 10.3-24.5% of total phylogenetic originality. We
also found no correlation between species phylogenetic
originality and species persistence in 6 out of 7 networks
(Figure S4; Table S1). In the Devoto network, species with high
phylogenetic originality had lower persistence and thus higher
risk of suffering coextinction (rs = -0.643; p = 0.028). Overall,
functionally similar or phylogenetically close plant species had
no tendency to have similar persistence to coextinctions
(Figure 4A-B, Table S3). Also, phylogenetically close plant
species had no tendency to have similar functional originality
(Figure 4C, Table S3), which suggests no overall phylogenetic
signal in the set of functional traits used.
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Discussion

Overall, coextinction trajectories led to slower declines in
plant functional diversity than expected under a scenario in
which plant functional diversity was lost at random. In contrast,
phylogenetic diversity decreased faster than functional diversity
in all networks except one, and faster-than-random declines in
phylogenetic diversity occurred in four of them. Thus, our
results show that the loss of plant functional diversity is not
necessarily coupled with the decline in plant phylogenetic
diversity following the loss of their pollinators. While the
absence of phylogenetic signal in functional traits would by
itself suggest that functional diversity might not track
phylogenetic diversity in its faster decline, our results show that
declines in functional diversity may actually deviate from the
random expectation in the opposite direction. Thus, we confirm
the previous finding that phylogenetic diversity is often lost
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rapidly following coextinctions in mutualistic networks [17], and
we also show that plant functional diversity is relatively robust
to pollinator extinctions despite a relatively faster underlying
loss of plant evolutionary history.

The possibility of uncoupled functional and phylogenetic
consequences of plant-pollinator coextinctions highlights the
importance of taking functional diversity explicitly into account
in ecological studies and when planning for the conservation of
species and their interactions, instead of simply taking
phylogenetic diversity as a proxy. Previous work has found
mismatches between functional and phylogenetic diversity in
their spatial distribution [19,20] and in the extent to which they
are represented by indicator groups in a conservation context
[53]. Our results further suggest that, even when functional and
phylogenetic diversity do exhibit congruence in space, such
local congruence may eventually be lost due to uncoupled
responses to species coextinctions. Consequently, because
functional rather than phylogenetic diversity is an ultimate
driver of ecosystem functioning [54,55], predicting declines in
ecosystem functioning from declines in phylogenetic diversity
may lead to erroneous conclusions if both dimensions of
biodiversity respond in different ways.

Non-random loss of functional diversity and ecosystem
function in plant communities under non-random extinction
scenarios has been demonstrated before in computer
simulations [39,56] and experimentally [57,58]. Those studies
have explored different classes of realistic extinction scenarios,
such as due to climate change or different management and
harvesting strategies of plant communities, and then simulated
plant extinctions based on traits likely to be associated with
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extinction risk in each scenario [39,56,57] or on observed
nested patterns of species occurrence [58]. We propose the
modeling of mutualistic coextinctions, previously used to study
the loss of plant phylogenetic diversity [17], as an additional
strategy for building realistic scenarios aimed at exploring the
functional consequences of plant extinctions. Extinction risk in
this type of scenario is linked to the architecture of species
interactions instead of being directly linked to morphological or
physiological traits, and realism can be achieved by
considering the empirical pattern of interactions described in
mutualistic networks.

Although non-random declines in functional and phylogenetic
diversity occurred, we found no relationship between the
functional and phylogenetic uniqueness of plant species and
their risk of suffering coextinction, nor did we find any tendency
for functionally of phylogenetically similar plant species to have
similar coextinction risk. It is possible that non-random declines
result from one or a few plant species in each network
contributing  disproportionately to the functional and
phylogenetic diversity of the plant assemblage. Because the
loss of those highly unique species is associated with the loss
of large amounts of functional and phylogenetic diversity,
overall declines in those variables may be effectively
determined by the particular persistence of those species. For
example, in the only network which exhibited a faster-than-
random decline in functional diversity under the coextinction
scenario (Devoto network), two of the three most sensitive
species accounted for more than 60% of total functional
originality. In contrast, the single most persistent species
accounted for about 40% of total originality in the Junker
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network, in which functional diversity decreased more slowly
than the random expectation. Since the overall pattern seems
to be slower-than-random declines in functional diversity, our
results suggest that plant species which contribute
disproportionately to functional diversity are relatively well-
protected against the loss of pollinators, even if no general
relationship can be found among the whole plant assemblage.
On the other hand, since phylogenetic diversity decreased
faster than functional diversity, and often faster than expected
under the random scenario, it appears that highly
phylogenetically unique plant species are often sensitive to the
loss of their pollinators.

While we provide a first assessment of the functional
consequences of coextinctions in mutualistic networks, the
effect of predator-prey coextinctions on the functional diversity
of food webs has been investigated before. It has been shown
that simulated coextinctions lead to greater-than-random loss
of total trophic diversity in model and natural food webs [59]. In
contrast, while we did find non-random declines in the
functional diversity of pollination networks, they were mainly in
the opposite direction. Also, we found no association between
functional uniqueness and probability of coextinction among
plant species, while in food webs more functionally unique
species seem to have higher interaction frequencies [60] and
higher probability of suffering secondary extinctions [59]. While
such food web studies focused on traits involved in the
realization of the predator-prey interactions, we estimated
functional diversity by considering non-reproductive traits
related to broad variation in plant strategies and related to
ecosystem functions such as nutrient cycling and productivity.
Thus, it is possible that functional and phylogenetic diversity
show coupled responses to plant-pollinator coextinctions if
functional diversity is estimated using reproductive (e.g. floral,
phenological) traits linked to pollination interactions and to the
structure of pollination networks.

It remains to be investigated whether similar results are to be
found when considering plant-pollinator communities from
different regions of the globe. Different patterns of decline in
functional diversity might arise since, for example, structural
properties of mutualistic networks have been shown to vary
along latitudinal and altitudinal gradients [61,62]. Whether the
degree of uncoupling between functional and phylogenetic
diversity varies geographically and can be predicted on the
basis of network properties is also open to investigation. Also,
we do not know whether coextinctions due to the loss of other
kinds of mutualistic partners would produce similar impacts on
plant functional diversity. Seed dispersers such as birds, for
example, are endangered due to threats similar to those faced
by pollinators [63], and the architecture of seed dispersal
networks is generally similar to that of pollination networks [47].
Finally, pollinator behavior may influence the persistence of
plant species since pollinators may switch to new plant species
following declines in the abundance of their original partners
[64]. If the probability of a plant species being visited by
additional pollinator species is correlated to its functional and
phylogenetic  originality, the effect of plant-pollinator
coextinctions on plant functional and phylogenetic diversity
may differ from what is suggested by our results.
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In conclusion, our results point towards distinct
consequences of mutualistic coextinctions to the functional and
phylogenetic diversity of plant assemblages. Investigating the
causes of such uncoupling, in terms of network structure, and
its implications, in terms of predicting community and
ecosystem responses to environmental change, can improve
our understanding of the consequences of species extinctions.
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