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Abstract

Chronic stress is the major cause of clinical depression. The behavioral signs of depression, including anhedonia, learning
and memory deficits, and sleep disruption, result from the damaging effects of stress hormones on specific neural
pathways. The Chinese tree shrew (Tupaia belangeri chinensis) is an aggressive non-human primate with a hierarchical social
structure that has become a well-established model of the behavioral, endocrine, and neurobiological changes associated
with stress-induced depression. The tricyclic antidepressant clomipramine treats many of the core symptoms of depression
in humans. To further test the validity of the tree shrew model of depression, we examined the effects of clomipramine on
depression-like behaviors and physiological stress responses induced by social defeat in subordinate tree shrews. Social
defeat led to weight loss, anhedonia (as measured by sucrose preference), unstable fluctuations in locomotor activity,
sustained urinary cortisol elevation, irregular cortisol rhythms, and deficient hippocampal long-term potentiation (LTP).
Clomipramine ameliorated anhedonia and irregular locomotor activity, and partially rescued the irregular cortisol rhythm. In
contrast, weight loss increased, cortisol levels were even higher, and in vitro LTP was still impaired in the clomipramine
treatment group. These results demonstrate the unique advantage of the tree shrew social defeat model of depression.
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Introduction

Major depressive disorder is characterized by low mood, loss of

interest or pleasure in normally enjoyable activities, feelings of

guilt, and chronic lack of energy. It is also a neuropsychiatric

syndrome characterized by impaired structural and synaptic

plasticity as well as neuronal damage [1]. According to ICD-10

and DSM-IV diagnostic criteria, a clinical diagnosis requires

expression of at least two of the three core symptoms (persistent

sadness, loss of interest, fatigue) for at least 2 weeks [2].

Disruption of neuroendocrine function may underlie many

symptoms of depression [3]. The hypothalamic-pituitary-adrenal

(HPA) axis is overactive in depressed patients, as reflected by

elevated plasma cortisol and adrenal gland hypertrophy [4]. The

hippocampus provides negative feedback to the HPA axis and is

critical for certain forms of learning and memory [5]. Patients with

HPA axis dysfunction also exhibit hippocampal atrophy, which

may further disinhibit the HPA axis and cause further limbic

system dysfunction [6,7]. Activity-dependent synaptic plasticity is

believed to be a neurocellular mechanism underlying some forms

of learning and memory, and hippocampal synapses demonstrate

several forms of synaptic plasticity [8,9]. In experimental animals,

stress impairs learning and memory and alters the threshold or

duration of synaptic plasticity. For example, stress impairs long-

term potentiation (LTP) and enhances long-term depression

(LTD) in the hippocampus in vitro and in vivo [10–12].

Rodents and non-human primates are used extensively as

models to study the behavioral, neuroendocrine, and neurological

changes associated with depression. Animals exposed to chronic

stress exhibit behavioral endophenotypes of depression and

physiological changes similar to those observed in human patients.

Moreover, these anomalies are responsive to antidepressant

treatment. Stressful life events are a major cause of depression

[13–15]. Early life stress can trigger lasting depression-like

behaviors in non-human primates [16]. While higher primates

may be the most robust model of human psychiatric disease,

prohibitive cost, the long experiment cycle, and animal rights

issues have led to the establishment of rodent models that exhibit

both similar physiological responses to stress and behavioral

phenotypes useful for studying the physiological basis of depression

and the efficacy of antidepressant drugs. Rodent models can be

divided into three categories: models of acute stress, models of

secondary or iatrogenic depression, and chronic stress models [17].

The forced swim test and tail suspension test are used mainly to
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test antidepressant action, but they do not fully cover the

complexities of human depressive symptoms. In contrast, the

unpredictable chronic mild stress (UCMS) model shows predictive

and construct validity for depression [18,19]. However, the

neurological, endocrine, and behavioral changes may vary with

the UCMS model employed, making analysis of pathogenesis

difficult. Moreover, UCMS stimuli (electric shocks, restraint, etc.)

have little resemblance to stressful life events in the natural

environment. Almost all studies of UCMS models have focused on

the 4 to 5 weeks after mild stress treatment [20]. Thus, a new

animal model with a single behaviorally relevant stressor and a

clinically relevant time scale is required.

