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Abstract

Pathologic review of tumor morphology in histologic sections is the traditional method for cancer classification and
grading, yet human review has limitations that can result in low reproducibility and inter-observer agreement.
Computerized image analysis can partially overcome these shortcomings due to its capacity to quantitatively and
reproducibly measure histologic structures on a large-scale. In this paper, we present an end-to-end image analysis
and data integration pipeline for large-scale morphologic analysis of pathology images and demonstrate the ability to
correlate phenotypic groups with molecular data and clinical outcomes. We demonstrate our method in the context of
glioblastoma (GBM), with specific focus on the degree of the oligodendroglioma component. Over 200 million nuclei
in digitized pathology slides from 117 GBMs in the Cancer Genome Atlas were quantitatively analyzed, followed by
multiplatform correlation of nuclear features with molecular and clinical data. For each nucleus, a Nuclear Score (NS)
was calculated based on the degree of oligodendroglioma appearance, using a regression model trained from the
optimal feature set. Using the frequencies of neoplastic nuclei in low and high NS intervals, we were able to cluster
patients into three well-separated disease groups that contained low, medium, or high Oligodendroglioma
Component (OC). We showed that machine-based classification of GBMs with high oligodendroglioma component
uncovered a set of tumors with strong associations with PDGFRA amplification, proneural transcriptional class, and
expression of the oligodendrocyte signature genes MBP, HOXD1, PLP1, MOBP and PDGFRA. Quantitative
morphologic features within the GBMs that correlated most strongly with oligodendrocyte gene expression were high
nuclear circularity and low eccentricity. These findings highlight the potential of high throughput morphologic analysis
to complement and inform human-based pathologic review.
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Introduction

Pathology images contains a wealth of phenotypic
information that can be linked to underlying molecular
alterations and clinical outcomes, potentially providing a high-
throughput methodology for clinical diagnosis and investigation
[1-6]. Modern slide scanners now produce high-resolution
images within minutes, while computational and storage
infrastructures have also been improved to enable high
performance and parallel computation with large I/O throughput

support. Furthermore, image-processing algorithms have
advanced substantially to accommodate a wide range of
analyses [7,8].

Microscopic features of cancer, such as tumor cell
morphology, type and degree of vasculature, presence of
inflammatory cells, and extent of necrosis, among others, are
measurable and have biologic, diagnostic and therapeutic
significance [9,10]. While human review of histologic sections
has served admirably for diagnosis and research for over a
century, this approach has inherent limitations for large-scale
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quantitative analysis and processing. Computerized image
analysis could add value by scaling up and enhancing the
measurement of complex micro-anatomical features [11].
Machine-based analysis also extends the scope of descriptive
features beyond those readily perceived by the human visual
system and offers a large number of tools for unbiased and
reproducible measurements [12-15].

Classified as the highest-grade astrocytoma, glioblastoma
(GBM) has an aggressive clinical course and is fatal, generally
within two years. An important subset of GBM displays variable
degrees of oligodendroglioma morphology in addition to the
dominant astrocytoma component [9,16-18]. Pure
oligodendrogliomas tend to grow more slowly and have longer
survivals, grade-for-grade, than astrocytomas.
Oligodendrogliomas have morphologic characteristics that can
be relied upon to distinguish them from astrocytomas, such as
rounder, smaller nuclei with relatively uniform nuclear textures.
By contrast, astrocytoma nuclei are elongated, irregular and
have uneven nuclear textures [9,10]. In most cases, GBMs
contain a heterogeneous population of neoplastic cells that
span a wide morphologic spectrum consisting of numerous
intermediate forms (Figure 1). The large number of tumor cell
nuclei in a typical GBM (multiple millions) and the subtle
differences in morphologic features make an objective and
reproducible classification of these tumors challenging for
neuropathologists.

Here we describe a new methodology for quantitative
characterization of biologically meaningful morphologic
components in large-scale whole slide microscopic images
using a cohort of GBM samples collected by The Cancer
Genome Atlas (TCGA) project [19]. We also present methods
to integrate multimodal data across dimensions of clinical
outcome, tumor cell morphology and molecular endpoints. In
this analytic pipeline, TCGA GBMs were decoded by feature

analysis of hundreds of millions of nuclei in whole slide images
and clustered into cohesive groups based on the degree of
Oligodendroglioma Component (OC). These machine-clustered
groups were then correlated with patient outcome,
transcriptional class and genetic alterations. We also compared
machine-derived with human-derived patient stratification to
determine if clinical or molecular correlates differed
substantially. Signature genes correlated with the greatest
degree of oligodendroglioma component were identified, as
were specific nuclear features associated with oligodendrocyte
gene expression [20,21]. Although we present our analysis
framework with application to GBM, it could potentially be
tailored to a broad scope of diseases since many tumor
classification schemes rely on nuclear feature analysis.

Materials and Methods

Ethics Statements
All data related to human subjects used for this study is de-

identified and publicly available from The Cancer Genome
Atlas project [19]. Therefore, this research is not classified as a
human subject research and no Institutional Review Board
approval is required.

Image Dataset and Oligodendroglioma Component
Annotations by TCGA Neuropathologists

Digitized microscopic images of TCGA GBM pathology slides
were downloaded from the TCGA portal [19]. Digitized slides
were from Hematoxylin and Eosin (H&E) stained permanent
sections of tissues that were formalin-fixed and paraffin-
embedded. All slides were scanned at 20X magnification. The
size of the complete image data set for study is approximately
175 Gigabytes with JPEG compression ratio of 5.11.

Figure 1.  A wide morphologic spectrum of nuclei in GBMs with variable combinations of oligodendroglioma and
astrocytoma features.  A subset of GBMs, defined as grade IV astrocytic neoplasms, exhibits a variable degree of
oligodendroglioma morphology. The shaded interval consists of a continuum of morphologies across the oligodendrolgioma to
astrocytoma spectrum. Variable combinations of oligodendroglioma and astrocytoma cells, as well as morphologically ambiguous
forms, make it challenging to reproducibly and accurately subclassify GBMs based on oligodendroglioma component.
doi: 10.1371/journal.pone.0081049.g001
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A team of eight TCGA consortium neuropathologists
annotated digitized histologic slides of TCGA cases for 18
histopathologic features. One of these 18 features was the
degree of Oligodendroglioma Component (OC). The number of
slides available for review ranged from 1-9 per case (median,
3). OC and all other histopathologic features were categorized
as absent (0), present (1+) or abundant (2+) by two
neuropathologists and adjudicated by a third.

