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Abstract

Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology
usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for
potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer
type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical
considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique
commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer
versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions
of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates
from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired
cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219
tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110
scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to
prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with
statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative
comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed
scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely
used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer
marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/.
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Introduction

Quantitative proteomics has been used widely in cancer marker

discovery with a certain degree of success [1–7]. This type of study

usually generates a huge amount of data that need to be further

analyzed in order to identify marker candidates. Although there is

no standard way to screen cancer markers from massive proteomic

datasets [8], these efforts have delivered a number of potential

cancer markers [9–11]. Even though various approaches have

been developed, mining biomarkers from high-throughput pro-

teomic data primarily relies on fold changes in protein expression

between the normal and cancer groups [12]. A good cancer

marker is expected to be highly overexpressed in the appropriate

cancer group, and the degree of the overexpression needs to be

both significant and specific to the cancer of interest.

A method that is able to define the cancer-specificity of a

protein to the cancer of interest is therefore indispensible. To

create such a cancer-specificity index, we need to have expression

information on the various proteins in healthy individuals and in

patients with different types of cancer. Acquiring such proteomic

data, however, is resource and time-consuming for small-scale

academic research groups. Fortunately the Human Protein Atlas

(HPA) is available; this comprehensively annotates a large number

of genes and proteins expressed in various types of normal and

cancer tissues [13–15]. HPA is an antibody-based database. By

applying tissue microarray and immunohistochemistry (IHC)

staining techniques, HPA has comprehensively accumulated

millions of high-resolution images with expert-curated annota-

tions. IHC staining is regarded as an effective technique in

proteomic research [16], [17]. On the basis of these images,

especially those using IHC staining, the HPA has been effectively

used in a number of studies for cancer marker discovery [18–24].

The approach used with the HPA in these studies, however,

involved manual queries. Since the annotation of the IHC images

is ordinal and denoted by gradient bars, acquiring protein

expression levels from the HPA is unintuitive and labor-intensive.

Moreover, when examining the gradient bars of the IHC

annotations, subjective judgment comes into play and this may

make interpretation of protein expression level by the researchers

inconsistent across different images. Accordingly, a systematic way
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to quantify protein expression data from the HPA, which would

allow the cancer specificity of proteins to be defined on the basis of

the IHC annotations of HPA, becomes essential.

In this study, we proposed a scoring approach based on the

annotation of the IHC images from the HPA. The scoring

approach takes into account a protein’s expression levels in

normal/cancer tissues and the significance/specificity of any

overexpression of the protein in the cancer tissue. On the basis of

the proposed scoring mechanism, we comprehensively prioritized

all the tested antibodies in the HPA (17219 antibodies in the HPA

version 10.0) for 20 different types of cancers. A statistical analysis

of the results was carried out by the one-sample t-test and this

demonstrated that the proposed scoring approach is able to

identify proteins that are overexpressed in cancer tissues, and

pinpoint when such overexpression is significant and specific to the

cancer of interest. We also used a sample cohort of 1482 proteins

[25] to evaluate the effectiveness of the proposed scoring

approach. The scoring approach, in combination with protein

fold changes, was able to identify four marker candidates for

colorectal cancer from the sample cohort. The four selected

marker candidates included CEACAM 5 and CEACAM6, which

are the most widely used markers for colorectal cancer at present;

they are primarily used for prognostic monitoring [26]. The other

two selected marker candidates, CAMP and ANXA4, have also

been reported to be potential markers for colorectal cancer [27–

29]. The evaluation results demonstrate the potential of the

proposed scoring approach when it is applied to cancer marker

discovery. All the calculated scores are available for query via a

web site, ‘‘HPA Scoring’’ at http://bal.ym.edu.tw/hpa/.

Materials and Methods

The IHC images of HPA
In this study, immunohistochemistry (IHC) staining images of

the HPA version 10.0 released on the 12 September 2012 (http://

www.proteinatlas.org/) were used to prioritize genes or proteins

represented by antibodies. Data entries in the HPA are indexed

using their gene names. In the HPA version 10.0, there are 14012

genes, the protein expression profiles of which are measured using

17219 antibodies in 46 normal human tissue types, 20 cancer

tissue types, and 47 human cell lines. HPA version 10.0 has

comprehensively accumulated millions of high-resolution IHC

images with expert-curated annotations, among which 5108055

were used in this study.

Validation dataset
A cohort of 1482 membrane proteins expressed in paired tumor

and adjacent normal tissues from 28 patients diagnosed with

colorectal cancer was used as our validation dataset [25] (Table

S1). Clinical information on the 28 patients is presented in Table

S2. This dataset was originally created to screen potential markers

for colorectal cancer.

