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Abstract

Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns
and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically
collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR
data from the Geoscience Laser Altimeter System (GLAS) relative to airborne-based LiDAR to model the north Idaho
breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis). GLAS
data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were
confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of
LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the
data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important
structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage
height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the
ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our
knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The
large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife
distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly
in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past
and future satellite platforms (e.g. GLAS, and the planned IceSAT2 mission) with the goal of improving wildlife modeling for
more locations across the globe.
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Introduction

Remote sensing data have become fundamental for mapping

actual or potential species distributions [1,2] to aid conservation

efforts at local to global scales [3,4,5]. Current species distribution

maps draw upon a variety of information sources, including land

cover, to model habitat. However, land cover classified as forest is

often too broadly defined and often does not account for structural

variability that can significantly alter habitat suitability for avian

species [6]. While passive spectral remote sensing data products

are essential for delineating horizontal habitat heterogeneity (e.g.

forest fragmentation) and vegetation productivity at spatial scales

relevant to many species, they are of limited use for quantifying

details of vertical habitat structure crucial to animal habitat (e.g.

[7]). As a result, improving maps of animal distributions is likely to

require remote quantification of vertical habitat structure across

wide areas [7–9].

Light detection and ranging (LiDAR) provides unique data for

characterizing vertical habitat structure, and has been utilized

widely to address multiple animal-habitat relationships. For

instance, airborne LiDAR has been used alone or in combination

with passive remote sensing data to assist habitat modeling for

terrestrial birds [10–17], mammals [18,19], and invertebrates

[20,21] at spatial scales relevant to numerous organisms. The basis

for these advances in habitat modeling stem from the fact that the

energy returned in the LiDAR signal provides information to

characterize forest structural characteristics such as vegetation

height, density, and volume in discrete vertical slices above ground

level [22,23]. The resultant data can provide information ranging

from structural characteristics of individual trees [24] to area-wide

maps of forest successional status [25,26] and biomass distribution

[27,28]. As a result, these vertical forest characteristics afforded

from airborne LiDAR can improve our understanding and

mapping of animal-habitat relationships from the stand to the

landscape scale [29].

Although LiDAR has provided significant leaps forward in

modeling habitat, data are typically collected via aircraft, thereby

imposing limits on the extent and frequency of spatial and

temporal sampling relative to orbiting sensors mounted on

satellites. A satellite based LiDAR remote sensing platform may
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provide information about 3-D structure for animal habitat

modeling critical for broad-scale application [30]. However to

our knowledge no empirical study has yet tested the utility of

satellite LiDAR for habitat modeling.

The Geoscience Laser Altimeter System (GLAS) LiDAR

instrument aboard the ICESat satellite, in operation between

2003 and 2009, provides a novel opportunity for delineating

habitat. While the primary intent of the GLAS instrument was to

measure polar ice-sheet thickness [31], GLAS data has been used

to characterize vertical vegetation structure [32–34] and forest

biomass [35]. Similar to airborne LiDAR in the underlying

physics, a photo-detector within the GLAS receiving telescope

records the time-of-flight (t) between emission of the transmit laser

pulse and its return to the instrument. Using the speed of light (c),

distance (D) from the instrument is then computed as D = 0.5 tc.

Vertical vegetation structure is derived from the varying intensity

at discrete heights of the returned transmit signal [34]. The major

attraction of GLAS data for informing ecological questions is that

(1) the data samples forest environments across the globe and (2)

the data (along with computer code to manipulate it) is freely

available from the U.S. National Snow and Ice Data Center

(NSIDC). However, LiDAR data from GLAS differs in both

spatial extent and resolution from airborne LiDAR data. While

airborne LiDAR data are typically scanned at high horizontal

resolution (i.e. with each laser pulse sampling a ‘small footprint’

,1 m22 in size and typically collected at a density of .1 pulse

m22) continuously across landscapes, GLAS is a ‘large footprint’

instrument collecting data samples with a diameter in our study

area of ,64 m each and separated by a minimum of 172 m. The

utility of GLAS LiDAR to describe wildlife habitat at spatial scales

relevant to animals is as yet unexplored.