Image Analysis and Information Integration
Whole-slide microscopic images were scanned at high

resolution and often exceeded 1GB. Images were therefore
partitioned into non-overlapping 4096x4096-pixel tiles to
accommodate analysis requirements on a single machine and
to enable parallel analysis (Figure 2A). Following the workflow
illustrated in Figure 2B, we segmented approximately 200
million nuclei from 117 GBMs and represented each nucleus
with a set of complementary features from four categories:
morphometry, intensity, texture, and gradient statistics (Figure
3A). We obtained the optimal subset of features exhibiting the
strongest discriminating power for nuclei recognition with a two-
fold cross validation process (Figure 3B). We defined the
Nuclear Score (NS) of a nucleus as a scalar ranging from 1 to
10, with 1 representing a classic oligodendroglioma and 10 a
classic astrocytoma. Values between 1 and 10 represent
nuclear features across the oligodrengroglioma-astrocytoma
continuum (Figure 1). Given this definition, we applied the
generalized linear regression function to NS computation with
optimal nuclear representation [22]. A graphical interface was
developed to facilitate collection of NS from human annotators
for purposes of regression model training (Figure S1).
Additionally, we developed methods for machine-based GBM
stratification in terms of quantified Oligodendroglioma
Component Percentage (OC%) calculated with counts of nuclei
in low and high NS intervals. We selected optimal low and high
NS intervals to maximize the separation power for
differentiating the cases annotated by TCGA neuropathologists
as low Human-graded OC (HOC) and high HOC groups. To
match the human reviewing protocol, which included three
categories (0, 1+ and 2+) we clustered patients into three
Machine-derived OC (MOC) groups by K-means algorithm with
10000 distinct seeds for initialization. These methods allowed
investigation of OC concordance between human reviewers
and machine algorithms; statistical correlations with survival,
treatment response, transcriptional class, genomic alterations,
and histology annotations; identification of genes differentially
expressed across OC groups and genes that correlated with
OC%s; and revealed morphologic features most associated
with oligodendrocyte signature genes. In particular,
Significance Analysis of Microarrays (SAM) tests with gene
expression data of patients in distinct MOC groups identified
specific oligodendrocyte genes (Table 1). Further analyses of
significant genes from SAM revealed the most significant
annotations on their biological functions using the DAVID
database [21] (http://david.abcc.ncifcrf.gov/).

Nuclei Segmentation and Feature Extraction
We focused segmentation efforts on extracting foreground

objects of interest, i.e. nuclei, from background signals that
displayed large variations. We used a fast hybrid grayscale
reconstruction algorithm to normalize background regions
degraded by artifacts introduced from the tissue preparation
and scanning stage [23]. This enables the separation of
foreground from normalized background with a simple
threshold-based mechanism, which is key for efficiently
segmenting nuclei with distinct features (Figure 2C).
Overlapped nuclei were subsequently separated using the
watershed technique [24]. In the post-processing step,
detected objects not satisfying either area or shape constraints
were filtered.

Segmentation of nuclei was followed by computation of four
complementary categories of nuclear features. Visual clues
used by human reviewers for discriminating oligodendroglioma
from astrocytoma nuclei were primarily derived from nuclear
morphology, such as size and shape. Nuclear texture features
based on the chromatin content and distribution were also
distinguishing among GBM subtypes. Nuclear intensity and
gradient statistics, which the human eye has difficulty
perceiving, were also included. For optimal nuclear
representation, we retained only a subset of discriminative
features for oligodendroglioma component quantification in the
downstream analysis. The most discriminating feature subset
consisted of features from all four categories, confirming the
benefits of complementary descriptors.

Feature Selection and Nuclear Score Computation
Indiscriminate inclusion of excessive features could result in

undesirable computational cost, a known source of
dimensionality challenges, and is associated with the peaking
phenomenon [25]. Therefore, we investigated the
discriminating power of individual features and their
contribution to classification performance. To retain physical
meanings of features while reducing dimensionality, we chose
a subset of features with the best discriminating power in the
absence of feature transformations. This is known as feature
selection, an optimization process where a given set of
features is reduced to a subset maximizing some user-defined
objective function. We used the Sequential Floating Forward
Selection (SFFS) procedure to narrow the “discriminating”
features [26]. To use the SFFS algorithm, we defined the
objective function as:

J f t = 1
N ∑i=1

N yi− f i t θ f t (1)

where fi(t) andyiare the selected feature vector at time t, and
human-annotated NS for nucleus samplei, respectively; θ(f(t))is
the trained regression function coefficient vector associated
with selected feature vectors at time t for the N sample nuclei.

With the optimal selected feature subset for nuclear
representation, we calculated the Nuclear Score (NS) for each
nucleus to quantitatively characterize its OC degree. We used
the generalized linear regression function for NS computation,
because it focuses on revealing the dominant patterns between
NS and nuclear features and is less subject to over-fitting than
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Figure 2.  Overall schema of image analysis pipeline for GBM nuclei analysis.  (A) Parallel computation mechanism. Whole-
slide pathology images for analysis were partitioned into smaller image tiles for parallel processing with a computing cluster
infrastructure. (B) Schematic view of the system involving data collection, annotation, analysis and integration. All data elements,
including microscopy imaging features, molecular data, clinical outcomes, and expert pathology review results are stored in a
centralized Pathology Analytical Imaging Standards (PAIS) database, allowing researchers to query. The module for analysis and
query of histologic features consists of image analysis, parallel high performance computation, analytical result and provenance
data representation, creation of interfaces for human markup and annotation acquisition, data management, query support and data
sharing. (C) Nuclei segmentation method. All nuclei were segmented by an efficient segmentation method where image
morphological reconstruction and the watershed algorithm were used to normalize background and to segregate clumped nuclei,
respectively. (D) Visualization of nuclei with distinct Nuclear Scores (NS). An NS was calculated with a set of most discriminating
features derived from the associated segmented nucleus. We use color blue, green, and red to indicate nuclei with low, median, and
high NS.
doi: 10.1371/journal.pone.0081049.g002
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non-linear ones. However, linear least-square estimates are
subject to both outliers and heavy-tailed error distribution.
Therefore, we used the Iteratively Reweighted Least-Square
criterion (IRLS) to mitigate the influence from outlier data [27].
Using the converged coefficients from this regression model,
we calculated NS for each nucleus identified in images (Figure
2D).