Mapping the cancer and normal tissues
The proposed scoring approach is primarily based on using

protein expression differences between cancer and normal tissues.

Therefore there was a need to map the relationship between the

various types of cancer and their paired normal tissues. These

mappings, which were extracted from the HPA, are listed in

Table 1. A cancer type may be defined in a number of different

mappings if it is either paired with more than one cell type in a

normal tissue (e.g. cervical cancer is paired with glandular cell and

squamous epithelial cell from cervix, uterine) or paired with more

than one normal tissue type (e.g. colorectal cancer is paired with

tissue from the colon and rectum). The different mappings are

analyzed independently when our approach is applied. Please note

that there is no mapping defined for ovarian cancer due to a lack

of IHC staining results in the HPA for normal ovary tissue.

Furthermore, since hepatocellular carcinoma and cholangiocarci-

noma are totally different cancers, they were regarded as different

cancer types in our mappings even if they were all classified as liver

cancer in the HPA. Eventually, 27 mappings were defined for 20

cancer types using the HPA. Please note that we did not

investigate cancer subtypes, such as lobular carcinoma and duct

carcinoma, which are breast cancers, because in such cases the

number of tissue samples in the HPA is quite limited. Our

approach is antibody-oriented; each antibody in the HPA is used

to evaluate no more than 12 patients with a certain type of cancer.

If we further classify the corresponding 12 IHC images into

different cancer subtypes, it would be very difficult to draw any

conclusion from statistical significant evidence that is based solely

on ,10 IHC images. We would like to emphasize that looking into

cancer subtypes is a very important aspect of cancer marker

discovery. We will make our effort towards this direction when the

HPA or another database is able to provide a sufficient number of

IHC images of different cancer subtypes.

Expression differences as detected by antibody in
relation to mapped cancer and normal tissues

For a given mapping and a given antibody, our aim was to

determine the expression difference (ED) of the target protein

between the paired cancer and normal tissue samples. Expression

levels of a protein in tissues are determined based on the

annotations provided by the HPA. Each gene in the HPA is

annotated; this consists of a gene and protein summary, antibody

and antigen information, and a range of different types of

expression profiles. In this study, the annotations Intensity and

Quantity for IHC staining are used to define the expression level of

a protein in tissues. The annotation Intensity represents the level of

antibody staining. The annotation Quantity represents the fraction

of positively stained cells. Since a protein may be recognized by

more than one antibody due to multiple binding sites, certain

genes in the HPA are evaluated using more than one antibody.

Since antibodies used to create the HPA are not all of the same

quality, the evaluation of the results from these antibodies may be

inconsistent. To address this issue, our proposed approach is

designed to be antibody-oriented in order to overcome any

inconsistencies in the quality of antibody. Different antibodies for a

given gene product are regarded as distinct data entries and

processed separately.

For the target protein, its expression in tissues is characterized

by the annotations Intensity and Quantity. The two annotations are

first transformed from ordinal form to numeric form. The four

values Strong, Moderate, Weak, and Negative that are used to

describe Intensity are transformed into 3, 2, 1, and 0, respectively.

The transformed Intensity is denoted by I. Similarly, the five values

.75%, 75%–25%, ,25%, Rare, and Negative that are used to

describe Quantity are transformed into 75, 50, 25, 5, and 0,

respectively. The transformed Quantity is denoted by Q. The basic

factor defining the expression of a protein in tissues is then

calculated using I6Q (Figure 1A).

For the normal cell type, no matter how many times the

antibody is used to perform the IHC staining, HPA only reports

one pair of Intensity and Quantity scores. We therefore have only one

pair of I and Q values for the normal cell type. The expression of

the protein in the normal cell type, EiN (expression in normal), is

therefore defined as follows:

Prioritizing Cancer Marker Candidates Based on HPA
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EiN~I|Q:

For example, there is only one pair of Intensity and Quantity

(Moderate, .75%) when the antibody HPA034966 is used for the

IHC staining of glandular cells from normal breast tissue, we

therefore have EiN = 2675 = 150. Overall, the values of EiN will

have a range from 0 to 225.

In contrast to the situation for normal tissue, for a given cancer

type, the HPA reports a pair of Intensity and Quantity each time the

antibody is used to perform IHC staining. Consequently, we

usually have several pairs of I and Q values for a given cancer type.

