OPEN 8 ACCESS Freely available online

@PLOS ‘ ONE

Identification of a 31-bp Deletion in the RELN Gene
Causing Lissencephaly with Cerebellar Hypoplasia in

Sheep

Aroa Suarez-Vega', Beatriz Gutiérrez-Gil', Inmaculada Cuchillo-lbafez?3, Javier Saez-Valero?3, Valentin
Pérez*5, Elsa Garcia-Gamez', Julio Benavides?®, Juan Jose Arranz"

1 Dpto. Produccién Animal, Universidad de Leon, Leodn, Ledn, Spain, 2 Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, CSIC, Sant Joan
d’Alacant, Alicante, Spain, 3 Centro de Investigacion Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad Miguel
Hernandez, Sant Joan d’Alacant, Alicante, Spain, 4 Dpto. de Sanidad Animal, Universidad de Ledn, Ledn, Leodn, Spain, 5 Instituto de Ganaderia de Montafia,

Universidad de Leén CSIC, Grulleros, Leén, Spain

Abstract

Lissencephaly is an inherited developmental disorder in which neuronal migration is impaired. A type of lissencephaly
associated with cerebellar hypoplasia (LCH) was diagnosed in a commercial flock of Spanish Churra sheep. The
genotyping of 7 affected animals and 33 controls with the OvineSNP50 BeadChip enabled the localization of the
causative mutation for ovine LCH to a 4.8-Mb interval on sheep chromosome 4 using genome-wide association and
homozygosity mapping. The RELN gene, which is located within this interval, was considered a strong positional and
functional candidate because it plays critical roles in neuronal migration and layer formation. By performing a
sequencing analysis of this gene’s specific mRNA in a control lamb, we obtained the complete CDS of the ovine
RELN gene. The cDNA sequence from an LCH-affected lamb revealed a deletion of 31 bp (c.5410_5440del) in
predicted exon 36 of RELN, resulting in a premature termination codon. A functional analysis of this mutation
revealed decreased levels of RELN mRNA and a lack of reelin protein in the brain cortex and blood of affected
lambs. This mutation showed a complete concordance with the Mendelian recessive pattern of inheritance observed
for the disease. The identification of the causal mutation of LCH in Churra sheep will facilitate the implementation of
gene-assisted selection to detect heterozygous mutants, which will help breeders avoid at-risk matings in their flocks.
Moreover, the identification of this naturally occurring RELN mutation provides an opportunity to use Churra sheep as
a genetically characterized large animal model for the study of reelin functions in the developing and mature brain.
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Introduction

Lissencephaly (LIS), which literally means “smooth brain”,
refers to a group of rare malformations that share a common
feature: absent or abnormal brain convolutions caused by the
aberrant migration of postmitotic neurons to the developing
cortex. Although different forms of LIS have been described,
there is still no final consensus on their classification. The
classification system proposed by Jissendi-Tchofo et al. [1]
divides this disease into four different groups: classic
lissencephaly (cLIS), variant lissencephaly (vLIS), cobblestone
complex, and related muscular dystrophy syndrome.
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Lissencephalies are a genetically heterogeneous group of
disorders. There are seven different human LIS-related
phenotypes described in the Online Mendelian Inheritance in
Man (OMIM) database (#607432, #300067, #300215,
#257320, #611603, #614019 and #615191). These phenotypes
have been linked to different aberrant proteins related to the
cytoskeleton of neural cells (Platelet-activating factor
acetylhydrolase IB subunit alpha (PAFAH1B1 or LIS1),
Doublecortin (DCX) , Tubulin alpha-1A (TUBA1A)), signaling
molecules (Reelin (RELN), Very-low-density lipoprotein
receptor (VLDLR)), molecules that modulate stop signals for
migrating neurons (Protein-O-mannosyltransferase 1 (POMT1),
Protein O-linked-mannose beta-1,2-N-
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acetylglucosaminyltransferase 1 (POMGnNT1), Fukutin (FKTN))
and other factors shown to modulate neuronal migration
(Aristaless related homeobox (ARX), Laminin alpha 1
(LAMA1)) [2].

Lissencephaly with cerebellar hypoplasia (LCH) is a type of
LIS included within the vLIS group [1]. In this form of LIS, the
thickened cortex is associated with significant cerebellar
underdevelopment. Six subtypes of LCH have been described
[3]. Several genes that are involved in the gestational migration
of neurons have been linked to human LCH: PAFAH1B1 [3],
DCX[3], RELN [4], VLDLR [1,5] and TUBA1A [6].