To obtain the optimal feature subset, we used an
independent set of five GBM images from the Emory University
Hospital archives for NS regression training. Using the user
interface demonstrated in Figure S1, neuropathologists labeled
a set of representative nuclei covering the whole NS spectrum,
ranging from 1 to 10. We ran our image analysis pipeline (i.e.
segmentation and feature computation) on these images and
recorded features of those nuclei. With the feature selection

Figure 3.  Nuclear features and discriminating feature selection.  (A) Nuclear features can be divided into four categories:
morphometry, intensity, texture, and gradient statistics. (B) To have the optimal representation of nuclear morphology, we plotted
average absolute nuclear score difference associated with increasing numbers of selected features for the regression validation. We
obtained a subset of discriminative features for Nuclear Score (NS) estimation for each given feature number, ranging from 2 to 23.
The average absolute nuclear score difference reached a minimum with 12 selected features. (C) We also studied the histogram of
average cross-validation errors associated with 12 individual features from the original feature set. Morphometry features had better
performances than those of other categories. Of the morphometry features, eccentricity and circularity had the lowest NS estimation
error (red dashed line). When the combined 12 features were used, the NS estimation error was lower than any single feature
(green dashed line).
doi: 10.1371/journal.pone.0081049.g003

Table 1. Summary of concordance and genomic correlates of Human-annotated (HOC) and Machine-derived
Oligodendroglioma Component (MOC) groups.

Associations with/of HOC-0 HOC-1 HOC-2 MOC-0 MOC-1 MOC-2

Concordance Enriched by MOC-0 Similar to MOC-1
Enriched by
MOC-2

Enriched in HOC-0 Similar to HOC-1 Enriched in HOC-2

Gene Expression Class
Associations

Depleted by Proneural
Enriched by Proneural;
Depleted by
Mesenchymal

Enriched by
Proneural

Enriched by Classical None
Enriched by Proneural
Depleted by Classical

Somatic Mutation
Associations

Depleted by EGFR

mutant and PIK3R1

mutant

Enriched by EGFR

mutant and PIK3R1

mutant
None

Enriched by PTEN

mutant and RB1 mutant
Depleted by PTEN

mutant
None

Copy Number Variation
Associations

Depleted by amplified
PDGFRA

None None None None
Enriched by amplified
PDGFRA

Gene Expression
Associations

121 over expressed;
136 under expressed

None None
25 over expressed; 242
under expressed

2 under expressed
MOBP and MBP over
expressed (4 total)

Genes Highly
Correlated With OCP

None MBP, HOXD1, PLP1, MOBP, and PDGFRA (194 total)

Correlation of HOC/MOC groups with transcriptional class, genomic alteration, gene expression data uncovered significant associations between OC groups and molecular
data. Significance analysis of microarrays (SAM) tests identified significantly increased expression of expression of specific oligodendrocyte genes in the MOC2 group.
doi: 10.1371/journal.pone.0081049.t001
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process completed in the cross validation paradigm, we found
the optimal subset of features for nuclear representation (Table
2).

Statistical methods
Hypergeometric testing was performed to determine

enrichment and depletion of samples categorized by one
platform of data in classes defined by data of another
dimension [5,28]. We considered a test with p value less than
0.05 as significant. Survival analysis was performed with
survival information from TCGA portal [19], where survival was
interpreted as “days to death” for non right-censored patients,
and “days to last follow-up” for right-censored patients. Log
rank test was used to reveal significant survival difference
[29,30]. Additionally, Significance Analysis of Microarrays
(SAM) was employed to identify gene expression differences
with data collected with Affymetrix HT-HGU133 mRNA platform
[20]. SAM computes a statistic for each gene, measuring the
strength of the relationship between gene expression and the
response variable. It uses repeated data permutations to
determine if gene expression is significantly related to the
response variable.

Results

Assessment of Nuclear Scores and Morphology
We assessed the accuracy of machine-generated Nuclear

Scores (NS) by reviewing nuclei across the morphologic
spectrum (Figure 4A). Nuclei were partitioned into 30 clusters
by nuclear features using k-means algorithm and then sorted
by the average NS for each cluster. Therefore, nuclei with each
NS integer have three clusters on average to characterize the
standard nuclear appearance, and morphologies of those with
moderately positive and negative NS variation. Five nuclei from
each cluster were randomly selected and visually reviewed.
The change in nuclear morphologies matched the expected
variation in the spectrum from oligodendglioma to astrocytoma
according to classic neuropathology descriptions. To further
validate results, we aggregated a panel of 64 randomly
selected nuclei with an NS 1 and another with 64 nuclei with an
NS 10 (Figure 4B). Visual assessment of machine-scored NS 1

Table 2. Optimal feature subset for Nuclear Score (NS)
discrimination.

Feature Category Feature Name

Geometric Shape
Perimeter, Eccentricity, Circularity, MajorAxisLength,
MinorAxisLength

Intensity MeanIntensity, MaxIntensity, StdIntensity

Statistics Energy

Gradient EntropyGradMag, EnergyGradMag, KurtosisGradMag

Based on the average absolute Nuclear Score difference in the cross-validation
process, the following 12 features were selected for computing Nuclear Score
(NS). Note that the selected features are distributed across all defined feature
categories, emphasizing the benefit of complementary features.
doi: 10.1371/journal.pone.0081049.t002

nuclei validated them as classic for oligodendroglioma with an
average NS of 1.2 by a neuropathologist’s grading (absolute
machine-human NS difference: 0.23 ± 0.5). Those with an NS
of 10 were classic for astrocytoma and were scored as an
average of 9.7 by a neuropathologist with the absolute
machine-human NS difference 0.27 ± 0.45.

Discriminating Power of Features in Computing
Nuclear Score (NS)

From the original feature set for nuclear representation
(Figure 3A), we identified the optimal feature subsets, with the
number of features included ranging from 2 to 23 (Figure 3B).
The training error reached the minimum when the subset with
12 features was selected (Table 2). This subset included
mostly morphometry features, yet all four descriptive categories
were represented. To investigate the discriminant strength
contributed by each selected feature, we carried out a two-fold
cross-validation experiment. Recognition strength associated
with morphometry features were much higher than those
associated with intensity, statistics and gradient categories
(Figure 3C). The only exception within the morphometry
category was minor axis length, which had a classification error
comparable to those in the other categories. Major axis length,
on the other hand, displayed significantly less NS recognition
error than minor axis length. Of all features in the morphometry
group, circularity (Figure 3C) had the best discriminating
performance. However, classification performance associated
with any feature alone was inferior to that of all 12 selected
features.