Thus the expression of a protein in a given cancer type, EiC

(expression in cancer), is defined as the average expression of the

protein in tissues from the patients diagnosed with this cancer:

EiC~
1

n

X
I|Q

� �
,

where n is the number of tested patients diagnosed with this

cancer. For example, the antibody HPA034966 was used to

perform IHC staining on 12 patients with breast cancer and as a

result the HPA provides 12 pairs of Intensity and Quantity scores; these

are: (Strong, .75%), (Moderate, .75%), (Strong, .75%), (Strong,

.75%), (Moderate, .75%), (Moderate, .75%), (Moderate, .75%),

(Moderate, .75%), (Moderate, .75%), (Moderate, .75%), (Mod-

erate, .75%), and (Moderate, .75%). We therefore have EiC

= (3675+2675+3675+3675+2675+2675+2675+2675+2675-

+2675+2675+2675)/12 = 2025/12 = 168.75. Overall, the val-

ues of EiC will also have a range from 0 to 225.

Finally, the expression difference, ED, of a given antibody for a

given mapping is defined as ED = EiC-EiN (Figure 1A).

Antibody scores in relation to tissue mapping
For a given antibody and a given mapping, the antibody is

expected to receive a high score if (1) the target protein is

overexpressed in the cancer tissue, and (2) the degree of the

overexpression is significant and specific to the mapping. The

score of the antibody to the mapping is therefore determined using

the following steps (Figure 1):

1. Determine the protein expression and ED of all
antibodies. In the initial step, we first determine the protein

expression levels EiC and EiN for all the antibodies in HPA for

all mappings. The expression difference ED of antibodies is

Table 1. Mappings between cancer tissues and normal tissues.

Cancer Normal Tissue (Cell Type) Mapping ID

Breast cancer breast (glandular cells) Breast

Carcinoid pancreas (islets of Langerhans) Carcinoid

Cervical cancer cervix, uterine (glandular cells) Cervical-A

cervix, uterine (squamous epithelial cells) Cervical-B

Colorectal cancer colon (glandular cells) Colorectal-A

rectum (glandular cells) Colorectal-B

Endometrial cancer uterus, pre-menopause (glandular cells) Endometrial-A

uterus, post-menopause (glandular cells) Endometrial-B

Glioma cerebral cortex (glial cells) Glioma

Head and neck cancer oral mucosa (squamous epithelial cells) Head & neck-A

salivary gland (glandular cells) Head & neck-B

Cholangiocarcinoma liver (bile duct cells) Cholangio

Hepatocellular carcinoma liver (hepatocytes) Hepato

Lung cancer bronchus (respiratory epithelial cells) Lung-A

lung (pneumocytes) Lung-B

Lymphoma lymph node (germinal center cells) Lymphoma-A

lymph node (non-germinal center cells) Lymphoma-B

Melanoma skin (melanocytes) Melanoma

Ovarian cancer* N/A

Pancreatic cancer pancreas (exocrine glandular cells) Pancreatic

Prostate cancer prostate (glandular cells) Prostate

Renal cancer kidney (cells in tubules) Renal

Skin cancer skin (keratinocytes) Skin

Stomach cancer stomach, lower (glandular cells) Stomach-A

stomach, upper (glandular cells) Stomach-B

Testis cancer testis (cells in seminiferus ducts) Testis

Thyroid cancer thyroid gland (glandular cells) Thyroid

Urothelial cancer urinary bladder (urothelial cells) Urothelial

*Ovarian cancer was not available because most of the antibodies in HPA database were not evaluated against normal ovary tissues.
doi:10.1371/journal.pone.0081079.t001

Prioritizing Cancer Marker Candidates Based on HPA
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determined using EiC-EiN (Figure 1A). Please note that this

initial step can be regarded as the ‘‘system initialization’’ and is

performed only once; the calculated EiC’s, EiN’s, and ED’s

remain constant for the scoring of all antibodies.

2. Determine the significance of the target ED. We would

like to know if the ED of the target antibody is significant in

relation to the mapping of interest. The ED values of all

antibodies to this mapping are normalized by z-score

transformation zg(ED)~
ED{mg

sg

to remove inter-experiment

bias, where mg and sg are the mean and standard deviation of

all these ED’s, respectively. The significance of the ED of the

target antibody to the mapping, SG, is defined by the

cumulative z distribution SG = P(Z# zg(ED)) (Figure 1B). SG

can be regarded as the rank of the target antibody among all

antibodies with respect to the mapping of interest. The value of

an SG will be within the range from 0 to 1.

3. Determine the specificity of the target ED. We also wish

to know if the target ED is specific to the mapping of interest.