Phylogenetic analysis of 15 mammalian species, including six

primates, has shown that the tree shrew is the closest relative of

primates [21,22], and several recent reports indicate that chronic

psychosocial stress in tree shrews is a robust model of clinical

depression. Chronic psychosocial stress can cause body weight

loss, elevated cortisol, adrenal gland hypertrophy, reduced

testosterone [23,24], hippocampal atrophy, and downregulation

of glucocorticoid and mineralocorticoid receptors in these animals,

as well as depression-like behavioral changes [25–27]. However,

the core symptoms of depression such as anhedonia, and synaptic

plasticity of subordinate tree shrews in this model has not been

studied. Here, we used the chronic social defeat model in male

Chinese tree shrews (Tupaia belangeri chinensis) to investigate whether

chronic antidepressant treatment improves core symptoms of

depression, synaptic plasticity and other depression-like behaviors.

To better mimic the time scale of human depression, we measured

activity during 4 weeks of clomipramine administration and after a

1-week recovery (no treatment) period.

Materials and Methods

Animals and Ethics Statement
Adult male Chinese tree shrews (Tupaia belangeri chinensis, N = 18)

weighing 1302160 g were obtained from a breeding colony at the

Animal House Center of the Kunming Institute of Zoology. All

animals were provided ad libitum access to food and water. They

were housed individually in thermoregulated rooms (T: 25,27 uC,

RH: 55%,70%) under a 12 h light/dark cycle (light, 8:00–20:00;

dark, 20:0028:00). All animal care and experimental protocols

were approved by the Animal Care and Use Committee of

Kunming Institute of Zoology, Chinese Academy of Sciences, P.

R. China.

Experimental Procedures
The experimental design was similar to that described

previously [24,28,29]. In brief, the experiment included four

phases (Fig. 1): baseline (Week 1), chronic social defeat (SD, Week

2), drug or vehicle administration with social defeat (Weeks 326),

and recovery (Week 7). Animals were divided into three groups of

six: Naı̈ve, Subordinate+Saline (Sub+Sal), and Subordinate+Clo-

mipramine (Sub+Clo). For the first week (baseline), tree shrews

were adapted to a paired cage (100 cm668 cm686 cm, w6d6h)

consisting of two individual cages connected by a door normally

blocked by a wire mesh partition. The front of the paired cage was

made of glass to allow observation of animal behavior. During the

SD phase, animals in the Sub+Sal and Sub+Clo groups were

allowed daily direct access for 1 h at an unpredictable time

between 9:00 and 18:00 by removing the barrier. This resulted in

a brief fighting episode to establish the social hierarchy. The

avoider tree shrew was regarded as the subordinate of the pair and

the other as the dominant. For the remainder of each day, both

animals were exposed to visual, auditory, and olfactory cues. After

seven days of daily social defeat, subordinate tree shrews were

treated with clomipramine (50 mg/kg per day, Sigma) or vehicle

(0.9% saline) orally for the next 4 weeks (drug phase) while still

experiencing daily social defeat. Drug or vehicle was administered

between 07:45 and 08:00 A.M. [19].

Animals of the Naı̈ve group were individually housed and left

undisturbed in the same type of cage and under the same

environmental conditions (T, RH) as the two experimental groups.

Every weekend, animals were weighed, morning urine samples

collected, sucrose solution and water consumption measured, and

behavior videotaped.

Measurements
Body weight and behavioral analysis. Tree shrews were

weighed in the morning and videotaped between 17:30218:00

P.M. through the glass side of the paired cage. A Noldus

EthoVision XT Version 8.0 video tracking system (Wageningen,

the Netherlands) was set to analyze locomotor behaviors, which

was used to assess motor fatigue and/or agitation [30,31], and self-

grooming behavior. Locomotion number was recorded, including

the number of jumping in the activity area and the number of

passages between the sleeping-box and activity area of the cage.

This recording schedule was chosen to avoid the confounding

effects of human activity around the cages by staff during

weekdays.

Sucrose consumption test. In our previous study, we found

that 5% was the best sucrose concentration for the tree shrew

sucrose consumption test [32]. All experimental animals were

adapted to 2% sucrose solution 24 h before the test, which was

performed once a week. During the sucrose consumption test,

animals were given two bottles, one containing 200 ml of 5%

sucrose solution and the other 200 ml of water. The bottle position

was changed randomly (left vs. right). The volumes of sucrose

solution and water consumed over the next 24 h were recorded.