Patient Stratification with Oligodendroglioma
Component Percentage (OC%)

The degree of Oligodendroglioma Component (OC), along
with other 17 pathologic criteria, was rated as absent (0),
present (1+), or abundant (2+) for GBMs from TCGA by a
panel of board certified neuropathologists. For comparison with
this categorization, the analysis pipeline developed here
computed nuclear scores (NS) for all neoplastic nuclei in 117
TCGA GBMs, typically on the order of one million nuclei per
tumor. We quantified the degree of OC for each sample by
calculating the Oligodendroglioma Component Percentage (OC
%) using counts of nuclei within low and high NS intervals. To
achieve the optimal separation power, we investigated multiple
NS intervals representing oligodendroglioma and astrocytoma
nuclei and various weighting functions for regression analysis.
As a measure for separation power, we used GBMs
categorized by TCGA neuropathologists as having low and
high Oligodendroglioma Component (HOC 0 against HOC 2)
and computed the p-value of the pair-wise t-test with machine-
calculated OC%s. After reviewing the resulting p-values (Table
S1), we selected the NS intervals and weighting function
yielding the lowest p-value. We also confirmed the optimal NS
intervals by testing on five sample sets, each with 80% of
patients included and distinct 20% held-out. The optimal
separation was noted when we included nuclear scores from 1
to 2 as our definition of oligodendrolgioma and those from 6 to
10 as our definition of astrocytoma. With these low
(oligodendroglioma) and high (astrocytoma) NS intervals, the
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oligodendroglioma component percentage (OC%) at the
patient-level was calculated as (low NS nuclei)/(low + high NS
nuclei).

We studied the resulting scatter plots and estimated
Gaussian distributions of OC% associated with 117 patients
from three HOC groups (Figure 5A). The pair wise t-test with
OC% of the HOC 0 and those of HOC 2 patients yielded a p-
value of 0.0382. Thus, the human defined groups based on
oligodendroglioma component showed significant differences in
OC% as determined by machine analysis. We next used an
unsupervised K-means clustering algorithm with 10000 seed
points to reliably partition patients into three Machine-derived
OC (MOC) groups on the basis of their OC%s. These three
machine-clustered groups were compared to the three patient
groups determined by TCGA neuropathogists based on OC

ratings [31]. The estimated Gaussian distributions of the OC%
(Figure 5B) clustered by machine were well separated across
MOC groups. The resulting p-value of pair wise t-test between
patients of MOC 0 and those of MOC 2 was 5.98e-6. We
noticed that human- and machine-based approaches stratified
patients with a moderate amount of overlap, agreeing on 62%
(73 out of the 117) of patients with regard to OC group
assignment. Using the hypergeometric tests [5,28], we found
that MOC 0 patients were enriched in HOC 0 and that patients
in MOC 2 were enriched in HOC 2 (Table S2). Enrichment of
MOC 1 samples in HOC 1 was just above the significance
level.

Figure 4.  Validation of Nuclear Scores (NS) by reviewing nuclear appearances.  (A) Spectrum of analyzed nuclei with distinct
NS. Nuclei from feature-driven clusters (columns) were reviewed and the correlation between OC and NS was confirmed. (B) Arrays
of GBM nuclei grouped by machine-classified NS. To validate results further, we aggregated 84 nuclei with (left panel) NS 1 and 84
nuclei with (right panel) NS 10, scored by machine-based regression analysis. Segmented nuclear boundaries (in green) produced
by machine algorithms are overlaid. Visual and quantitative assessments verify that nuclei with NS 1 are typical of
oligodendroglioma nuclei and those with NS 10 are typical of astrocytoma nuclei.
doi: 10.1371/journal.pone.0081049.g004
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Feature Differences between Oligodendroglioma
Component (OC) Groups

We next investigated which individual nuclear features were
most discrimant between the OC groups. We calculated feature
means of 12 selected features for each patient and then
compared them among the OC groups with a two-sample t-
test. We found that the morphologic features eccentricity (P =
0.02468) and circularity (P = 0.04819) were significantly
different between HOC 0+1 and HOC 2 groups. For a
determination of discriminating power of individual nuclear
features, we retrained regression functions with individual
selected features from the set of 12 features. At each time, we
calculated a new score for each nucleus and a new OC% for
each patient, followed by stratification into new MOC groups.
Within these newly defined groups, we found that the feature
means of eccentricity and circularity were also significantly
different between patients in MOC 0+1 (i.e. MOC 0 and 1
groups in combination) and MOC 2 group (P = 5.128e-4 and P
= 1.467e-10, respectively). The estimated probability density
functions associated with these feature means from HOC and
MOC groups are displayed in Figure 6. While taking an
average operation could reduce the true signal strength
substantially, we were still able to demonstrate significant
separabity of eccentricity and circularity means between OC
0+1 and OC 2 groups defined by human reviewers and
machine algorithm, suggesting strong correlation between
these specific morphometry features and OC groups.

Survival and Treatment Response Analysis
We next investigated the prognostic significance of OC

designation using survival data obtained from the TCGA portal
[19]. Kaplan-Meier plots [32] of patients divided by HOC and
MOC groups (Figure 7) were analyzed by log rank test [29,30].

Kaplan-Meier plots for OC 0 vs. the combined group OC 1+2
stratified by human (Figure 7A) and machine (Figure 7B) did
not reveal a survival difference (P = 0.49669 and 0.42865,
respectively). Similarly, survivals of OC 2 vs. the combined
group OC 0+1 were not significantly different for human-
annotated (P = 0.44479 in Figure 7C) or for machine-derived
groups (P = 0.30348 in Figure 7D).