The ED’s of the target antibody to all mappings are normalized

by z-score transformation zp(ED)~
ED{mp

sp

to remove inter-

experiment bias, where mp and sp are the mean and standard

deviation of all these ED’s, respectively. The specificity of the ED

of the target antibody to the mapping, SP, is defined by the

cumulative z distribution SP = P(Z# zp(ED)) (Figure 1C). SP

can be regarded as the rank of the target mapping among all

mappings with respective to the target antibody. The value of

an SP will also be within the range from 0 to 1.

4. Determine the score of the target antibody. The score

of a given target antibody in relation to a given mapping of

Figure 1. Procedure for determining the score of an antibody in relation to a mapping of interest. (A) Initially, the protein expression
levels and the expression difference (ED) between cancer tissue and normal tissue for all antibodies covering all mappings are calculated. (B) The
significance of the target ED with respect to the mapping of interest is determined by a cumulative z distribution. (C) The specificity of the target ED
with respect to the mapping of interest is determined by another cumulative z distribution. (D) The final score of the antibody with respect to the
mapping of interest is determined on the basis of its protein expression level in cancer tissue and the significance and specificity of its ED.
doi:10.1371/journal.pone.0081079.g001
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interest is defined as Score~EiC|SG|SP (Figure 1D). The

value of a Score will be within the range from 0 to 225.

Results and Discussion

We have comprehensively calculated the scores for all the

antibodies used in the HPA for each of the 27 mappings and this

resulted in 457110 scores. Instead of summarizing these into a

huge flat supplementary file, all the calculated scores are available

on a web site that allows queries to be made (http://bal.ym.edu.

tw/hpa/) (Figure 2). The web site, HPA Scoring, provides two

query modes: a query by gene name and a query by cancer type.

For a given gene name, HPA Scoring lists the score and rank of

the antibodies used for each mapping (Figure 2A). For a given

mapping of a cancer type, HPA Scoring reports a gene list, the

entries in which are sorted by antibody score (Figure 2B). In the

following part of the study, we carry out a verification of whether

or not the proposed scoring approach is able to identify antibodies

that satisfy the following criteria. Firstly, that the captured protein

is overexpressed in the target cancer tissue, and, secondly, that the

degree of the overexpression is significant and specific to the

cancer. In the second part of this verification, we have also used

colorectal cancer as the model disease and applied a method of

cancer marker discovery specifically using our proposed scoring

approach to the colorectal cancer dataset.

The ability of the scoring approach to identify abundant
proteins in cancer tissues

For each mapping, we select the top 100 antibodies according to

their Scores, and perform a one-sample t-test in order to verify

whether or not the average EiC of these 100 antibodies is statistical

higher than that of all of the tested antibodies. The one-sample t-

test is often used to measure the mean difference between a sample

and a known population mean. We apply the one-sample t-test

Figure 2. The HPA Scoring web server (http://bal.ym.edu.tw/hpa/). (A) The result of querying by gene name. (B) The result of querying by the
mapping of a cancer type.
doi:10.1371/journal.pone.0081079.g002

Table 2. The statistical significance of the EiC mean differences between the top 100 antibodies and all the tested antibodies.

All the tested antibodies Top 100 antibodies1

Mapping ID Mean Mean Standard deviation p-value2

Breast 86.967 210.927 12.894 ,0.001

Carcinoid 78.322 213.083 13.889 ,0.001

Cervical-A 70.833 207.705 13.866 ,0.001

Cervical-B 70.833 211.265 12.488 ,0.001

Colorectal-A 95.679 210.295 12.865 ,0.001

Colorectal-B 95.549 210.435 12.72 ,0.001

Endometrial-A 76.765 205.513 13.47 ,0.001

Endometrial-B 76.731 208.591 12.639 ,0.001

Glioma 61.147 212.212 11.275 ,0.001

Head & neck-A 83.165 218.938 9.166 ,0.001

Head & neck-B 83.162 219.875 8.492 ,0.001

Cholangio 86.078 222 5.871 ,0.001

Hepato 75.282 211.352 13.172 ,0.001

Lung-A 65.822 178.636 25.491 ,0.001

Lung-B 66.014 207.776 10.676 ,0.001

Lymphoma-A 53.113 200.519 15.218 ,0.001

Lymphoma-B 53.113 202.852 14.863 ,0.001

Melanoma 79.367 210.641 9.016 ,0.001

Pancreatic 83.807 207.797 12.52 ,0.001

Prostate 79.458 206.901 12.988 ,0.001

Renal 59.437 200.705 15.034 ,0.001

Skin 62.645 207.807 16.649 ,0.001

Stomach-A 75.516 202.007 14.891 ,0.001

Stomach-B 75.467 207.048 14.199 ,0.001

Testis 75.369 210.936 11.128 ,0.001

Thyroid 96.606 218.875 9.891 ,0.001

Urothelial 77.656 194.347 17.655 ,0.001

1The 100 antibodies were selected on the basis of their Scores.
2The p-values reported were obtained by one-sample t-test.
doi:10.1371/journal.pone.0081079.t002