Advances in the global description of vertical vegetation

structure are increasingly important for understanding issues

associated with species distribution, diversity, and habitat connec-

tivity (e.g. [9]). The major objective of this study was to model

breeding site occupancy of a forest dependent bird species, the

Red-naped Sapsucker (Sphyrapicus nuchalis), using both GLAS and

airborne LiDAR data. We chose the Red-naped Sapsucker

because of its status as an ecosystem engineer, capable of creating

cavities in trees that can be used by multiple other forest avian and

mammalian species (e.g. [36,37]). To our knowledge, this study

represents the first to utilize spaceborne LiDAR data in assessing

the habitat associations of a forest dependent species, and the first

to compare GLAS and airborne-LiDAR models in this ecological

context.

Methods

Study Site
Field survey sites were located in temperate mixed-conifer

forests dominated by Ponderosa pine (Pinus ponderosa), White pine

(Pinus monticola), Grand fir (Abies grandis), Western larch (Larix

occidentalis), Douglas fir (Pseudotsuga menziesii), and Western red

cedar (Thuja plicata) located at the western extent of the Clearwater

Mountain Range and within the Idaho Panhandle National Forest

in northern Idaho, USA (Fig. 1). Site ground elevation (hereafter,

elevation) ranged from 794–1357 m. Land ownership and

management across the study area included private timber

concessions, private land holders, and state and federal manage-

ment agencies. Permits are not explicitly required for observa-

tional bird studies on U.S. Forest Service land. We obtained verbal

permission and access to state owned property from the Idaho

Department of Lands. Private land holdings included Potlatch

Corporation and Bennett Lumber Products, both of whom

granted permission to perform research on their respective

properties. The diverse ownership and management matrix has

created a mosaic of forest stands that exhibit a range of

successional stages that can influence the habitat selection

behavior of woodpeckers [38–41].

GLAS LiDAR
The GLAS instrument is a waveform LiDAR system with

15 cm vertical resolution that uses a near infrared (1064 nm) laser.

The laser records data covering a ground footprint (i.e. sample

area) of ca. 64 m diameter that can vary significantly in its

ellipticity over time [42]. The semimajor axis and eccentricity are

recorded for each laser shot and were used to define an elliptical

mask for extraction of terrain features from the airborne and

GLAS data using geographic information system software. The

laser footprints are spaced 172 m between centers along the

satellite transect, with a between-transect spacing of about 540 m

with different acquisition years in our study area (Fig. 1). We

acquired GLAS data from the NSIDC, which distributes data

products from 18 laser sampling campaigns. We used the GLA01

product (L1A Global Altimetry) which provides the transmitted

and received waveform, and the GLA14 product (L2 Land Surface

Altimetry) which provides the laser footprint geolocation and

geodetic, instrument, and atmospheric corrections. The two

datasets are linked by record ID and shot number. We used

‘release 531’ data, which specifies a level of data pre-processing,

from laser campaigns 2A (Sep–Nov 2003), 2B (Feb–Mar 2004), 3A

(Oct–Nov 2004), 3B (Feb–Mar 2005), 3D (Oct–Nov 2005), 3H

(Mar–Apr 2007), and 3I (Oct–Nov 2007). GLAS waveforms can

be influenced by interaction with clouds and signals that are

saturated due to high gain settings. We therefore removed

waveforms that were affected by clouds and saturation on the

laser signal following Chen [43].

We modified Interactive Data Language (IDL) code provided

by NASA and available on the NSIDC GLAS site [44] to extract

complete laser waveform return signals (from GLA01) and

waveform summary statistics (from GLA14) (Fig. 2). To compute

vertical vegetation statistics from the waveform signal, we first

established the ground return provided by the summary statistics

in the GLA14 product. The summary statistics include up to 6

primary energy peaks generated from a Gaussian decomposition

algorithm [45] to identify the major components of the signal

which include both vegetation and ground returns (Fig. 2). We

estimated the ground return location following Chen [46] who

investigated the correlation between GLAS and airborne lidar

data in forested mountainous areas and found that the largest in

magnitude of the two lowest peaks corresponded most closely with

ground elevations.

Before deriving canopy height statistics (Fig. 3), we filtered the

waveforms by retaining signals that were greater than 4 times the

standard deviation of the noise (following [47]). Maximum

waveform vertical resolution at 1 ns pulse duration is 15 cm. We

selected a Gaussian filter of 60 cm (4 ns) in height because we were

interested in primary structural features of the canopy. We did not

evaluate other filter widths, but narrower widths may allow noise

to pass or may produce results that are difficult to interpret due to

their vertical length scale being finer than individual branches.