We also investigated the response to therapy among and
between OC groups. In the TCGA, intensive therapy was
defined as three or more cycles of chemotherapy, or
concurrent radiation and chemo-therapy [3,33]. Differences in
outcome of patients receiving standard and intensive regimens
were analyzed with the log rank test. We investigated treatment
responses of patients receiving standard and aggressive
therapies within the combined OC 1+2 group labeled by human
reviewers (Figure 8A) and machine (Figure 8B) and identified
that the response to aggressive therapy was more prominent in
the MOC 1+2 than in the HOC 1+2 groups. To interrogate the
significance of the observed difference in treatment effect, we
performed the Cox proportional hazards regression using
treatment (0 for standard and 1 for aggressive treatment) and
OC group label as its predictors [34]. Based on the estimated
covariate coefficient and its variance for treatment, we
computed the 95% confidence interval of the hazard ratio for a
one-unit change in treatment (i.e. changing from standard to
aggressive treatment). The hazard ratio of aggressive
treatment was 0.93 of that of the standard treatment with HOC
stratification data (95% confidence interval of the hazard ratio
for a one-unit change in treatment: [0.414334, 2.084136]). By
contrast, the hazard ratio of aggressive treatment was 0.56 of
that of standard treatment when MOC stratification data was
used (95% confidence interval of the hazard ratio for a one-unit
change in treatment: [0.278637, 1.105308]). While these

Figure 5.  Comparisons of Oligodendroglioma Component Percentages (OC%) in Human-annotated (HOC) and Machine-
derived Oligodendroglioma Component (MOC) groups.  Estimated Gaussian distributions of OC%s for patients reviewed as OC
0, OC 1, and OC 2 groups by (A) TCGA neuropathologists; and (B) machine clustering approach, with NS intervals [1,2,6-10] for
oligodendroglioma and astrocytoma nuclei.
doi: 10.1371/journal.pone.0081049.g005
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results suggest that the treatment effect is stronger when MOC
1+2 stratification is used as compared to the HOC 1+2
stratification, the difference does not reach statistical
significance. We also found significant differences in treatment
response for both HOC 0+1 (P=8.71e-3, Figure 8C) and MOC
0+1 patients (P=7.58e-3, Figure 8D) with no substantial
difference observed between human and machine-based
stratification. In a separate comparison, we did not find any
differences in survival based on treatment when we compared
HOC groups to those of MOC groups.

Transcriptional Class and Genomic Alterations Associated
with Oligodendroglioma Component (OC) Groups

The TCGA has defined four clinically relevant transcriptional
classes of GBMs: proneural, neural, classical and
mesenchymal [33]. To investigate the potential relationship

between OC groups and transcriptional classes, we performed
enrichment and depletion analysis based on the hyper-
geometric distribution between transcriptional classes and OC
groups as defined by neuropathologists and machine
algorithms [28]. We observed that proneural class cases were
significantly enriched in MOC 2 (four proneural MOC 2 cases
out of a total of 26 proneural and seven MOC 2 cases with P =
0.0257) and that classical class cases were enriched in MOC 0
(25 classical MOC 0 cases out of a total of 34 classical and 71
MOC 0 cases with P = 0.0480) (Table S3). In comparison, the
human OC group stratification revealed an association of the
proneural class with the HOC 1 and HOC 2 groups. Therefore,
machine-derived patient classification revealed a specific
association of proneural class with those GBMs showing the
greatest degree of oligodendroglioma component.

Figure 6.  Estimated probability density functions associated with means of eccentricity and circularity.  Estimated
probability density functions associated with means of eccentricity and circularity demonstrate significant differences between (A-B)
HOC 0+1 and HOC 2; and (C-D) MOC 0+1 and MOC 2 groups. Note that the probability density function of eccentricity average
presents lower population mean for OC 2 group and higher mean for OC 0+1 group. Similarly, the probability density function of
circularity average presents higher population mean in the OC 2 group and lower mean for OC 0+1 group. The findings agree with
the domain knowledge of oligodendroglioma and astrocytoma nuclear morphology.
doi: 10.1371/journal.pone.0081049.g006
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We next studied genotype-phenotype correlations using
TCGA genomic data and OC groups. For copy number
variations, there are five distinct levels: homozygous deletion
(-2), hemizygous deletion (-1), no change (0), gain (1), and
high-level amplification (2). The overall profiles of genetic
alterations associated with HOC and MOC groups are shown in
Figure S2, where copy number levels of homozygous deletion,
hemizygous deletion, no change, gain, and high-level
amplification are represented in light green, dark green, black,
dark red, and light red. Gene mutation events are depicted in
red. Homozygous and hemizygous deletions were considered
as a gene deletion event; only high-level amplification was
considered as gene amplification event. A shorter list of
hallmark genetic alterations of GBMs in HOC and MOC groups

is shown in Figure 9A. We found that PTEN and RB1 mutations
were significantly enriched in MOC 0 groups (Table S4), with p-
values of 0.0200 (15 PTEN mutant MOC 0 cases out of a total
of 20 PTEN mutant and 48 MOC 0 cases) and 0.0288 (seven
RB1 mutant MOC 0 cases out of total of eight RB1 mutant and
48 MOC 0 cases), whereas neither of these gene mutation
events was significantly enriched in HOC groups (Table S5).
RB1 and PTEN mutations are typical of GBMs, but are found
infrequent in those with an oligodendroglioma component
defined by machine [35,36]. Additionally, we found a strong
association between PDGFRA amplification and MOC 2 group
(three PDGFRA amplified MOC 2 cases out of a total of ten
PDGFRA amplification and six MOC 2 cases with P = 0.0131 in
Table S6) whereas only a trend was noted between PDGFRA

Figure 7.  Analysis of survival with Human-annotated (HOC) and Machine-derived Oligodendroglioma Component (MOC)
patient groups.  Kaplan-Meier plots of the survival of TCGA GBM patients classified as OC 0 vs. those in OC 1+2 group by (A)
TCGA neuropatholgists (P = 0.49669); (B) machine algorithms (P = 0.42865). Kaplan-Meier plots of the survival of TCGA GBM
patients classified as OC 2 vs. those in OC 0+1 group by (C) TCGA neuropatholgists (P = 0.44479); (D) machine algorithms (P =
0.30348).
doi: 10.1371/journal.pone.0081049.g007
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 amplification and HOC 2 group (Table S7). PDGFRA
amplification is tightly associated with the oligodendroglioma
phenotype and data from the TCGA indicate that
overexpression and/or amplification of PDGFRA in GBMs is
typical of the proneural expression class [37,38].