Although rarely observed clinically, inherited forms of LCH
are well known in humans and mouse mutant models like the
reeler phenotype [7] due to its importance in understanding
brain development. However, beyond its known forms in
rodents, LCH is rarely described in veterinary medicine. Two
litters of Wire Fox Terriers and Irish Setters [8] and one two-
year-old cat [9] represent the only cases of LCH described in
domestic animals, to our knowledge.

Between 2004 and 2012, an inherited form of LCH was
identified in a commercial flock of Spanish Churra sheep. The
affected lambs exhibited severe ataxia, were unable to stand
by themselves and died several days after birth. Pathological
examination showed alterations in the brain characterized by
agyria, pachygyria and cerebellar hypoplasia. The segregation
of this disease in the affected pedigrees was consistent with a
recessive mode of Mendelian inheritance [10].

Recently, high-density single-nucleotide polymorphism
(SNP) arrays have provided an opportunity to explore the
genomes of livestock species to identify genes and mutations
that cause inherited defects [11]. In sheep, the lllumina
OvineSNP50 BeadChip has proven to be a useful tool for the
identification of causal mutations underlying the genetic control
of diseases with Mendelian inheritance patterns [12-14]. Using
this genomic tool, we performed genome-wide association and
homozygosity mapping analyses to map the ovine locus
associated with the form of LCH identified in Churra sheep.
These analyses allowed the identification of a strong positional
and functional candidate gene, which was subjected to later
analyses with the aim of identifying the causal mutation
underlying the studied developmental malformation.

Hence, the present study identified the causal mutation for
LCH in sheep, which will allow the direct implementation of
gene-assisted selection into breeding practices by enabling the
detection of phenotypically normal carriers. By deciphering the
genetic basis of this ovine disease, the current work also
provides a potential large animal model for human LCH, the
study of brain development and the development of possible
gene therapy treatments.

Materials and Methods

Ethics statement

Blood and tissue samples were collected from rams, ewes
and lambs by qualified veterinarians following standard
procedures and conducted under license issued in accordance
with  European Union legislation (European Community
Directive, 86/609/EC and Directive 2010/63/EU of the
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European Parliament and of the Council). All animals were
managed in accordance with the guidelines for the
accommodation and care of animals.

The DNA samples used in this study were extracted from
blood leucocytes. For this purpose 4 mL of blood was obtained
by jugular venepuncture.

Tissues were collected immediately after euthanasia
(performed by a qualified veterinarian with an intravenous
injection of veterinary euthanasia drug (T-61, Intervet)). As the
samples were from a commercial flock that underwent
veterinary examination, we were in a special situation in
veterinary medicine and there was no “animal experiment”
according to the legal definitions in Spain (Animal care
legislation “Ley 32/2007”). According to the Ethics Commission
of the University of Leon, formal ethical approval is not required
under these circumstances.

Animals

Several LCH-affected animals were found in a commercial
flock of Spanish Churra sheep belonging to the Spanish Churra
sheep breeders’ association (ANCHE). For many years, the
breeding strategy for the flock has been based on the use of
rams from within this flock. Although a larger number of
possible LCH cases had been detected in the flock, we
examined seven LCH-affected animals, all of which exhibited
the same clinical features at birth. All these animals could not
stand by themselves and showed severe ataxia and muscular
hypertonia. The affected lambs had difficulty suckling from their
mothers and died a few days after birth. The post-mortem
examination showed agyria with only a few rudimentary sulci
and gyri, as well as marked cerebellar hypoplasia. The
microscopically normal layering of the cerebral cortex was
disorganized, and immunohistochemical staining of the
neurofilaments revealed a three-layered cortex instead of the
six layers that appear in normal brains. All these findings were
consistent with LCH [10].

Samples and pedigree information

Blood samples were collected from 63 animals from the
LCH-affected flock. Seven of these animals were affected
lambs. DNA was extracted from blood using the salting out
procedure [15]. To confirm the familial relationships recorded in
the flock register, all the samples were analyzed for a set of 19
microsatellite markers in a single multiplex PCR reaction [16].
To construct the pedigree of the sampled animals information
about the ram parents, grandparents and great-grandparents
was obtained from the ANCHE database.

The pedigree was constructed to confirm the monogenic
autosomic mode of inheritance of this ovine disease reported
[10] and to identify the common founder responsible of the
establishment of the disease in this flock. For this purpose, we
used CraneFoot software [17].