Canopy height was estimated from an algorithm developed by

Chen [43] for a coniferous montane location in the Pacific

Northwest that accounts for the effect of terrain slope on waveform

vegetation indices by incorporating the maximum terrain relief

distance within the laser footprint (obtained from the 10 m

National Elevation Dataset [48]) and the difference between the

start and end of the filtered and smoothed waveform signal. The

Satellite and Airborne LiDAR for Animal Habitat
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complete suite of canopy metrics derived from GLAS data is listed

in Table 1.

Airborne LiDAR
LiDAR data for Moscow Mountain (Fig. 1) was acquired in

July, 2009 using a discrete return airborne Leica ALS50 Phase II

laser system scanning with a pulse rate of ,150 kHz at 614u from

nadir. Adjacent survey transects were flown in opposing directions

with $50% overlap to ensure 100% terrain overlap for all

transects, resulting in a mean data density of ,12 points m22. A

maximum of 4 range measurements, or returns, were recorded for

each laser pulse transmission. To geolocate laser point positions,

aircraft attitude (pitch, roll, yaw) was recorded at 200 Hz by an

onboard inertial measurement unit (IMU), while sensor position

(x, y, z) was recorded at 2 Hz by an onboard differential GPS.

Aircraft attitude and sensor position were indexed by GPS time to

enable post-processing correction and calibration. Data were

projected in UTM Zone 11 North, NAD 83 using NAVD88

Figure 1. Map of woodpecker survey sites within GLAS LiDAR footprints (yellow dots) (a) in northern Idaho, and (b) survey sites
within both GLAS and airborne LiDAR (black dots) and airborne only (red dots).
doi:10.1371/journal.pone.0080988.g001

Satellite and Airborne LiDAR for Animal Habitat
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Figure 2. Example GLAS LiDAR waveform signal (bottom panel) and associated woodpecker survey location (top panel). The black
line in the graphic represents the actual laser energy signal for the plot location, while the green lines represent the decomposed signal when
expressed in best-fit Gaussian curves.
doi:10.1371/journal.pone.0080988.g002

Satellite and Airborne LiDAR for Animal Habitat
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Figure 3. Cartoon depicting locations of vegetation metrics within canopy. The green cone in the figure represents the GLAS laser footprint
scale, which subtended an area of roughly 64 m diameter. The black curve on the right of the figure represents a stylized GLAS energy return profile
for this particular cartoon arrangement of vegetation and ground.
doi:10.1371/journal.pone.0080988.g003

Table 1. GLAS LiDAR metrics considered for occupancy analysis; only the metrics denoted by double asterisks (**) were used after
collinearity analysis.

Metric abbreviation Metric

**Elev elevation (m)*

**HLI heat load index*

**p.lower proportion of total return energy that represents vegetation between 0 and 3 m above ground level (agl)

**p.mid proportion of total return energy that represents vegetation between 3 and 10 m agl

**can.height canopy height computed from Chen (2010b) algorithm

ht.mean mean canopy height agl

ht.var variance of vegetation heights

ht.cv coefficient of variation of vegetation heights

ht.med median canopy height

ht.mad median absolute deviation from median of canopy heights

Vdr vertical distribution ratio (can.height – HOME)/can.height

**veg.density canopy density – proportion of return energy representing vegetation to total return energy that includes ground returns

**HOME height of median energy density

**FHD foliage height diversity (1 m bin); diversity in vegetation distribution. See MacArthur & MacArthur, 1961

These metrics include 6 biotic factors (p.lower, p.mid, can.height, veg.density, HOME, and foliage height diversity (FHD)) and 2 abiotic factors (heat load index (HLI) and
elevation.
*Heat load index integrates measures of site slope, aspect, and latitude, computed following [81]. Note that due to difficulties in deriving slope using GLAS data, HLI and
elevation were derived from the 10-m National Elevation Database.
doi:10.1371/journal.pone.0080988.t001
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Geoid 83 for the vertical datum and NAD83 for the horizontal

datum.

The Multiscale Curvature Classification algorithm [49] was

used to delineate ground from non-ground coordinate corrected

LiDAR data. Returns classified as ground were interpolated into a

1 m resolution DEM and subtracted from non-ground classified

points to generate a topographically normalized point cloud.