Pathologic Feature Associated with Oligodendroglioma
Component (OC) Groups

The TCGA neuropathologists reviewed 117 GBMs based on
18 pathologic features, including necrosis, microvascular
hyperplasia, inflammatory cell infiltration, tumor cell
morphology, among others [19]. Each GBM was classified as
absent (0), present (1), or abundant (2+) for each
histopathologic feature. We investigated the associations of
pathologic review features with OC groups (Table S8) and

Figure 8.  Analysis of treatment response with Human-annotated (HOC) and Machine-derived Oligodendroglioma
Component (MOC) patient groups.  Treatment responses of patients receiving standard and aggressive therapies are shown for
patients in the OC 1+2 group defined by (A) TCGA neuropatholgists (P = 0.48943); (B) machine algorithms (P = 0.07256); and
within the OC 0+1 group defined by (C) TCGA neuropatholgists (P = 8.71e-3); (D) machine algorithms (P = 7.58e-3).
doi: 10.1371/journal.pone.0081049.g008
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found that GBMs with no pseudopalisading necrosis were
enriched in MOC 2 group. GBMs with abundant small cell
morphology and sarcomatous metaplasia were enriched in
MOC 0 group (Table S8), indicating that sarcomatous and
small cell GBMs do not show an appreciable oligodendroglioal
component [35,39]. Some common significant associations of
pathologic features shared by HOC and MOC groups are listed
in Table S9.

Gene Expression Differences across
Oligodendroglioma Component (OC) Groups

To identify gene expression differences across MOC groups,
we applied Significance Analysis of Microarrays (SAM) [20], a
statistical technique for identifying gene expression differences
from data collected with Affymetrix HT-HGU133 mRNA
platform. SAM computes a statistic for each gene, measuring
the strength of the relationship between gene expression and
the response variable (OC group). We carried out SAM
analysis for each MOC group against the remaining two with a
false discovery rate cutoff of < 5%. We found only four genes

with significant association with MOC 2 as compared to MOC
0+1 groups. Two of them, MOBP (Myelin-associated
Oligodendrocyte Basic Protein) and MBP (Myelin Basic
Protein), are highly specific markers of oligodendrocytes.
Sorted expression of these four genes is shown in Figure 9B.
Similar significance analysis was conducted between HOC 2
and HOC 0+1 groups, yet no significant gene expression
differences were found. Thus, machine-based patient
stratification approach identified a group with high
oligodendroglioma content that shows high expression of
oligodendrocyte-specific genes. When we compared gene
expression between HOC 0 against HOC 1+2 groups, we
found 257 significant differences (including 121 over-
expressed, and 136 under-expressed genes) (Table S10), yet
no oligodendrocyte signature genes were identified. One
potentially related finding was that OLIG2 (Oligodendrocyte
transcription factor 2), a universal marker of diffuse gliomas,
was under expressed in HOC 0. In our analysis of MOC 0
against MOC 1+2, we found 267 significant genes (25 over
expressed, and 242 under expressed) (Table S10), but no

Figure 9.  Associations of Oligodendroglioma Component (OC) groups with molecular data.  (A) Genetic alteration profiles of
GBMs in the three (left panel) HOC and (right panel) MOC groups. Mutation is depicted in red (upper row). Homozygous deletion
(-2), hemizygous deletion (-1), no change (0), gain (1), and high-level amplification (2) conditions are represented in light green,
dark green, black, dark red, and light red (lower row). (B-D) Analyses of MOC groups identify oligodendrocyte signature genes. (B)
Heat map of gene expression (high expression in red) for four genes with significant overexpression in MOC 2 group compared to
MOC 0+1 groups. (C) Heat map of expression profiles (high expression in red) of significant genes positively (upper half) and
negatively (lower half) correlated with OC% by SAM. Patients are sorted on the x-axis by ascending OC%; (D) Smoothed
expression profiles of the oligodendrocyte signature genes MBP, PLP1, HOXD1, MOBP, and PDGFRA are plotted with samples of
increasing OC%.
doi: 10.1371/journal.pone.0081049.g009
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oligodendrocyte signature genes. With the same gene sets
showing distinct expressions across MOC groups, we used
DAVID database to further interpret gene ontology and biologic
functions [21] (Table S11).

We also carried out SAM test with the “quantitative
response” to identify genes significantly correlated with the
computed oligodendroglioma component percentages (OC%s).
We found 194 genes (Table S10) significantly associated with
the OC%s for GBMs with 5% false discovery rate cutoff (Figure
9C). Of these, five specific markers of oligodendrocytes were
found: MBP, HOXD1, PLP1, MOBP and PDGFRA. The
smoothed gene expression profiles of MBP, HOXD1, PLP1,
MOBP and PDGFRA reveal increased expression with
increasing OC% in GBMs (Figure 9D). Thus, the degree of
oligodendroglioma component within a GBM, as defined by
machine-based analysis, is highly correlated with an
oligodendrocyte gene expression signature.

Nuclear Feature Correlates of Oligodendrocyte
Signature Genes

We investigated whether specific nuclear features were
correlated with the oligodendrocyte signature genes HOXD1,
MBP, and PLP1, which were highly correlated with OC% in
GBMs. We repeated the NS computation workflow used with
12 nuclear features, but with one feature at a time. For each of
12 features, we calculated its mean from all nuclei within the
low and high NS intervals for each patient. For each gene of
interest, we partitioned patients into low and high gene
expression groups. We found that eccentricity means were
statistically lower in the high HOXD1 gene expression groups
(P = 0.03624). Eccentricity was lower and circularity was higher
in the high MBP expression groups (P = 7.304e-3 and P =
0.04413, respectively). Eccentricity was lower in the high PLP1
expression group (P = 2.112e-3) while circularity trended
toward being higher in this group (P = 0.06492). The resulting
estimated Gaussian probability density functions associated
with eccentricity and circularity means from groups of low and
high expressions of gene HOXD1, MBP and PLP1 are
displayed in Figure 10. All other features means are presented
in Figures S3-S5. The overall results indicate a strong link
between oligodendroctye gene expression and the features of
eccentricity and circularity derived from machine-based
segmentation, feature extraction and NS analysis. Specifically,
high oligodendrocyte gene expression is correlated with low
eccentricity and high circularity.

Discussion

This paper presents an automated image analysis and data
integration platform using whole slide pathology images,
molecular data, and clinical outcome from GBM cases within
The Cancer Genome Atlas. While our application focused on
the degree of oligodendroglioma component within GBMs, the
approach could be potentially used for other machine assisted
morphologic investigations. This computational approach
allowed us to quantify the morphologic composition of over 200
million nuclei in whole slide microscopic images from 117
GBMs, integrate with multi-dimension data and derive clinically

meaningful molecular correlates, which is a promising
approach to complement and inform human-based pathologic
review.