Mapping the causative gene for lissencephaly

A total of 40 DNA samples were genotyped using the
lllumina OvineSNP50 BeadChip. These samples included 20
unrelated, healthy Churra individuals from different flocks of the
Churra Selection Nucleus and 20 animals from the affected
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flock. Seven of the sheep from the affected flock were LCH
lambs, and the rest were related to them (sires, dams, siblings
or half-siblings of the affected lambs). Raw data will be shared
upon request.

The results were analyzed using PLINK software [18]. Firstly,
a quality control procedure was performed to eliminate animals
with call rates lower than 0.95 and SNPs with genotyping rate
values lower than 0.05 and minor allele frequencies lower than
0.01. After the frequency and genotype pruning, 47,864 SNPs
were considered in the subsequent analysis. The --assoc
option of the PLINK software was used to perform a case-
control genome-wide association (GWA) analysis. The
empirical p-values were corrected by performing a permutation
procedure implemented in PLINK with 100,000 permutations.

Finally, an analysis of runs of homozygosity was carried out.
The LCH cases were filtered to identify allele-sharing regions.
The SNPs flanking the consensus region according to this
analysis were used to locate this region in the Ovine Genome
Assembly v3.1 browser (http://www.livestockgenomics.csiro.au/
cgi-bin/gbrowse/oarv3.1/).  Genes located within  the
homozygosity block were evaluated as putative positional
candidate genes. A second analysis of runs of homozygosity
was performed on only 10 unrelated healthy Churra sheep to
confirm that these control individuals did not share any
common homozygous regions with the affected lambs.

Isolation of the complete coding sequence of the ovine
RELN gene and mutation scanning

Because of its association with human LCH [4], the RELN
gene, located within the homozygosity block (4.8 Mb), was
identified as the most promising candidate. Due to the large
size of the RELN gene, which encompasses 450 kb distributed
across 65 exons in the human genome [19], we first examined
the RELN coding sequence. Brain tissues from a control lamb
and an affected lamb were collected for RNA extraction. The
use of the animals was in compliance with the guidelines
approved by the University of Leon Ethics Commission. The
brain tissue samples were harvested immediately after
euthanasia and were preserved in RNA Stabilization Reagent
(RNAlater, Ambion). Slices of up to 500 mg of brain tissue were
processed with the RNeasy Lipid Tissue Midi Kit (Qiagen) to
extract total RNA.

For the primer design, due to the absence of a published
RNA sequence for the ovine RELN gene, we first constructed a
virtual mMRNA sequence based on exons obtained by a BLAST
comparison of the GenBank human (NM_005045) and mouse
(NM_011261) mRNA sequences against the genomic RELN
sequence obtained from the ovine genome assembly v3.1. For
this procedure, we used the web-based Spidey software,
available at http://www.ncbi.nlm.nih.gov/spidey/.

The virtual mMRNA sequence thus generated was used to
design 32 primer pairs to cover all the RELN coding sequence,
using the Primer3 software [20]. The information from the
human and mouse sequences was considered to avoid
designing primers in regions with significant differences across
species.

One-step RT-PCR was performed to amplify aliquots of
60-80 ng of RNA using the Qiagen OneStep RT-PCR Kit. The
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sequences and annealing temperatures of all the primer pairs
are provided in Table S1. Finally, the sequence information
generated was assembled and analyzed for polymorphisms.

After the mRNA sequence was established, the predicted
protein sequence was compared with the human and mouse
RELN protein sequences using the align option of the web-
based UniProt software (http://www.uniprot.org/). The effects
on protein sequence and secondary structures of the mutations
that had been identified by the sequencing analysis were
predicted using the SWISS-MODEL software [21-23].

Confirmation and genotyping of the causal mutation

After identifying the putative causal mutation in the mRNA
sequence, we confirmed its direct association with the studied
phenotype by analyzing additional samples at the genomic
DNA level. DNA was extracted from blood samples collected
from six cases, six controls and six mothers of affected
animals.

A pair of primers (RELNovine_ex36up: 5-
TTGCCTTCTCCGGTTTAATG and RELNovine_ex36dn: 5'-
AGGGATTTGTGATGCTGGAC) were designed to amplify a
498-bp fragment of the gene sequence containing the 31-bp
deletion that was identified as the possible causal mutation.
The amplicons were purified by ExoSAP-IT (UBS Corporation)
treatment and were dideoxy-sequenced in both directions with
the Big Dye Terminator Cycle Sequencing Kit v3.1 (Applied
Biosystems) with the same primers used for fragment
amplification. The sequence data were analyzed with
SeqScape v2.5 software (Applied Biosystems).