Metrics describing vegetation structural characteristics were

derived from all points greater than 1 m in height within 20 m

grid cells (see Table 2 for a list of all metrics derived by airborne

LiDAR data). The 20 m grid cell resolution was used so that the

airborne LiDAR metrics could be compared with and validated

against measurements of forest structure collected in the field (see

[28]). The resultant 20 m raster grids, each representing a

vegetation height metric, were downsampled to 1 m resolution

in the vicinity of the GLAS LiDAR footprints to minimize the

effect of sampling incomplete pixels around the perimeter of the

GLAS footprint. Grid cells within a 65 m diameter circle centered

on the woodpecker survey site were aggregated to represent the

mean value of each vegetation metric and to coincide with the

GLAS footprint.

Woodpecker Surveys
We chose Red-naped Sapsuckers as the focus of our study for

multiple reasons. As part of a cavity-excavating guild, sapsuckers

are an ecologically important group owing to their status as

ecosystem engineers [36]. Sapsuckers and other woodpeckers

create keystone structures (i.e. cavities) that many other animals

use for nesting and/or roosting [37,50–52]. In addition, cavity

excavators in general rely upon a set of forest structural

characteristics that may be described via LiDAR. For instance,

Red-naped Sapsuckers forage in areas with a sparse understory,

and in sections of the canopy that are relatively open to facilitate

insect gleaning on trunks [53]. Additionally, the diameter of the

nest tree, the fraction of canopy cover, and the distribution of

vegetation are all important nest site attributes [54] and these are

all potentially quantifiable metrics from both airborne and

spaceborne LiDAR data.

Eighty two woodpecker survey sites were subsampled randomly

from within the airborne LiDAR flight during 27 May–3 July 2009

from existing song bird point count locations (Fig. 1) and within

seventy three GLAS spaceborne LiDAR footprints during 19

May–2 July 2010. A subset of survey sites (n = 39) occurred within

both spaceborne and airborne LiDAR data samples (Fig. 1). To

ensure that we were not double-counting the same birds, we

selected sites with a minimum of 340 m spacing (equating to

,12 ha surrounding each survey location) which reflects the mean

observed home range of Red-naped Sapsucker [53–55]. Surveys

conducted outside of GLAS LiDAR sites were conducted to

increase sample size for the airborne LiDAR derived occupancy

model.

Woodpecker surveys were conducted following Drever et al.

[56] using playback recordings to elicit responses from woodpeck-

ers. Two identical playbacks, each comprised of a call and drum,

were played for Red-naped Sapsuckers, with a two minute silence

in between, and all Red-naped Sapsuckers seen or heard were

recorded. Because the purpose of the surveys was to establish

breeding bird-habitat relationships, we constrained the dates of the

surveys to correspond to the breeding season of this species

[55,56]. This timing is important because the use of callbacks is

Table 2. Airborne LiDAR metrics considered for occupancy analysis; only metrics denoted by double asterisks (**) were used after
collinearity analysis.

Metric abbreviation Metric

**Elev elevation (m)*

**HLI heat load index*

p.lower proportion of total return energy that represents vegetation between 0 and 3 m above ground level (agl)

**p.mid proportion of total return energy that represents vegetation between 3 and 10 m agl

p.upper proportion of total return energy that represents vegetation between 10 and 30 m + agl

VDR Vertical distribution ratio (Goetz et al. 2007)

Density canopy density – proportion of vegetation to total energy return

Hmax maximum canopy height

Hmedian median canopy height

Hsd standard deviation of heights

Hmean mean canopy height

Crr canopy Relief Ratio (HMEAN – HMIN)/(HMAX – HMIN)

Hirq inter-quartile range of heights

**Hmode height of dominant mode (vegetation density) within return signal

**Hmrange range between minimum and maximum modes

**Hskew skewness of height profile across vegetation returns

Hkurt kurtosis of height profile across vegetation returns

**Hvar variance of vegetation density weighted height values

Hmad median absolute deviation from median height

**FHD foliage height diversity (1 m bin) see MacArthur & MacArthur, 1961

*Heat load index integrates measures of site slope, aspect, and latitude, computed following [81]. Note that while these measures are attainable using airborne lidar, to
be consistent with calculations made for GLAS data HLI and elevation were derived from the 10-m National Elevation Database.
doi:10.1371/journal.pone.0080988.t002
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only effective while the birds are breeding and territorial. Each