Prioritizing Cancer Marker Candidates Based on HPA

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e81079



because we can determine the average EiC of all the tested

antibodies, namely the population mean. The statistical signifi-

cances of the EiC mean differences between the top100 antibodies

and all the tested antibodies for each mapping are listed in Table 2.

According to the p-values reported by the one-sample t-test, all the

27 EiC mean differences are statistical significant. The results of

these tests demonstrate the ability of our scoring approach to

identify abundant proteins in cancer tissues.

The significance and cancer-specificity of the ED of top-
ranked antibodies

In order to make sure the proposed scoring approach is capable

of identifying proteins that are significantly overexpressed in

cancer tissues, we perform a one-sample t-test to verify whether or

not the average ED of the top 100 antibodies is statistical higher

than that of all of the tested antibodies. The statistical significances

of the ED mean differences between the top 100 antibodies and all

the tested antibodies are listed in Table 3. According to the p-

values reported by the one-sample t-test, all the 27 ED mean

differences are statistical significant. The test results demonstrate

the ability of our scoring approach to identify proteins that are

highly expressed in the cancer of interest. Please note that the top

100 antibodies have an up-regulated trend (positive ED sample

mean) for all the 27 mappings. This contrast with the results for

most of the tested antibodies, which show a down-regulated trend

in cancer tissues (22 out of the 27 mappings have a negative ED

population mean).

The top100 antibodies of each mapping were also used to verify

whether or not the proposed scoring approach is capable of

identifying proteins whose overexpression is specific to the cancer

of interest. For the top 100 antibodies of a specific mapping, their

average ED is determined for each of the 27 mappings. The

obtained 27 ED means were then organized into a heat map with

large ED values colored in dark blue and small ED values colored

in light blue (Figure 3). The entry (i, j) in the heat map represents

the average ED of the top 100 antibodies of the j-th mapping

calculated for the i-th mapping. The rightmost column, All, lists

the average ED values of all the tested antibodies calculated for

each of the 27 mappings; namely the entries located within this

column are population ED means. The heap map therefore has

the dimensions 27 by 28. The dark blue entries located along the

diagonal reveal that the average ED of the antibodies selected for a

Table 3. The statistical significance of the ED mean differences between the top 100 antibodies and all the tested antibodies.

All the tested antibodies Top 100 antibodies1

Mapping ID Mean Mean Standard deviation p-value2

Breast 211.035 97.927 37.331 ,0.001

Carcinoid 23.655 113.333 37.197 ,0.001

Cervical-A 213.116 125.455 45.193 ,0.001

Cervical-B 22.811 121.015 41.49 ,0.001

Colorectal-A 230.496 92.995 35.012 ,0.001

Colorectal-B 233.668 80.685 31.201 ,0.001

Endometrial-A 214.956 75.013 31.704 ,0.001

Endometrial-B 211.921 88.341 34.803 ,0.001

Glioma 13.024 121.612 40.476 ,0.001

Head & neck-A 4.52 143.588 41.322 ,0.001

Head & neck-B 1.333 148.475 37.688 ,0.001

Cholangio 37.899 185.75 32.201 ,0.001

Hepato 25.828 110.852 44.067 ,0.001

Lung-A 258.02 67.486 40.632 ,0.001

Lung-B 13.475 145.776 37.781 ,0.001

Lymphoma-A 28.229 94.219 35.837 ,0.001

Lymphoma-B 211.273 88.602 31.782 ,0.001

Melanoma 20.421 162.141 39.514 ,0.001

Pancreatic 221.58 116.147 36.815 ,0.001

Prostate 213.088 88.051 33.274 ,0.001

Renal 259.582 77.754 36.312 ,0.001

Skin 212.319 93.407 38.835 ,0.001

Stomach-A 242.253 91.407 38.16 ,0.001

Stomach-B 244.785 94.598 40.061 ,0.001

Testis 228.357 105.686 34.966 ,0.001

Thyroid 215.33 107.125 44.123 ,0.001

Urothelial 236.808 68.547 36.583 ,0.001

1The 100 antibodies were selected on the basis of their Scores.
2The p-values reported were obtained by one-sample t-test.
doi:10.1371/journal.pone.0081079.t003
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mapping are specific to that mapping. In contrast, most of the