Sucrose preference was calculated as follows:

Sucrosepreference~

Sucroseconsumption

SucroseconsumptionzWaterconsumption
|100%

Figure 1. The experimental design. The experiment included three
experimental groups, Naı̈ve, Subordinate+Saline (Sub+Sal), and Sub-
ordinate+Clomipramine (Sub+Clo), and four phases. Phase 1 consisted
of a 7 day stress-free period during which the animals adapted to the
experimental environment. Phase 2 was the social defeat (SD) phase
during which animal pairs in the Sub+Sal and Sub+Clo groups housed
separately in connected cages were allowed direct access to fight for
social dominance. In contrast, Naı̈ve group tree shrews remained
undisturbed. Phase 3 was the drug administration plus SD phase lasting
28 days during which the subordinate (Sub) tree shrews were exposed
to daily social defeat stress as before but also treated daily with oral
clomipramine (50 mg/kg/day) or saline (1 ml/kg/day). The final recovery
phase consisted of a 7 day period with neither social defeat nor drug
treatment.
doi:10.1371/journal.pone.0080980.g001
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Analysis of urinary cortisol. Urine samples were collected

between 7:45208:00 A.M. once every weekend and 12 h urine

samples were collected from 08:00 to 20:00 on the final week.

Urine samples were stored at –20 uC until analysis and free cortisol

measured by an Iodine [125I] cortisol radioimmunoassay kit

(Beijing North Institute of Biological Technology, China) on a c
radioimmunity counter (GC-2010, Zonkia, Anhui, China).

Electrophysiological Recording
Slice preparation. After the recovery week (Week 7),

hippocampal slices were prepared from control (Naı̈ve), clomip-

ramine-treated (Sub+Clo), and saline-treated (Sub+Sal) tree

shrews using procedures described previously [33,34]. Briefly,

the animal was deeply anesthetized with diethyl ether. After

decapitation, the brain was carefully removed. Coronal hippo-

campal slices were prepared at 350 mm using a vibratome (Leica,

VT 1000S) in ice-cold oxygenated (95% O2/5% CO2) cutting

medium containing (in mM) 206 sucrose, 2.5 KCl, 1.25

NaH2PO4, 26 NaHCO3, 10 D-glucose, 3 MgSO4, 1 ascorbic

acid, and 2 CaCl2 H2O (pH 7.227.4, 3002310 mOsm). After

submerged incubation for 45 min at 31 uC in cutting solution,

slices were transferred and submerged in a holding chamber

containing oxygenated (95% O2/5% CO2) ACSF (in mM: 120

NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 D-glucose, 2

MgSO4, 1 ascorbic acid, and 2 CaCl2NH2O, pH 7.227.4,

3002310 mOsm) and incubated at room temperature (RT) for

at least 30 min before recording.

Field excitatory postsynaptic potential recording and
data analysis. Field excitatory postsynaptic potentials (fEPSPs)

in the hippocampal CA1 area were recorded in a chamber

maintained at RT and superfused with standard ACSF plus

100 mM picrotoxin (Sigma) as described in our previous study

[35]. Evoked fEPSPs of about 50% of maximum amplitude were

recorded from the stratum radiatum in response to 0.1 ms stimuli

from an electrode made from a pair of twisted Teflon-coated 90%

platinum/10% iridium wires (0.025 mm diameter, World Preci-

sion Instruments) placed in the Schaffer collateral/commissural

(SC) pathway. Only slices with a maximum fEPSP amplitude

greater than 0.5 mV were included in this study. Signals were

amplified using a Multiclamp 700B amplifier (Axon CNS

Molecular Devices), low-pass filtered at 2 kHz, and digitized at

10 kHz. Recording electrodes (resistance, 1–3 MV) were pulled

from borosilicate glass capillary tubes (1.5 mm outer diameter,

0.84 mm inner diameter, World Precision Instruments) using a

Brown-Flaming micropipette puller (P-97; Sutter Instruments

Company) and filled with standard ACSF. A stable 20 min

baseline was established at 0.033 Hz and LTP induced by high

frequency stimulation (HFS, three trains of 1-s stimulation at

100 Hz with 20 s inter-train intervals) at the same stimulation

intensity. The magnitude of LTP was calculated from the average

of the last 10 min of recording (20 individual sweeps 50260 min

post tetanus) and reported as the (%) mean 6 SEM of baseline

fEPSP amplitude.