survey point was visited twice during the breeding season because

multiple visits are necessary in order to better evaluate detection

issues (i.e. when birds are really present but are recorded as absent

[57]). Issues of detectability were explicitly incorporated into our

analysis (see below). Surveys conducted solely within GLAS

footprints were completed in the Idaho Panhandle National Forest

(Fig. 1) in 2011 from 19 May–27 June. We selected survey sites by

comparing the 2009 airborne LiDAR dataset to an earlier

airborne LiDAR dataset flown in 2003 (see [28] for complete

description of this multi-temporal analysis) to ensure that harvest

operations had not taken place spanning the period from the first

GLAS data collection to the date of the airborne LiDAR data

acquisition.

Data Analysis
We used a t-test to compare the vegetation metrics between

occupied and unoccupied sites, and considered p#0.05 to be

statistically significant. Our model development was conducted in

an exploratory, rather than confirmatory, framework. We utilized

this exploratory approach because Walters et al. [58] notes that

breeding habitat relationships for Red-naped Sapsucker have been

conducted where aspen (Populus tremuloides) and deciduous forests

are important components of the forest, and our study sites

contained very little deciduous forest. Preliminary data analysis

revealed multi-collinearity among several GLAS and airborne

LiDAR derived vegetation height and density metrics (Tables 1

and 2). We computed condition indices and variance decompo-

sition proportions following Belsley [59] to identify the information

redundant covariates. After applying conditioning diagnostics, our

final set of site covariates included 6 biotic and 2 abiotic variables

for the GLAS LiDAR based model (Table 1) and the airborne

LiDAR based model (Table 2). We included elevation and heat

load index to account for abiotic factors that may influence nest or

foraging site selection. The 6 biotic variables are represented by

the LiDAR-derived forest structure metrics, while elevation and

heat load index were derived from the 10 m National Elevation

Dataset [37].

While species presence and absence may be modeled with

logistic regression, the approach assumes equal probability of

detection across sites and cannot account for detection probabil-

ities less than 1 [57,60,61]. Imperfect detection (i.e. p,1) produces

biased estimates of latent variables that describe the state processes

typically of interest [62,63]. We used a hierarchical occupancy

model that explicitly accounts for detection probability that is

conditional on the state process controlling species occurrence as

implemented in the R package [64] ‘unmarked’ [65]. Due to the

relatively small number of sample sizes for presence/absence

modeling for each LiDAR dataset (airborne: n = 82; GLAS:

n = 73), we pooled responses from the Moscow Mountain and the

Idaho Panhandle National Forest regions for use in a single season

occupancy model. Variables from Table 1 were used to model the

latent occupancy state of each site. To account for detection

probability, we included Julian day and a categorical measure of

weather conditions (e.g. wind, cloud cover) where increasing

values were associated with an increase in those weather variables.

We computed global, null, and reduced occupancy models for

Red-naped Sapsuckers and evaluated relative model performance

using Akaike’s Information Criterion corrected for small sample

size (AICc) [66]. We allowed for all linear combinations of

predictor variables, and excluded models where the only predictor

variables were the detectability covariates, requiring at least one

process variable (vegetation, heat load index, or elevation) to be

present. This method generated a list of models that struck a

balance between including all possible habitat structure combina-

tions, while excluding ecologically irrelevant models [67].

Global (full) model fit and checks for overdispersion were

evaluated using a likelihood ratio test procedure to compute the

deviance between the saturated model and the full model. The

deviance was then divided by the residual degrees of freedom (n–

p = 72) to assess fit and potential overdispersion. We performed all

first-order subsets regression to determine the top candidate

models; while many studies utilize DAICc,2, we opted to utilize a

more conservative DAICc,6 for final model selection evaluation

[68,69]. Where model selection uncertainty was high (e.g. weights

were ,0.3) [66], we utilized a model-averaging approach.

Parameter estimates in model averaging represent the sum of

the product of the parameter estimates in each model with their

associated model weight. As model weight tends towards zero, so

too does the value of the parameter estimate. The model-

averaging approach generates a new set of parameters that are

used to replace the original parameter estimates in the global

model. The procedure is recommended when all-subsets modeling

is performed [70] and when strong support is lacking for a single

model [66,71].