entries in the heap map have average ED for the antibodies

selected of a mapping that are similar to the population ED mean

if they are tested for another mapping. Every row in the heap map

confirms the observation that for a certain mapping, the average

ED values of the antibodies selected for this mapping are higher

than that of antibodies selected for other mappings. Every column

in the heat map also agrees with another observation, namely that

for the 100 antibodies selected for a specific mapping, their

average ED is only significant for selected mapping and is similar

to the population mean for other mappings. The findings of this

evaluation demonstrate that the ED of top-ranked antibodies is

specific to the cancer of interest.

In summary, the proposed scoring approach shows great

potential as a means of identifying abundant and cancer-specific

proteins in tissues.

Application of the approach to cancer marker discovery
In this section we use an evaluation cohort to demonstrate how

the proposed scoring approach can be used to screen possible

markers for cancers. The cohort consists of 1482 up-regulated

membrane proteins from 28 patients who had been diagnosed

with colorectal cancer [25]. We apply the following three filtering

rules in order to select possible cancer markers from this cohort.

Rules similar to the last two listed below have been widely used in

biomarker discovery.

Rule 1. A protein with antibody score $2 100 in either the

colorectal-colon mapping or the colorectal-rectum

mapping is selected.

Rule 2. An up-regulated protein with an average fold change

$2 2 is selected.

Rule 3. An up-regulated protein with a fold change $2 2 in

more than 14 patients is selected.

The proteins selected by these criteria were then further

analyzed using the Biomarker Filter provided by the IPA (Ingenuity

Systems, http://www.ingenuity.com). Each protein with potential

biomarker or disease application is annotated by the IPA during

this process.

Eight combinations of filtering criteria were evaluated. Each of

the combinations takes into consideration different combinations

of the various filtering rules. The filtering results are shown in

Figure 4. Those rules that are used to screen genes are marked a

plus sign in Figure 4A and otherwise they are marked with a minus

sign. For each combination, the numbers of filtered genes, genes

with biomarker annotation, and genes with disease annotation are

also listed in Figure 4A. Special attention should be paid to

Combination 1. In this combination we simply match all of the

Figure 3. Specificity of the average ED of the top 100 antibodies selected for each mapping. In this heat map, large ED values are colored
dark blue and small ED values are colored light blue. The entry (i, j) on the heat map represents the average ED of the top 100 antibodies of the j-th
mapping calculated for the i-th mapping. The rightmost column, All, lists the average ED of all the tested antibodies calculated for each of the 27
mappings.
doi:10.1371/journal.pone.0081079.g003
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1482 proteins against the HPA version10.0 to see how many

related genes are indexed in the HPA; specifically, no explicit

filtering rules are applied to select possible markers. There are

1114 indexed genes, among which 244 genes have biomarker

annotation and 914 genes have disease annotation from the IPA.

The result of Combination 1 forms our sample population. The

proportions of the annotated biomarkers and disease-related genes

to the filtered genes of each combination are shown in Figure 4B.

The proportion of the filtering results to our sample population is

shown in Figure 4C. Namely, the proportions of the filtered genes

to all the 1114 indexed genes, the filtered biomarkers to the 244

annotated markers, and the filtered disease-related genes to the

914 annotated disease-related genes; these are listed in Figure 4C.

Figure 4C is a panel chart that has two panels; the upper one has

an axis that covers the full range of data, while the lower one has

an axis that focuses on the data within the range 0%–25%.

We then applied Combinations 2, 3, and 4 to evaluate the effect

of Rule 1, Rule 2, and Rule 3, respectively. Combination 2,

namely Rule 1 alone, allowed a certain degree of success in

biomarker discovery; the proportion of the annotated biomarkers

to the filtered genes is increased from 21.9% to 29.8% (Figure 4B).

Moreover, Combination 2 has the ability to screen disease-related

genes and the proportion of the annotated disease-related genes to

the filtered genes is increased from 82.0% to 87.5% (Figure 4B).

Applying Combination 2 shrinks the sample size to 15.1% but

keeps 20.5% of the annotated biomarkers and 16.1% of the

annotated disease-related genes (Figure 4C). Applying Combina-

tion 3, namely Rule 2 alone, evenly shrinks the sample size,

annotated biomarkers, and annotated disease-related genes (4.3%,

4.1%, 4.2%, Figure 4C). The proportion of the annotated

biomarkers and disease-related genes to the filtered genes is also

kept at the same level as those in the sample population (20.8% vs.