Statistical Analysis
Data was analyzed using SPSS 19.0 (SPSS, Inc., Chicago, IL,

USA). Differences in LTP amplitude between Sub+Sal and

Sub+Clo groups were tested for statistical significance by one-

way ANOVA followed by post hoc Fisher’s LSD test. Each

physiological or behavioral parameter was measured once weekly,

averaged within groups (Naı̈ve, Sub+Sal, and Sub+Clo), and

expressed as mean 6 SEM. To judge the success of the depression

model, the effects of 1 week of social defeat on the various

parameters and behaviors measured were tested by one-way

ANOVA followed by post hoc Fisher’s LSD test. To assess the

therapeutic efficacy of clomipramine, we analyzed data from

Weeks 226 using both a repeated measures ANOVA followed by

within-group analysis to investigate the possible interaction of

experimental group and time (group 6 time) and a one-way

ANOVA followed by Fisher’s LSD test to compare group means.

Data from the last 2 weeks, including the last week of treatment

(saline or clomipramine) and the recovery week, were compared

by two-way ANOVA to assess the efficacy of clomipramine during

the recovery phase. The significance level for all tests was set at

P,0.05.

Results

Clomipramine did not rescue decreased body weight
associated with social defeat

Chronic social defeat caused a modest but statistically significant

decrease in body weight gain (Fig. 2), and clomipramine treatment

did not reverse this effect [group: F(2,15) = 7.264, P = 0.006; time:

F(4,60) = 1.660, P = 0.171]. Subordinate animals were still signifi-

cantly lighter than naı̈ve subjects even after 4 weeks of oral

clomipramine treatment (Week 6) [F(2,15) = 14.937, P = 0.000] and

reduced body weight was maintained in both Sub+Sal and

Sub+Clo groups after the 1-week recovery period (Week 7)

[F(2,30) = 25.502, P = 0.000].

Clomipramine partially reversed anhedonia and fatigue
associated with chronic social defeat

To examine whether clomipramine can ameliorate depression-

like behaviors in tree shrews, we compared sucrose preference (a

measure of anhedonia) and locomotion (to assess motor fatigue

and/or agitation) (Fig. 3). Anhedonia was measured by reduced

preference for 5% sucrose over water. While sucrose was preferred

by all three groups as evidenced by the ratio of 5% sucrose to

water consumed (<80%295% of total fluid consumed was the

sucrose solution), the Sub+Sal group exhibited reduced sucrose

consumption compared to Naı̈ve animals. Comparison among

groups showed no significant difference in 5% sucrose consump-

tion [F(2,15) = 2.454, P = 0.120; Fig. 3A]. Post hoc analysis revealed

a clear decrease in sucrose preference in the Sub+Sal group

compared to the Naı̈ve group (P = 0.050) but no difference

Figure 2. Clomipramine did not reverse weight loss associated
with chronic social defeat stress. In the Naı̈ve group, body weight
increased over time. Chronic social defeat inhibited weight gain and
this effect was not altered by clomipramine. After 4 weeks of
clomipramine administration, body weight was still significantly lower
in subordinate tree shrews. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0080980.g002
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between the Sub+Clo and Naı̈ve groups (P = 0.596), as well as

Sub+Sal group (P = 0.133), indicating that clomipramine reversed

anhedonia in this animal model.

Fatigue was reflected by reduced locomotor activity, including

less jumping and fewer times passing from the sleeping-box to the

activity area. One week of social defeat caused a significant

reduction in locomotion number [F(2,15) = 4.331, P = 0.033; Fig.

3B]. During the next 4 weeks of daily fighting and treatment, the

Naı̈ve group showed a relatively steady locomotor activities, but

neither the Sub+Sal nor Sub+Clo groups exhibited unstable

fluctuations in locomotion [time 6 group: F(8,60) = 2.159,

P = 0.044; Fig. 3B]. Locomotion decreased after one week stress

exposure and then rose at the next week. At the 4th week, the

locomotion decreased again, and higher in the next two weeks. In

the recovery phase, the Sub+Sal group exhibited lower locomotor

activity than the Naı̈ve group, while activity in the Sub+Clo group

recovered to Naı̈ve group levels. Thus, chronic social defeat

caused anhedonia and motor fatigue, and these depression-like

behaviors were ameliorated by clomipramine.