Relative variable importance was computed from model

averaged parameter estimate weights to ascertain the contribution

of each variable to the averaged model [66]. We believe our

approach to model development addresses the concerns raised by

Murtaugh [72] and Dahlgren [73], specifically with regards to

shrinkage of estimates derived from model averaging that

contribute the least amount of information to the model.

Model Cross Validation and Predictive Power
We assessed model performance using the Area Under the

Curve (AUC) from the Receiver Operator Characteristic (ROC)

curve where presence/absence probability cut-off values were

determined using k-means cluster analysis by partitioning the

predicted probabilities into 2 groups. We generated AUC scores

first with unvalidated data, and then generated AUC scores using

leave-one-out cross validation (LOOCV) to assess the degree of

over-fitting and model sensitivity. AUC values close to 0.5

represent a model whose predictions of presence/absence are no

different than random.

Results

We detected Red-naped Sapsucker responses at 48% (39 out of

82) of sites surveyed within area covered by airborne LiDAR and

at 28% (28 out of 73) of sites surveyed within area covered by

spaceborne LiDAR. Of the 155 total survey sites, 39 were

common to both airborne and spaceborne LiDAR surveys. Fifteen

of 39 Red-naped Sapsucker responses were reported at the

coincident airborne and spaceborne LiDAR sites (44%). There

were no statistical differences between the occupied and unoccu-

pied sites (Table 3).

Model Fit and Parameter Estimation
GLAS LiDAR. Global model fit was good (D = 82.8) when

compared with the residual degrees of freedom (rdof = 63) as

indicated by the over-dispersion parameter, ĉ (ĉ = 1.3). Because

ĉ<1, there is no reason to doubt the fit of the global model, nor

does over-dispersion appear to be large enough to warrant using a

quasi AICc framework [65]. Due to high model selection

uncertainty as indicated by AICc weights,0.3 (Table 4), we

proceeded with a full model averaging approach for models with

DAIC#6. Neither the original global model nor the averaged

Satellite and Airborne LiDAR for Animal Habitat
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model produced parameter estimates with acceptable confidence

as the confidence intervals all included zero (Table 5).

Airborne LiDAR. Global model fit for Red-naped Sapsuck-

ers indicated that the selection and number of parameters were

adequate to model the data compared to that of a saturated model.

The deviance was 76.6 and the overdispersion parameter (c-

hat) = 1.05 with 72 residual degrees of freedom (dof = n2p). Model

selection uncertainty in the airborne LiDAR derived models was

high according to AICc model weights so we performed full model

averaging including models with AICc#6 (Tables 6 and 7).

Foliage height diversity (FHD) was highly influential to the

averaged model (RVI = 0.95) (Table 8) and positively associated

with Red-naped Sapsucker occupancy. Other variables that were

important for this species included heat load index, the distance

between the lowest and highest vegetation biomass (hmrange), and

the distribution of distribution throughout the canopy (hskew). The

positive association with hmrange indicated that occupancy

increased with a greater vertical distance between the minimum

and the maximum nodes of vegetation biomass. Visually, this

would be represented by a gap in the vegetation structure at an

intermediate height between the biomass mode nearest to the

ground (the minimum mode likely representing the shrub layer)

and the biomass mode in the canopy (the maximum mode likely

representing the canopy). The positive relationship with hskew

indicated that there is more vegetation closer to the ground than in

the upper canopy. The proportion of vegetation in the mid-story

(2.5–10 m) was positively associated with Red-naped Sapsucker

presence but contributed the least to the averaged model

(RVI = 0.32). Wind was a detectability covariate, and occupancy

was negatively associated with high wind.

Model Cross Validation and Predictive Power
Due to the high uncertainty associated with our spaceborne

models, we did not proceed with an assessment of model

performance based on spaceborne LiDAR. The AUC score for

the airborne data indicated that the global model performed better

than random, with AUC scores ranging between 0.6 and 0.72

(Fig. 4).

Discussion

This study was novel for two reasons. First, this study addressed

whether GLAS spaceborne LiDAR data could be used for wildlife

habitat application in the case of one bird species known to be an

ecosystem engineer important to creating habitat for other forest

species in the Inland Northwest, USA. Secondly, we were able to

compare GLAS and airborne LiDAR models developed at the

same spatial scale; no studies to date have compared these LiDAR

data sets in the context of wildlife habitat assessment. LiDAR data

used in this study were averaged over an area of approximately

0.3 ha centered on the survey point. While it is unlikely that the

survey points were coincident with the centers of the home ranges

of individual birds, the 0.3 ha sampling unit coincided with the

size of the GLAS footprint. Thus, we limited our analyses to this

spatial scale in order to facilitate comparisons between the two

LiDAR data sets as applied to Red-naped Sapsucker habitat.