Using machine analysis, GBMs were clustered into three
well-separated groups based on their degrees of
oligodendroglioma component. Our analysis indicated that
machine-identified oligodendroglioma component (OC) groups
were generally consistent with OC groups designated by a
panel of TCGA neuropathologists [28], with the best agreement
noted in low oligodendroglioma component group (OC 0).
Interestingly, the morphologic features with the greatest power
for discriminating oligodendroglioma component in neoplastic
cells and separating patient clusters on this basis were nuclear
circularity, eccentricity, perimeter and major axis length.
Neuropathologists’ recognize that infiltrating glioma cells with
greater circularity, less eccentricity, smaller perimeters and
shorter major axis length are typical of oligodendroglioma cells
and distinguish them from astrocytoma [9]. However, the ability
to quantitatively assess morphologic descriptors on the scale of
a million cells per tumor and to extract these four specific
features as the most discriminating is beyond the capacity of
human reviewers and highlights the strength of computational
methods for identifying phenotypic subtypes reproducibly and
accurately [13,14]. Since reproducibility and interobserver
agreement in the neuropathologic classification of gliomas can
be quite low, this approach and result informs human reviewers
of the nuclear features that are most discriminating for
recognizing oligodendroglioma within a GBM.

The advantage of using GBMs from the TCGA dataset is that
morphologic features can be compared to multiplatform
molecular data and clinical outcomes as ground truth. When
OC groups derived from machine algorithms and human-based
classifications were compared to molecular endpoints, we
found that machine-based analysis could better identify tumors
with an olidendroglioma molecular signature. For example, our
machine-based GBM classification recognized a subset of
patients with high oligodendroglioma component (MOC 2) that
showed a statistically significant overexpression of genes
known to be tightly associated with oligodendrocytes, including
MOBP (encoding myelin-associated oligodendrocyte basic
protein) and MBP (encoding myelin basic protein, the major
protein of the myelin sheath). In our regression analysis, the
genes that were among the most highly correlated with the
degree of oligodendroglioma component percentage (OC%)
were also oligodendrocyte specific, including MBP, MOBP,
PDGFRA, HOXD1, a transcription factor expressed by
oligodendrocytes that binds to the human myelin
oligodendrocyte glycoprotein promoter, and PLP1, a gene
specific to myelinating cells like oligodendrocytes. In contrast,
the human classification of GBMs enriched by
oligodendroglioma cells (HOC 2) did not reveal such an
association with these oligodendrocyte signature genes. This
result indicates that large-scale quantitative characterization of
nuclear features by computational methods is capable of
identifying a subset of GBM patients exhibiting an
oligodendocyte gene signature in a manner that may
complement and inform human review.
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Similarly, machine based classification of those GBMs with a
high degree of oligodendroglioma component (MOC 2)
revealed a statistically significant association with PDGFRA
amplification and the proneural gene expression class, both
known to be tightly correlated with the oligodendroglioma
phenotype [37,38]. Furthermore, those GBMs classified with a
low oligodendroglioma component (MOC 0) were strongly

enriched in PTEN and RB1 mutations, which is more
characteristic of classic GBMs with astrocytic differentiation
[35,36]. Given that these genetic correlates noted with
machine-based stratification were not as evident on human-
based classifications, neuropathologists could potentially use
this approach as a large-scale screening or verification
process.

Figure 10.  Correlation of feature means with gene expression of oligodendrocyte signature genes.  Distributions associated
with eccentricity and circularity means are shown for groups of low and high expression of (A) HOXD1, (B) MBP, and (C) PLP1,
highlighting the close association between the expressions of oligodendrocyte-specific genes and nuclear features typical of
oligodendroglioma.
doi: 10.1371/journal.pone.0081049.g010
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With the ability to quantitatively analyze neoplasms at a
scale not accommodated by human reviewers, machine-based
methods have the potential to further inform human reviewers
of discriminating features related to gene expression or genetic
correlates [15]. Specific morphologic features in digitized
images that are associated with gene expression patterns or
clinical outcomes provide an evidence-based and clinically
meaningful mechanism to subdivide diseases phenotypically.
In the case of GBMs within the TCGA dataset, we
demonstrated that the nuclear features that correlated most
strongly with the expression of oligodendrocyte specific genes
(HOXD1, MBP, and PLP1) were high circularity and low
eccentricity. Since both oligodendrocytes and
oligodendroglioma cells are characterized by round, symmetric
nuclei, this result is intuitive. Moreover, this approach can be
used to determine which morphologic features correspond with
specific genes, genetic alterations, and signaling networks in a
broader scope. Thus, our platform has the potential to inform
pathologists of those these specific morphologic features that
will most accurately identify a tumor element with a given gene
signature.

The performance advantage of machine-based OC
classification to that of traditional human-based approach, as
measured by identification of significant associations with
molecular endpoints, is likely due to its consistent performance
on the large-scale that is not feasible for humans [11]. Since
the size of the training samples (five archived images from
Emory University Hospital) in our study was nominal as
compared to the total number of neoplastic nuclei in TCGA
whole-slide images, human-based analysis on the small set of
nuclei would be expected to yield high accuracy. However,
performance drastically drops when the scope of analysis is
expanded to the order of millions of nuclei per tumor sample.
Unlike neuropathologists, computer-based analysis is not
vulnerable to analytic scale. In our study, the capacity of large-
scale analysis by machines enables objective and quantitative
OC measurement and the resulting discovery of significant
associations that would be identified at a much larger cost of
human labor and time. Moreover, machine-based analysis on
digital slides extends the scope of descriptive features from
those appreciated by pathology domain experts to those not
perceived by the human visual detection system. In addition to
the nuclear morphologic features that we found the most
discriminating, we uncovered other complementary features
from intensity, statistics and gradient feature categories (Table
2) that enhanced the accuracy of the nuclear score (NS)
computation for oligodendroglioma component (OC)
quantization.