Clomipramine had no effect on urinary cortisol and self-
grooming behavior

Chronic social defeat resulted in elevated urinary cortisol (Fig.

4A). Urinary cortisol recovered over Weeks 6 to 7 to near control

levels in the Sub+Sal group but remained elevated in the Sub+Clo

group. Thus, clomipramine did not reverse this sign of stress-

induced HPA dysregulation, and may have even prolonged it.

From Week 2 to Week 6, the comparison among groups revealed

no significant difference in morning urinary cortisol levels

[F(2,15) = 2.948, P = 0.083; Fig. 4A]. However, post hoc analysis

revealed significantly higher urinary cortisol in the Sub+Clo group

after 4 weeks of clomipramine treatment compared to the Naı̈ve

group (P = 0.030). Whereas, there had no significant different

between Sub+Sal and Naı̈ve group (P = 0.407), as well as Sub+Clo

(P = 0.144). The high level of urinary cortisol had lasted through

the recovery phase [F(2,30) = 3.690, P = 0.037].

To investigate whether the cortisol level of vehicle-treated

subordinate tree shrew were return back to normal, we tested the

cortisol rhythm of all animals at the recovery phase (Fig. 4B). The

cortisol rhythm of Sub+Sal group showed disorder comparing with

Naı̈ve group, which was partially normalized by clomipramine,

especially at the time of peak activity (16:00 to 17:00).

Self-grooming behavior, as a behavioral feature often related to

HPA axis activity, was also analyzed (Fig. 4C). Compared with

Naı̈ve group, the autogrooming of Sub+Sal group was fluctuated.

After 28 days clomipramine treatment, it was tend to stable.

Clomipramine did not rescue impaired hippocampal LTP
in subordinate tree shrews

Activity-dependent changes in synaptic strength, including LTP

and LTD, can be altered by stress. As expected, chronic social

defeat impaired LTP [F(2,15) = 2.987, P = 0.081; Fig. 5C]. Post hoc

analysis revealed that 5 weeks of social defeat stress impaired in

vitro LTP in the hippocampal SC2CA1 pathway of the Sub+Sal

group (P = 0.035) and Sub+Clo group (P = 0.087) compared to the

Naı̈ve group, and LTP in the Sub+Clo group was not significantly

different from the Sub+Sal group (P = 0.525).

Discussion

The present study examined whether 4 weeks of daily

antidepressant treatment reduced the core symptoms of depression

and rescued hippocampal plasticity in the T. b. chinensis chronic

social defeat model of depression. Chronic social defeat in male

tree shrews caused statistically significant decreases in body weight

and sucrose preference, unstable fluctuations in locomotor activity

and self-grooming behavior, and elevated urinary cortisol. After 4

weeks of clomipramine administration, anhedonia was ameliorat-

ed and fluctuations in locomotion and autogrooming behavior

normalized. In contrast, irregular cortisol rhythm was only partly

restored, weight loss was actually larger, and urinary cortisol

higher in the clomipramine treatment group. In addition,

clomipramine did not restore the hippocampal LTP deficit

associated with chronic social defeat stress. These results highlight

the utility of social defeat stress in tree shrews to model depression.

We suggest that anti-depressants may ameliorate some depression-

like behaviors but not others by selective effects on the

neurobiological mechanisms controlling these behaviors. Thus,

clomipramine may reduce anhedonia by restoring proper function

of the dopaminergic reward pathways but may not rescue forms of

learning and memory dependent on hippocampal LTP.

Figure 3. Clomipramine ameliorated anhedonia and psycho-
motor instability associated with chronic social defeat stress.
(A) All groups preferred 5% sucrose to water, but preference was
significantly higher in the Naı̈ve group compared to the Sub+Sal group.
Normal sucrose preference was restored in the Sub+Clo group. (B) In
the unstressed Naı̈ve Group, locomotor activities were stable. Stress
induced an unstable fluctuation in locomotor activity in both Sub+Sal
and Sub+Clo groups, but the Sub+Clo group exhibited locomotor
activity levels similar to the Naı̈ve group by the recovery phase.
*p,0.05.
doi:10.1371/journal.pone.0080980.g003
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Clomipramine treated two core symptoms of depression
shared by humans and animal models

Anhedonia, one of the core symptoms of depression, has been

widely used in rodent depression model to evaluation degree of

depression and effect of antidepressant drug [36]. Reduced

preference for sucrose solution over water is a widely used animal

model of anhedonia. Anhedonia in both experimental models and

depressed patients implies a defective reward system [37] that can

be effectively treated by the tricyclic antidepressants (TCAs)

[38,39]. The major difference between tree shrews and rodents is

the concentration of sucrose needed to demonstrate stress-induced

anhedonia. Most rodent models use 1% sucrose [40], while our

previous studies found that tree shrews preferred 5% sucrose [32].