The model results based upon GLAS spaceborne LiDAR were

weak, which may be due to several reasons. First, we had relatively

small sample sizes; although we gathered data across three years,

fewer birds were detected during 2011. This was a wet summer,

and few birds were noted in our expanded GLAS survey sites.

Additionally, a scale mismatch may have occurred between the

spatial distribution and extent of GLAS footprints and variables

Table 3. Means and standard errors of GLAS and airborne LiDAR variables used in sapsucker models.

Metrics Occupied sites (n = 28) Unoccupied sites (n = 45)

GLAS (spaceborne LiDAR; n = 73 ) Mean SE Mean SE

Elevation (m) 950 21.1 974 17.8

HLI (heat load index) 0.842 0.014 0.871 0.009

p. lower 0.226 0.025 0.205 0.018

p.mid 0.347 0.026 0.389 0.021

Can.height (m) 34.1 2.06 32.2 1.41

Veg.density 0.897 0.014 0.905 0.011

HOME 10.87 1.02 10.96 0.669

FHD 2.092 0.015 2.11 0.012

Occupied sites (n = 39) Unoccupied sites (n = 43)

Airborne LiDAR (n = 82) Mean SE Mean SE

Elevation (m) 956 13.9 941 12.8

HLI (heat load index) 0.875 0.008 0.845 0.014

p.mid 0.205 0.019 0.239 0.022

Hmode 2.59 0.736 3.80 0.965

Hmrange 18.4 1.00 16.5 1.00

Hskew 1.51 0.244 1.35 0.340

Hvar 56.9 6.33 47.6 5.09

FHD 1.33 0.014 1.34 0.038

doi:10.1371/journal.pone.0080988.t003
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that influence Red-naped Sapsucker habitat selection, which is

likely to have affected both the GLAS results as well as the

performance of the airborne LiDAR models. Indeed, red-naped

Sapsucker may respond to habitat features at multiple spatial

scales [58], and recently Sadoti and Vierling [74] noted that

features at the home range scale (,9.1 ha) were most important in

a multi-scale analysis of selection. Multiple studies have been

conducted on Red-naped Sapsucker breeding habitat in aspen

forests [74,75], but features that might influence Red-naped

Sapsuckers in conifer-dominated forests and the associated

important spatial scales are relatively unknown [76]. Other studies

have noted that woodpeckers select habitat features at multiple

spatial scales, and these spatial scales range from nest tree

characteristics to landscape features [74,75,77,78]. We were

constrained by the spatial distribution and extent of GLAS

footprints, and were thus unable to explore the effects of multiple

scales. Furthermore, factors within the GLAS footprints that were

not detectable might have heavily influenced Red-naped Sap-

sucker occupancy (e.g. the presence of fungal conks; [75]).

The most important structural variables that influenced Red-

naped Sapsucker selection based on airborne LiDAR data

included foliage height diversity, the distance between major

components in the canopy profile, and the amount of vegetation

near the ground. When considered jointly, these three metrics

describe a vegetation profile that is uniform throughout its height

except for a larger contribution of vegetation near the ground.

Red-naped Sapsuckers have been observed to inhabit montane

conifer forests, and Walters [53] notes that increased foraging

preference was observed in areas of the canopy with fewer

branches. Conifer stands with an even distribution of foliage along

the height of the forest may represent branch structure that is

more open and accessible for foraging. Additionally, a larger

contribution of vegetation near the ground, likely representing

shrub growth and could support insects. The presence of shrub

growth likely supports an increased insect population, and Red-

naped Sapsuckers will utilize a combination of flycatching and

gleaning to forage during the breeding season [58,74].

The presence of Red-naped Sapsuckers was also positively

associated with increasing elevation and heat load index,

although their effect sizes were the smallest. Higher heat indices

indicate a preference for sites with warmer combinations of

ground slope and aspect. Studies have noted tree cavity

Table 6. All subsets models for Red-naped Sapsuckers with DAIC#6 based on airborne LiDAR data.