21.9%; 79.2 vs. 82.0%, Figure 4B). The effect of applying

Combination 3 is somewhat like random sampling. Combination

4, namely Rule 3 alone, has best biomarker screening ability

among the three filtering rules; the proportion of the annotated

biomarkers to the filtered genes is increased from 21.9% to 35.3%

(Figure 4B). Applying Combination 4 evenly shrinks the sample

size and annotated disease-related genes (3.1% and 3.0%) but

keeps 4.9% of the annotated biomarkers (Figure 4C). It seems that

applying Rules 1 and 3 are both effective strategies when

performing biomarker discovery.

We also evaluate the performance of combinations that use two

filtering rules together. Combination 5 applies Rules 1 and 2,

Combination 6 applies Rules 1 and 3, and Combination 7 applies

Rules 2 and 3. All the three combinations dramatically shrink the

sample size to a scale that is suitable for wet-lab validation;

applying Combinations 5, 6, and 7 generates 13, 8, and 14 filtered

genes, respectively (Figure 4A). Combination 6 retains the largest

portion of biomarkers. The proportion of annotated biomarkers to

filtered genes is increased from 21.9% to 75% (Figure 4B).

Combinations 5 and 7 produce similar results in terms of

identifying annotated biomarkers, while Combination 5 has a

better disease-related gene screening ability. The proportion of the

annotated disease-related genes to the filtered genes is 92.3% when

applying Combination 5 but only 64.3% when applying Combi-

Figure 4. The results of various combinations of filtering criteria when applied to a cohort of 1482 membrane proteins. (A) The rules
that are used to screen genes are marked with a plus sign and otherwise there is a minus sign. For each combination, the numbers of filtered genes,
genes with biomarker annotation, and genes with disease annotation are listed. (B) The proportions of annotated biomarkers and disease-related
genes to filtered genes of each combination are shown. (C) The proportion of the filtering results to our sample population is shown. This figure is a
panel chart that has two panels; the upper one has an axis that covers the full range of data, while the lower one has an axis that focuses on data
within the range 0%–25%.
doi:10.1371/journal.pone.0081079.g004
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nation 7 (Figure 4B). The evaluation results agree with our

observation that Rule 1 in combination with Rule 3 is able to

effectively screen potential biomarkers. Rule 1 in combination

with Rule 2 or Rule 2 in combination with Rule 3 also improves

the ability to screen biomarkers or disease-related genes, but is less

powerful than the combination of Rules 1 and 3. The results of

Combinations 5 and 7 agree with the observation that Rule 3 is

good at identifying biomarkers while Rule 1 is good at identifying

disease-related genes. In this evaluation, the filtering performance

is dominated by finding proteins that are overexpressed in most

patients and the proposed scoring mechanism indeed does seem to

play an important role. Interesting, viewing Figure 4, those

proteins that show a significant but average fold change in patients

may not be good biomarker candidates. Such a protein may only

be highly expressed in a small portion of patients, but is normally

expressed in most patients.

Finally, we apply Combination 8 that combines all the three

rules to select potential biomarkers for colorectal cancer. This

approach identified four filtered genes, among which three genes

have biomarker annotation and all the four genes have disease-

related annotation from the IPA. Information on the four proteins

is listed in Table 4. Two of the genes, Carcinoembryonic antigen-

related cell adhesion molecule 5 and Carcinoembryonic antigen-

related cell adhesion molecule 6, CEACAM5 and CEACAM6,

respectively, belong to the carcinoembryonic antigen (CEA)

family. CEA family protein have been found to be increased in

sera of patients with breast cancer, lung cancer, gastric cancer,

pancreatic cancer, bladder cancer, medullary thyroid cancer, head

and neck cancer, cervical cancer, hepatic cancer, lymphoma, and

melanoma [30]. Nevertheless, since CEA was first found to be

elevated in sera of patients with colorectal cancer in 1969, it has

been used as a colorectal cancer marker for more than 40 years

[26], [31–33]. Currently CEA is the most widely used marker for

colorectal cancer; it is primarily used for prognostic monitoring

[26]. If we consider the other two proteins, firstly, Cathelicidin

antimicrobial peptide, CAMP (also known as LL-37), has several

functions, including cell chemotaxis, immune mediator induction,

inflammatory response regulation, and antimicrobial activity [34].