In most models, including the tree shrew chronic social defeat

model, stressed subjects exhibit reduced sucrose uptake that is

restored by clomipramine or other antidepressants.

Depressed or irritable mood and psychomotor retardation are

also common symptoms of depression [41]. Psychomotor agitation

Figure 4. Effect of chronic social defeat and clomipramine on
urinary cortisol and self-grooming behavior. (A) In the Naı̈ve
group, the concentration of urinary cortisol remained constant
throughout the entire experiment. In the Sub+Sal group, stress induced
a sustained elevation in urinary cortisol. Similarly, urinary free cortisol
was elevated throughout the whole stress period in the Sub+Clo group.
(B) On Week 7, urinary cortisol rhythm was measured in all groups.
Clomipramine reduced urinary cortisol at 16:00–17:00, the time of peak
activity for tree shrews. (C) Self-grooming behavior of both Sub+Sal and
Sub+Clo groups were increased after 1 week social defeat. From 2 to 6
weeks, the number of autogrooming behavior in Sub+Sal group
animals showed fluctuated relative to Sub+Clo group.
doi:10.1371/journal.pone.0080980.g004

Figure 5. Clomipramine did not rescue deficient SC-CA1 long-
term potentiation in subordinate tree shrews. (A) Micrograph
showing the positions of the stimulating electrode (S) and the
recording electrode (R) in the tree shrew hippocampal CA1 (scale bar:
350 mm). (B) LTP induced by high-frequency stimulation (HFS) in Naı̈ve
(N = 4 animals, n = 6 slices), Sub+Sal (N = 4, n = 5), and Sub+Clo tree
shrews (N = 4, n = 7). Inset above: Typical fEPSPs recorded at baseline
and 50260 min post-HFS (horizontal bar: 5 ms, vertical bar: 0.5 mV for
each group). (C) There was no significant difference in LTP at 50260
min post-HFS between the Sub+Sal and Sub+Clo group. Both groups
exhibited impaired LTP compared to the Naı̈ve group. *p,0.05
compared to the Naı̈ve group.
doi:10.1371/journal.pone.0080980.g005
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is relatively more common in bipolar depression but is also seen in

19% of cases with unipolar depression [42]. The olfactory

bulbectomized rodent is thought to be the best model of agitated

depression and TCA drugs can partially reverse this symptom, but

this is not a stress-related depression animal model [43–45].

Previous studies on tree shrews did not report this phenomenon;

rather, chronic psychosocial stress always caused a reduction in

locomotor activity. Clomipramine did not counteract this effect of

stress after 3 weeks of administration, but did after 30 days [46–

48]. In our study, the Noldus EthoVision XT Version video

tracking system revealed a significant decrease in locomotor

activity in subordinate tree shrews beginning during the first week

of social defeat. As fighting continued, however, we observed

unstable fluctuations in locomotor activity in both vehicle- and

clomipramine-treated animals compared with relatively steady

locomotion in naı̈ve subjects. The unstable fluctuation possibly

reflected alternating periods of psychomotor depression and

agitation. During the recovery phase, the drug-treated group

showed the same level of locomotion as the Naı̈ve group,

suggesting that the efficacy of clomipramine was delayed by

several weeks, consistent with clinical studies [41,49] and

underscoring the predictive validity of this model of depression.