Model # Elev FHD HLI hmode hmrange hskew hvar p.mid wind df logLik AICc delta weight

384 70.50 115.97 27.05 266.44 82.84 83.16 254.48 20.25 10 279.57 182.24 0.00 0.44

512 78.33 113.98 30.32 263.20 92.53 92.54 253.74 17.49 20.25 11 279.47 184.70 2.47 0.13

448 73.00 90.95 24.19 249.88 55.74 111.96 23.54 20.30 10 281.13 185.35 3.12 0.09

120 21.96 107.30 65.65 73.64 88.37 221.12 8 284.19 186.36 4.12 0.06

188 108.37 193.01 273.42 140.18 327.12 64.45 8 284.34 186.66 4.42 0.05

7 228.76 153.00 4 289.12 186.76 4.52 0.05

63 339.22 196.97 37.61 145.38 371.68 7 285.96 187.43 5.20 0.03

263 234.82 186.06 20.19 5 288.53 187.84 5.61 0.03

56 34.05 170.41 111.76 106.84 144.86 7 286.22 187.96 5.72 0.03

135 229.03 133.33 5.20 5 288.60 187.99 5.76 0.02

37 142.39 33.49 4 289.76 188.04 5.81 0.02

149 95.41 254.03 258.84 5 288.64 188.08 5.84 0.02

124 63.46 76.63 251.78 63.56 51.64 234.86 8 285.08 188.13 5.89 0.02

doi:10.1371/journal.pone.0080988.t006

Table 5. Model averaged parameter estimates, standard
errors, and 95% confidence intervals using GLAS LiDAR data.

Parameter Estimate Std. Error Lower CI Upper CI

Occupancy elev 69.6 116 2157 296

FHD 110 291 2461 681

HLI 56.5 196 2327 440

hmode 259.4 87.4 2231 112

hmrange 82.8 179 2268 434

hskew 112 316 2507 731

hvar 250.7 103 2253 152

p.mid 19.7 74.5 2126 166

Detection wind 20.26 0.20 20.64 0.13

doi:10.1371/journal.pone.0080988.t005

Table 7. Original global model parameter estimates, standard
errors, and 95% confidence intervals using airborne LiDAR
data.

Parameter Estimate Std. Error Lower CI Upper CI

Occupancy Elev* 78.3 248 61.7 112

HLI* 30.3 91.3 16.9 47.9

p.mid 17.5 98.0 217.6 41.2

FHD* 114 301 92.9 146

Hmode* 263.2 166 280.2 253.0

Hmrange* 92.5 343 48.0 138

Hskew* 92.5 268 61.2 141

Hvar* 253.7 212 279.1 227.9

Detection wind 20.25 0.20 20.65 0.12

*Confidence intervals do not include zero.
doi:10.1371/journal.pone.0080988.t007
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entrances located on southern aspects in British Columbia [53],

and Colorado and Wyoming [79], to no apparent directional

preference in Montana [54]. However, while Martinuzzi et al.

[18] found that slope and aspect could affect the presence of

forest snags near the study area, we are not aware of any

studies that indicate slope or aspect preference for the nest tree

location within the landscape.

Our results demonstrated that small-footprint airborne

LiDAR data were able to provide ecologically meaningful

information relative to occupancy for Red-naped Sapsuckers

when aggregated and analyzed at a scale similar to that

sampled by the large-footprint GLAS satellite LiDAR. This

finding indicates that the forest structural metrics calculable

from airborne LiDAR were likely more suitable for modeling

habitat of this bird than GLAS-based structural metrics at this

spatial scale. However, because not all samples contained

coincident airborne and satellite lidar, this finding requires

further testing at additional field sites and wildlife species, and

underscores the need for denser spatial sampling in future

satellite-based LiDAR missions for application to mapping and

modeling wildlife distributions (see [30]). While the large

footprint and non-contiguous nature of GLAS data poses

significant challenges for wildlife distribution modeling, these

data do provide useful information on ecosystem vertical

structure, particularly in areas of gentle terrain (e.g. [80]). We

therefore encourage the remote sensing and wildlife communi-

ties to join efforts so that additional progress can be made to

incorporate LiDAR datasets collected from both airborne and

past and future satellite platforms (e.g. GLAS, and the planned

IceSAT2 mission) with the prospect of improving wildlife

biodiversity and single-species modeling for more locations

across the globe.
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