Recent studies have pinpointed an emerging role for CAMP in

cancer. Although the function role of CAMP in cancer develop-

ment remains unclear, CAMP has been associated with tumor cell

proliferation, survival, and metastasis, and these findings have

indicated its therapeutic application potential [35]. In addition to

the direct effects of cathelicidin on tumor epithelium, cathelicidin

may promote tumor growth through alternative mechanisms [36]

and is overexpressed in breast cancer [37],[38], lung cancer [39],

prostate cancer [40], and ovarian cancer [41]. In contrast,

cathelicidin exhibits tumor-suppressing effects in gastric cancer

[42], acute myeloid [43], and lymphocytic leukemia [44]. A recent

study has further shown that cathelicidin may induce apoptosis

through an alternative caspase-independent pathway in colon

cancer, suggesting a tumor-suppressing mechanism for cathelicidin

in colon tumorigenesis [27]. Patients with lung cancer have been

found to have increased serum levels of cathelicidin, suggesting it

has a potential role as a marker identifying cancer progression

[36]. Secondly, Annexin A4 (ANXA4) is a member of the annexin

family of calcium-dependent phospholipid binding proteins that

binds to certain membrane phospholipids in a Ca(2+)-dependent

manner [45]. Overexpression of ANXA4 has been associated with

prostate cancer [46], pancreatic adenocarcinoma [47], renal clear

cell carcinoma [48], colorectal carcinoma [28], [29], gastric cancer

[49], and ovarian carcinoma [50], [51]. Although ANXA4 does

not have biomarker annotation from the IPA, recent studies have

suggested it may be a potential biomarker candidate for gastric

cancer and colorectal cancer [52], [28].

Taking the above findings as a whole, all the four identified

filtered genes have experimental evidence that supports their

potential as biomarkers for colorectal cancer. The filtering results

of this model disease suggest that the proposed scoring approach

based on the IHC annotation provided by the HPA is an effective

approach. Even though the HPA has received criticism based on

the unreliable quality of the IHC images and antibodies used, our

proposed score appeared to provide useful additional information

that assists the filtering of cancer marker candidates obtained from

high-throughput omics experiments. As the antibody and IHC

imaging data are continuously being improved and optimized

through the efforts of the HPA, we believe that the reliability issue

can be gradually resolved in the future.

Supporting Information

Table S1 Expression fold change of 1482 proteins identified
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(XLS)
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(XLS)
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Table 4. The four filtered genes obtained by applying Combination 8.

Gene Fold Change Number of Patients HPA Score IPA annotated Biomarker

CEACAM5 6.41 24 200.5 Yes

CEACAM6 4.32 21 155.2 Yes

ANXA4 2.07 15 138.84 No

CAMP 4.29 20 132.92 Yes

doi:10.1371/journal.pone.0081079.t004
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5. Surinova S, Schiess R, Hüttenhain R, Cerciello F, Wollscheid B, et al. (2010) On

the Development of Plasma Protein Biomarkers. Journal of Proteome Research
10: 5–16.

6. Minton O, Stone PC (2010). Review: The use of proteomics as a research

methodology for studying cancer-related fatigue: a review. Palliative Medicine

24: 310–316.

7. Leth-Larsen R, Lund RR, Ditzel HJ (2010) Plasma Membrane Proteomics and
Its Application in Clinical Cancer Biomarker Discovery. Molecular & Cellular

Proteomics 9: 1369–1382.

8. Pavlou MP, Diamandis EP (2010) The cancer cell secretome: A good source for

discovering biomarkers? Journal of Proteomics 73: 1896–1906.

9. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, et al. (2006) Gene
prioritization through genomic data fusion. Nat Biotech 24: 537–544.

10. Sun J, Jia P, Fanous AH, Webb BT, van den Oord EJCG, et al. (2009) A multi-

dimensional evidence-based candidate gene prioritization approach for complex
diseases—schizophrenia as a case. Bioinformatics 25: 2595–6602.

11. Tranchevent LC, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P, et
al. (2011) A guide to web tools to prioritize candidate genes. Briefings in

Bioinformatics 12: 22–32.

12. Simpson RJ, Bernhard OK, Greening DW, Moritz RL (2008) Proteomics-driven
cancer biomarker discovery: looking to the future. Current Opinion in Chemical

Biology 12(1): 72–77.

13. Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, et al. (2005) A

Human Protein Atlas for Normal and Cancer Tissues Based on Antibody
Proteomics. Molecular & Cellular Proteomics 4: 1920–1932.

14. Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, et al. (2008) A

Genecentric Human Protein Atlas for Expression Profiles Based on Antibodies.

Molecular & Cellular Proteomics 7: 2019–2027.

15. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, et al. (2010)
Towards a knowledge-based Human Protein Atlas. Nat Biotech 28: 1248–1250.
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