Although our work reveals the potential to improve and
inform human disease classification, several limitations will
have to be addressed before the method can have full impact
on translational science. Firstly, we focused on only one
attribute of GBM morphology rather than its full morphologic
complexity. Features other than tumor cell morphology, such
as angiogenesis, necrosis, thrombosis, lymphocytic and
macrophage infiltrates are also critical to tumor behavior and
will have to be considered for a comprehensive analysis
[35,40]. Secondly, there is a degree of circular logic to our

approach. We have asked neuropathologists to annotate a
teaching set for their impression of degree of
oligodendroglioma differentiation in each nucleus in order to
build our regression. Thus, a subjective human-based definition
of nuclear morphology was the ground truth of our analysis. As
such, the findings of well-known correlations of nuclear
morphology (e.g. perimeter, circularity and eccentricity, etc)
with degree of oligodendroglial morphology or oligodendrocyte
gene expression should not be unexpected. However, due to
our unbiased, large scale and quantitative approach, our
machine-based analysis was able to uncover molecular
signatures that were not apparent following human disease
classification, highlighting the strengths of computational
approaches to digital pathology. Lastly, in our integrative
analysis, we have focused almost exclusively on pairwise
correlations rather than simultaneous analyses over multiple
dimensions. In this manner, we may have missed interesting
associations that can only be revealed by synergetic analyses
with multi-dimensional data. This problem will be further
investigated in future research.

Overall, the analysis framework presented provides a
generic approach for large-scale microscopy images and for
comprehensive correlative investigations using complementary
disease data. Although this study focused on the analysis of an
oligodendroglioma component in GBM, the platform could
potentially be generalized to other morphology-based analyses
that integrate clinical and molecular data.

Supporting Information

Figure S1.  A graphical user interface developed to
facilitate the Nuclear Score (NS) collection and training
process. To train the regression model for generating desired
NS for segmented nuclei, we collected a separate set of
training samples graded by human annotators with a user-
friendly graphical user interface. In this process, all nuclei were
pre-segmented and the associated features were pre-
calculated by computer algorithms. Users can click on the
nucleus of interest and efficiently choose the corresponding NS
in the feature Table. After completing the training process,
results were exported and saved in files on the local disk.
(TIFF)

Figure S2.  Genetic alteration profiles for TCGA GBM
patients, including mutations and copy number variations.
Genetic alteration profiles are shown for TCGA patients in (A)
HOC, and (B) MOC groups. Mutations are depicted in red
(upper row). Homozygous deletion (-2), hemizygous deletion
(-1), no change (0), gain (1), and high-level amplification (2) are
represented in light green, dark green, black, dark red, and
light red (lower row).
(TIFF)

Figure S3.  Estimated Gaussian probability density
functions associated with means of 12 individual selected
features from low and high HOXD1 gene expression
groups.
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(TIFF)

Figure S4.  Estimated Gaussian probability density
functions associated with means of 12 individual selected
features from low and high MBP gene expression groups.
(TIFF)

Figure S5.  Estimated Gaussian probability density
functions associated with means of 12 individual selected
features from low and high PLP1 gene expression groups.
(TIFF)

Table S1.  Optimal weight function and Nuclear Score (NS)
intervals for defining oligodendroglioma and astrocytoma
nuclei in GBM digitized images. P-values were computed for
pair wise t-tests with OC%s of the HOC 0 patient population
compared to those of HOC 2 rated by TCGA
neuropathologists. Multiple definitions for NS intervals for
oligodendroglioma and astrocytoma nuclei and weighting
functions for regression analysis were investigated.
(DOC)

Table S2.  Concordance between Human-annotated (HOC)
and Machine-derived Oligodendroglioma Component
(MOC) groups. P-values for (left) enrichment and (right)
depletion analysis of MOC groups within the three HOC groups
were calculated using the right and left hypergeometric tails,
respectively.
(DOC)

Table S3.  Association between Human-annotated (HOC) /
Machine-derived Oligodendroglioma Component (MOC)
groups and TCGA transcriptional subtypes. P-values for
(left) enrichment and (right) depletion analysis of Verhaak
transcriptional subtypes within HOC and MOC groups were
calculated using the right and left hypergeometric tails
respectively.
(DOC)

Table S4.  Associations between Machine-derived
Oligodendroglioma Component (MOC) groups and gene
mutations. P-values for (left) enrichment and (right) depletion
analysis of mutated genes of interest within the three MOC
groups were calculated using the right and left hypergeometric
tails respectively.
(DOC)

Table S5.  Associations between Human-annotated
Oligodendroglioma Component (HOC) groups and gene
mutations. P-values for (left) enrichment and (right) depletion
analysis of mutated genes within the three HOC groups were
calculated using the right and left hypergeometric tails
respectively.
(DOC)

Table S6.  Associations between Machine-derived
Oligodendroglioma Component (MOC) groups and gene
copy number variations. P-values for (top row) enrichment,

and (bottom row) depletion analysis of (left) genetic deletion
(-2=homozygous deletion; -1=hemizygous deletion), (middle)
no change (0=neutral/no change) and (right) amplification
(2=high level amplification) within the three MOC groups were
calculated using the right and left hypergeometric tails
respectively.
(DOC)

Table S7.  Associations between Human-annotated
Oligodendroglioma Component (HOC) groups and copy
number variations. P-values for (top row) enrichment, and
(bottom row) depletion analysis of (left) genetic deletion
(-2=homozygous deletion; -1=hemizygous deletion), (middle)
no change (0=neutral/no change) and (right) amplification
(2=high level amplification) within the three HOC groups were
calculated using the right and left hypergeometric tails
respectively.
(DOC)

Table S8.  Associations between Machine-derived
Oligodendroglioma Component (MOC) groups and human-
annotated histology groups. P-values for (top row)
enrichment, and (bottom row) depletion of pathologic ratings
(left: absence, middle: presence, and right: abundance) within
the three MOC groups were calculated using the right and left
hypergeometric tails respectively.
(DOC)

Table S9.  Associations of pathologic features shared by
Human-annotated (HOC) and Machine-derived
Oligodendroglioma Component (MOC) groups. We list all
significant enrichment/depletion findings shared in HOC- and
MOC-based correlative studies with pathologic ratings.
Pathologic ratings 0, 1, 2 represent “absence”, “presence”, and
“abundance”.
(DOC)

Table S10.  Full list of genes presenting 1) significance in
pairwise SAM tests with Human-annotated (HOC) and
Machine-derived Oligodendroglioma Component (MOC)
groups; and 2) associations with Oligodendroglioma
Component Percentages (OC%s) using SAM quantitative
response regression.
(XLS)

Table S11.  Gene ontology and biologic functions
interpreted by DAVID databases.
(XLS)

Text S1.  Endnote Library S1.
(DOC)
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