Functional analysis of the 31-bp deletion: quantification
of RELN mRNA by qRT-PCR

To quantify the levels of RELN mRNA in affected lambs and
to compare them with unaffected animals, we performed two
gRT-PCR ampilifications in six LCH cases and six controls. The
gRT-PCR assay was designed to amplify two different regions
of the ovine RELN gene: a shared region which included 139
bp of the third reelin repeat, and the mutated region which
include the four reelin-specific repeat encompassing the
deletion.

Total RNA was isolated from the brains of six controls and
six cases using TRIzol® Reagent and the PureLink™ RNA Mini
Kit (Invitrogen) according to the manufacturer's instructions.
The high capacity cDNA Reverse Transcription kit (Applied
Biosystems) was used to synthesize DNA according to the
manufacturer's instructions. Quantitative reverse transcription
polymerase chain reaction was performed using the
StepOne™ Real-Time PCR System (Applied Biosystems) with
Power SYBR® Green PCR Master Mix according to the
manufacturer's instructions (see Table S2 for the primer
sequences). The RELN gene transcript levels were calculated
using the relative standard curve method normalized to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Functional analysis of the 31-bp deletion: Western blot
analysis

A Western blot was performed to confirm that the 31-bp
deletion identified in the affected individuals affected reelin
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Figure 1. Pedigree displaying LCH in Churra sheep. The arrow indicates the ram identified as the common founder animal for
the LCH disease. The lines indicate the inbreeding lops. Cases are indicated as solid symbols.

doi: 10.1371/journal.pone.0081072.g001

expression. We analyzed the protein in brains and sera from
affected and unaffected animals. Samples (0.1 g) of sheep
frontal cortex were homogenized (10% w/v) in 50 mM Tris-HCI
pH 7.4, 150 mM NacCl, 0.5% Triton X-100 and 0.5% Nonidet
P-40 containing a cocktail of protease inhibitors [24]. The
homogenates were sonicated and centrifuged at 20,000xg for
20 min at 4°C, and the supernatants collected and frozen at
-80°C. Sheep brain extracts (30 pg) and serum samples (0.8
pl) were incubated with 6x SDS-PAGE sample buffer at 98°C
for 3 min and then resolved using 6% SDS-polyacrylamide gel
electrophoresis (SDS-PAGE). The proteins were blotted onto
nitrocellulose membranes and incubated with the monoclonal
mouse anti-Reelin 142 antibody (1:500 dilution, Merck
Millipore) and with a secondary antibody (1:4000 dilution,
horseradish peroxidase (HRP)-conjugated anti-mouse IgG,
(Sigma Chemicals). The signals were visualized with the HRP
chemiluminescent substrate Luminata™ Forte (Merck Millipore)
in a Luminescent Image Analyzer LAS-1000 Plus (Fuijifilm), and
analyzed using the Science Lab Image Gauge v3.0 software
(Fuijifilm).

PLOS ONE | www.plosone.org

Results

Pedigree analysis

The pedigree of the affected individuals (Figure 1) was
constructed to confirm the mode of inheritance previously
described [10] and to search for the common founder of LCH in
this flock. The breeding history of the affected families was
consistent with a monogenic autosomal recessive pattern of
inheritance. The parents and half-siblings of the affected
animals did not show clinical signs of the disease. The parents
of the affected animals were classified as obligate carriers.

An analysis of the pedigree data revealed that the LCH-
affected individuals were descended from a single ram founder
(HKLD8633) via either the paternal or maternal line (Figure 1).
This male was born in 1986, and the disease was first
recognized in 2004, four generations later.
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Figure 2. GWA and homozygosity mapping analyses for ovine LCH. (A) Manhattan plot resulting from the case-control
association analysis performed with 7 affected animals and 33 controls. The X-axis shows the positions of the genome analyzed
across the 26 ovine autosomes, whereas the Y-axis represents the -log,, P-values obtained after 100,000 permutations using
PLINK. Alternating colors mark the limits between autosomes. The arrow indicates the most significant association identified, which
was located on OAR4 (at 42,810,217 bp position). (B) Homozygosity mapping of the LCH mutation. The analysis of SNP genotypes
from affected lambs indicated that they all shared an extended overlapping homozygous region on OAR 4 (indicated by orange
blocks). The common haplotype block, where the causative mutation is located, expands between 42.369 and 47.251 Mb on OAR4
(indicated by the red box). (C) Gene content of the 4.8-Mb homozygosity block interval shared by the affected individuals based on
the comparative genomic map with the orthologous regions in human and cow and including the RELN gene.

doi: 10.1371/journal.pone.0081072.g002

Genome-wide association and runs of homozygosity association was OAR4_45088426, which is located at position
studies 42,810,217 bp in the OARV3.1 ovine genome sequence. After

The GWA study revealed that the strongest association with 100,000 permutations were performed, this SNP showed a
the LCH phenotype localized to sheep chromosome 4 (OAR4)  genome-wide corrected P-value of 2.4x10.
(Figure 2). The SNP showing the most highly significant
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The homozygosity mapping approach that was performed
later to narrow the region containing the LCH mutation was
chosen on the assumption that the affected lambs were
identical by descent (IBD) for the causative mutation and the
flanking chromosomal segments. The seven genotyped cases
showed a single, large homozygous consensus region on
OARA4 that contained 91 SNP markers corresponding to a 4.8-
Mb interval from 42.369-47.251 Mb (Figure 2). Analyzing the
data from the 10 unrelated healthy Churra controls did not
reveal any homozygous shared regions across the genome
that were greater than 300 Kb. Because of the limited
annotation of the ovine genome assembly (v 3.1), we inferred
the gene annotation of the mapped interval from the
corresponding bovine and human orthologous intervals. The
ovine LCH interval corresponds to segments on bovine
chromosome (BTA) 4 and human chromosome (HSA) 7. A
careful inspection of the BTA4 and HSA7 genes and database
searches for their presumed functions indicated that the gene
that encodes the reelin protein was the most promising
functional candidate gene. RELN is located within the critical
identified intervals: at 44.6 Mb on OAR4, at 44.8 Mb on BTA4
and at 103.1 Mb on HSA7. The reelin protein plays critical roles
in neuronal migration and layer formation [25] and has been
associated with the human LIS forms LIS2 and Norman-
Roberts syndrome [4].

Complete coding sequence of the ovine RELN gene

Because no reference sequence of the ovine RELN gene
was initially available, the sequencing analysis of the specific
mRNA of this gene in a control lamb allowed us to obtain the
complete cDNA of the ovine RELN gene (GenBank acc. no.
KC590614).

The BLAST comparison of the sequenced cDNA and the
genomic sequence obtained from the ovine genome assembly
v3.1 using the Spidey program showed an overall identity of
99% with 95% of mMRNA coverage. The comparison between
the cDNA and genomic DNA sequences allowed us to predict
the structure of the coding sequence at the genomic level,
resulting in 64 exons.

The sheep RELN cDNA sequence encodes a predicted
protein of 3460 amino acids. The UniProt software (http:/
www.uniprot.org/) was used to compare the predicted amino
acid sequence from the ovine RELN gene with several
available sequences, including human (P78509), mouse
(Q60841) and rat (P58751) (Figure S1). The ovine RELN
protein sequence showed 97% homology with the human
protein and 95% homology with the mouse and rat sequences,
suggesting high conservation of this protein across species.

DNA variant scanning and identification of the causal
mutation

To identify the causal mutation of the studied disease, the
entire RELN coding sequence from an affected lamb was
sequenced. We amplified 9986 bp, corresponding to 96.21% of
the coding region previously amplified in the control sample.

The sequence comparison between the control and affected
samples revealed the presence of six SNPs and one 31-bp
deletion (Table 1). For the two SNPs that produced amino acid

PLOS ONE | www.plosone.org

Lissencephaly in Sheep Caused by RELN Mutation

Table 1. DNA variants found by cDNA sequencing of the
ovine RELN gene in a case and a control.

Mutation ID Control Case Reference” Protein level
c.44ta t/a tla t p.Leu15GIn
c.2676ag ala a/g a p.=
¢.5410_5440del - del - p.0

c.5862ct c/t clc [ p.=

c8010gc glc a/g g p.-Met2670lle
c8754tc tlc t/t t p.=

c.9153ag alg ala a p.=

The effect of each DNA variant on the protein sequence is indicated in the last
column.

* Reference based on the nucleotide found for this position in the Ovine Genome
Assembly v3.1.

doi: 10.1371/journal.pone.0081072.t001

changes, the LCH-affected lamb shared the heterozygous state
with the normal lamb (p.Leu15GIn) or was homozygous for the
wild-type allele exhibited by 8 normal animals and the
reference sequence of the ovine assembly at this position
(p-Met2670lle). In contrast, the identified 31-bp deletion (c.
5410_5440del) was present in a homozygous form in the LCH
lamb (c.5410_5440del) but not in the control animal. Based on
the genomic structure obtained by a comparison of the cDNA
and the gDNA, this mutation occurred within the sequence of
predicted exon 36 of the ovine RELN gene. This mutation was
predicted to cause a shift in the open reading frame of the
RELN coding sequence and create a stop codon at position
1817. This mutation would lead to a truncated protein of 1817
amino acids (1803 amino acids of normal reelin followed by 14
missense amino acids and a premature termination codon) vs.
the normal 3460-amino-acid-long RELN protein. Due to its
highly disruptive effect on the composition and structure of the
resulting protein, this 31-bp deletion was identified as possibly
directly responsible for the disease under study.

Confirmation and genotyping of the causal mutation

To confirm a direct association between the ¢.5410_5440del
allelic variant and the LCH phenotype, we searched for a
correspondence between the genotype of this deletion and the
gDNA sequences of affected and carrier animals. Using DNA
samples, we performed PCR amplifications of putative exon 36
for six cases, six unrelated controls and six mothers of affected
lambs. The resulting amplicon was sequenced and analyzed
with the SeqScape v2.5 software (Applied Biosystems). All the
samples from the LCH-affected animals were homozygous for
the identified 31-bp deletion (c.5410_5440del/c.5410_5440del
or Lis/Lis); the mothers were heterozygous for this mutation
(Lis/+); and the controls from different flocks were homozygous
(+/+) for the wild-type allele (Figure 3).

Functional analysis of the 31-bp deletion

The levels of RELN mRNA in the affected lambs were
markedly reduced, with means of 0.08 for the shared region
and 0.04 for the mutated region compared with the mean
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Identification of the causative mutation for LCH in sheep. (A) LCH phenotype in Spanish Churra sheep. (A1) Normal

newborn lamb brain. (A2) LCH-affected lamb brain. (B) Electropherograms including the mutated region at exon 36 of RELN in the
normal and LCH-affected lambs. The bases within the red square are included in the 31-bp deletion (c.5410_5440del) detected in

the LCH-affected lambs.
doi: 10.1371/journal.pone.0081072.g003

values observed for the control animals (1.52 and 0.40 for the
shared and mutated fragments, respectively) (Figure 4A). In
both cases, a one-tailed Student’s t-test revealed significant
differences in the RELN mRNA expression level between the
cases and controls (P < 0.001). We also analyzed the protein
levels of reelin in the cortex and serum using Western blots
(Figure 4B). Three typical reelin-immunoreactive bands of 420
kDa, 310 kDa and 180 kDa with different densities
corresponding to the full-length and truncated N-terminal
fragments [24] were observed in both the cortex and the serum
of healthy lambs. The homozygous Lis/Lis animals showed a
lack of reelin in both, tissue and fluids.

Discussion

We herein demonstrate that LCH in sheep is due to a 31-bp
deletion encompassing predicted exon 36 of the ovine RELN
gene. This mutation was the only abnormality detected by
sequencing the entire CDS of the RELN gene, which was the
best positional and functional candidate in the region
highlighted by GWA and homozygosity analyses. In this study,
we revealed that homozygous individuals for this mutation
lacked the extracellular protein reelin, which has been shown to
play a key role in neuronal migration during the embryonic
stage and whose absence causes LCH in humans and rodents
[4,26]. The discovery of this mutation has allowed screening in
the affected flock to identify phenotypically normal individuals
carrying the 31-bp deletion to avoid at-risk matings. The
implementation of this gene-assisted selection approach has
solved the problem of LCH in Churra sheep flocks.

The results of this work support previous results in different
livestock species, in which the use of genomic methodologies
has had important practical consequences. High-throughput

PLOS ONE | www.plosone.org

genotyping platforms allow the rapid control of emerging
recessive defects with otherwise major economic and animal
welfare implications [11,14]. In this study, 7 LCH cases, 13
related animals and 20 unrelated controls were genotyped
using the OvineSNP50 BeadChip. Both the case-control
association analysis and the run of homozygosity performed
with the SNP-chip derived dataset suggested that the same
region on chromosome OAR4 was the most likely to harbor the
causal mutation responsible for LCH in Churra sheep. Within
the homozygous consensus interval on OAR4 (42.4-47.2 Mb),
we identified the RELN gene as a good functional and
positional candidate for the studied phenotype. Based on the
recessive mode of inheritance of the disease, which had been
deduced based on a segregation analysis of affected
pedigrees, a loss-of-function mutation in the coding sequence
of the RELN gene was predicted.

Sequencing the cDNA of the RELN gene allowed us to
obtain the complete coding sequence of this gene in a control
sample. For the case sample, 96.21% of the sequence was
obtained, revealing a deletion of 31 bp in putative exon 36 of
the RELN gene (c.5410_5440del), which results in the
premature termination of the predicted protein and the loss of
the final 1643 amino acids of the protein, including the loss of
the highly basic C-terminal region [27,28]. The mutation was
confrmed at the genomic level, and three genotypes
cosegregate with disease status: homozygous mutants (Lis/Lis)
were the affected lambs, heterozygous animals (Lis/+)
corresponded to the phenotypically normal carriers (ewes and
rams of the affected lambs), and the wild-type genotype (+/+)
was identified in all the analyzed control individuals. These
genotypes completely agreed with the autosomal recessive
mode of Mendelian inheritance previously inferred for LCH in
Churra sheep [10].
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Figure 4. Functional evaluation of the 31-bp deletion (c.5410_5440del) in the ovine RELN gene. (A) Expression of RELN
mRNA analyzed by qRT-PCR. The figure shows the relative expression obtained from two regions of the mRNA: the “Shared
region” includes 139 bp of the third reelin repeat, and the “Mutated region” amplifies a fragment that includes the fourth repeat,
where the 31-bp deletion was located. The samples were analyzed in triplicate. The values were calculated using relative standard
curves and were normalized to GAPDH from the same cDNA preparations and are expressed as the means + SEM. The specificity
of the PCR products was confirmed by melting curve analysis after the qRT-PCR. In both regions significant differences (P < 0.001)
in mRNA level were evidenced using the one-tailed Student’s t-test. (B) Western blot immunoprobed for reelin of brain extracts (30
pg) and serum samples (0.8 pl) from control lamb (+/+) and lissencephaly-affected lamb homozygous for the deletion (Lis/Lis).

doi: 10.1371/journal.pone.0081072.g004
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The low amount of mRNA in the LCH brain samples
compared with the control samples (identified through the qRT-
PCR analysis) may explain the difficulties experienced in the
amplification of some regions of the coding sequence in the
affected animals. The decreased levels of RELN mRNA may
be the result of nonsense-mediated MRNA decay (NMD). NMD
is a mechanism whereby mRNAs harboring premature
termination codons are selectively degraded. This quality-
control machinery prevents the production of truncated proteins
with dominant-negative or deleterious gain-of-function activities
[29] and is the likely reason for the absence of a protein signal
in the Western blots of the LCH-affected lambs. Western blots
were resolved with the anti-reelin antibody 142, an antibody
raised to the N-terminus of reelin, and thus presumably should
detect a hypothetical truncated C-terminal reelin.

Lissencephaly is a neuronal migration disorder characterized
by a paucity or absence of cerebral sulcation and gyration
accompanied by abnormal architecture of the cerebral cortex
[30]. This disease comprises a group of brain developmental
disorders with a heterogeneous genetic basis [31-33]. Human
LCH, an autosomal recessive form of lissencephaly, has been
described in two consanguineous pedigrees (OMIM #257320),
and two different variants of the RELN gene were discovered
as causal mutations in these patients [4]. Mutations that
inactivate the RELN gene produce the majority of the identified
mouse mutants with a phenotype similar to LCH, known as
reeler [34-36]. However, mutant mice with phenotypes
indistinguishable from reeler have also been identified by
disrupting genes such as Dab1, ApoER2 and VIdir, which are
involved in the reelin signaling pathway [2,37].

Among the known RELN mutations, the mouse Albany2
(Reln ™A®2) [35], the creeping rat (Reln°¢) [38] and the human
mutation found in a Saudi Arabian [4] pedigree resemble the
ovine RELN mutation (Figure 5). All these mutations are
expected to truncate the fourth specific reelin repeat of the
predicted protein. As in the Albany2 reeler, the LCH-affected
lambs exhibited reduced RNA concentrations, although no
experimental protein analysis data was available from this
mutant mouse [35]. Western blot analyses of sera from human
LCH patients have shown a loss of reelin protein [4] similar to
that occurring in the sheep cases reported here.

The resemblance between the mutations associated with
LCH in the four species mentioned above supports the
causative nature of the RELN gene 31-bp deletion reported
here in relation to the LCH phenotype observed in Churra
sheep and suggests that this is likely a null allele that is directly
related to the LCH disease.

Development of the human brain requires a complex
dynamic process of neuronal migration and positioning. A
crucial problem in developmental neurobiology is to understand
the genetic and biochemical pathways that regulate production
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and migration of immature neurons. A detailed understanding
of the mechanism of action of genes involved is necessary.
Animal models have efficiently been used to understand the
mechanisms of action and the pathophysiological abnormalities
that result from mutations in genes involved in human
lissencephaly [37,38]. A potential long-term goal such the
development of target therapies for Human Lissencephaly
would not be possible without a detailed understanding of the
neuronal migration pathway.

Reelin protein has been identified as a major determinant of
neuronal migration and plays a critical role in neuronal cell
maturation during the development of central nervous system.
Reeler mice mutants have been used as an opportunity to
dissect the complex mechanism that underlies the molecular
basis of the brain development [34]. Nonetheless, the adult
primate brain displays remarkable differences with the rodent
brain in the reelin-immunoreactive pattern [39]; therefore
accessibility to large animal models maybe of interest in order
to a better approach to human disease.

To our knowledge, the LCH sheep is the first large animal
model with a confirmed mutation in RELN. A large RELN
mutant model would be a valuable and powerful tool for studies
of reelin function in neuronal migration and brain development.
Large animal models present many advantages compared with
small animal models, such as their greater physiological
similarity to human patients and their larger body size [40].

Furthermore, animal models in which reelin expression is
altered have provided important information about the actions
of this protein in the mature brain. Recent evidence has shown
that reelin is involved in modulating synaptic function in adults
[41-45]. Several disorders, such as autism, schizophrenia,
bipolar disorder, major depression and Alzheimer’s disease,
have been associated with abnormal levels of reelin in the
serum and brain [46]. In this context, the longer life span and
brain physiology of humans show a higher level of
resemblance with the ovine model described here than with
other small mutant models. Hence, the sheep RELN mutant
model described in this study would allow a better
understanding of reelin synaptic functions and their implications
in the neuronal disorders described in the mature brain.

In conclusion, we have identified the causal mutation for
ovine LCH in Churra sheep. This mutation (c.5410_5440del) is
located in putative exon 36 of the RELN gene and leads to the
formation of a premature termination codon without protein
expression.

The identification of the causal mutation for LCH in Churra
sheep allows us to identify carriers and help breeders avoid at-
risk matings between heterozygous animals. Moreover, the
identification of RELN mutant sheep provides a suitable large
model for the study of reelin functions in the developing and
mature brain.

November 2013 | Volume 8 | Issue 11 | e81072



Lissencephaly in Sheep Caused by RELN Mutation

A
F-spondin-like domain 1 2 3 4 5 6 7 8 C-terminus
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Figure 5. Schematic representation of RELN mutant alleles. (A)Predicted wild-type reelin protein consist of a F-spondin-like
domain at the amino terminus, followed by 8 reelin repeats, each consisting of an internal EGF-like motif (black) flanked by reelin-
specific sequence. The C-terminus includes highly basic aminoacids that appear to be required for secretion. The location of the
predicted protein termination due to the ovine deletion is indicated by a black arrow. (B) Table comparing the RELN mutant alleles
detected in different species indicating the effect of each mutation on reelin activity. The reference for each allele is indicated
between square brackets.

doi: 10.1371/journal.pone.0081072.g005
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Supporting Information

Figure S1. Predicted ovine Reelin aminoacid sequence.
Aminoacid sequences of sheep (upper sequence), human
(P78509), mouse (Q60841) and rat (P58751) Reelin are
aligned using the UniProt software (http://www.uniprot.org/
align). The sequence comparison showed a high conservation
of this protein across species.

(PDF)

Table S1. Primers used in the amplification cDNA of the
ovine RELN gene. The length of the amplified product and the
melting temperature (Tm) of the RT-PCR are also indicated.
(DOCX)

Table S2. Primers used to quantify the levels of RELN
mRNA by qRT-PCR. The length of the amplified product and
the melting temperature (Tm) are also indicated.
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