Irregular urine cortisol and self-grooming behavior were
stabled by chronic clomipramine treatment

The HPA axis is an essential component of the stress response,

but excessive and chronic activation of the axis has been

implicated in depression. Hyperactivity of the HPA axis is

observed in the majority of patients with depression [50,51] and

can be normalized by administration of clomipramine [52]. Like

humans, cortisol is also the main stress-related hormone in tree

shrews [32]. In the previous studies, psychosocial stress induced a

sustained and significant activation of the HPA axis in subordinate

tree shrews, which was decreased by daily treatment of clomip-

ramine [47,53]. The same as our results, later researches reported

chronic social defeat induced a sustained urinary cortisol elevation

in northern tree shrews (T. belangeri) that was not rescued by

clomipramine treatment [48]. Other behavior task such as self-

grooming behavior, which is often related to HPA axis activity, is

presumably an essential behavior for mammals. Here, we also

analyzed self-grooming behavior of tree shrews. The result showed

that social defeat stress seemed to increase the self-grooming in

Sub+Sal and Sub+Clo groups. Consistent with the unstable

locomotion and irregular cortisol level, the self-grooming behavior

fluctuated in Sub+Sal group which was stable with clomipramine

administration. However, it is different from previous studies by

Fuchs et al. [53]. They found that self-grooming of subordinate

tree shrews was decreased. The explanation may be the difference

between species, individuals, and situations. In the present study,

the animal (T. b. chinensis) we used was one of subspecies in Tupaia

belangeri, belonging to genus Tupaia, family Tupaiidae in the order

Scandentia. The results showed that clomipramine administration

could stabilize cortisol level, irregular rhythm and self-grooming

behavior. It indicated that dysregulation of HPA was eased by

chronic clomipramine treatment, suggesting compromised habit-

uation of the HPA axis by clomipramine. Additional studies are

required to unravel the pharmacological mechanisms for this

effect. Regardless of the mechanism, there was a clear disconnect

between some stress-associated responses and others, and this may

reflect the specific stress paradigm used. In this model, animals

fought daily, which may lead to stress even in the dominant male.

Chronic social defeat suppressed synaptic plasticity in
the hippocampus

Human brain imaging and autopsy studies on the brains of

depressed patients have shown marked alterations in the size,

cytoarchitecture, and biochemistry of several brain areas involved

in the stress response, including regions of the hippocampus,

amygdala, thalamus, prefrontal cortex, cingulate cortex, and

striatum [41,54]. Reduced hippocampal volume, loss of excitatory

synapses, and dendritic atrophy may explain many of the cognitive

deficits in major depression [55–57]. Indeed, hippocampus-

dependent memory impairment was correlated with hippocampal

volume reduction [58]. Chronic psychosocial stress can lead to a

reduction in hippocampal volume and downregulation of gluco-

corticoid and mineralocorticoid receptors, which may in turn

inhibit synaptoplastic mechanisms associated with cognitive

function in patients with depression [25–27,59]. In the coronal

hippocampal slice, tetanic simulation of the SC projection to CA1

pyramidal cells can induce LTP [9]. Tree shrews also showed

robust LTP in this glutamatergic pathway, while social defeat

stress led to LTP failure, providing a possible explanation for the

cognitive deficits associated with social defeat [60,61]. After 4

weeks of clomipramine treatment and 1 week of recovery,

subordinate tree shrews still displayed impaired LTP induction

and clomipramine did not rescue this deficiency. Tricyclic

antidepressant can actually worsen memory dysfunction in

depressed patients [62], again indicating that this drug may

normalize some neurobiological processes, such as those associated

with pleasure seeking, but not others.

Side-effects of clomipramine
While TCA has proven beneficial for many depressed patients

over the past decades, there are serious side effects that may be

intolerable or dangerous for some patients [63]. Significant weight

gain or loss is a common depressive symptom [41]. Our present

study showed that chronic social defeat could cause significant

weight loss in stressed tree shrews. Previous clinical studies show

that when administered long term, TCAs typically disrupt central

appetite control centers dependent on cholinergic and histamin-

ergic neurons [64], and changes in weight are a major reason for

non-compliance or termination of therapy. In this study,

clomipramine exacerbated weight loss in subordinate tree shrews,

a response warranting further study to elucidate the neurobiolog-

ical mechanisms mediating the effects of TCAs and other

antidepressants on weight regulation.

In conclusion, subordinate tree shrews having experienced

chronic social defeat exhibit many symptoms and behaviors

similar to those observed in depressed patients, including weight

loss, anhedonia, dysfunction of the HPA axis, fatigue, and agitated

depression. In addition, these animals demonstrate impaired

hippocampal LTP, a feature shared by rodent models of

depression. The parallel effects of clomipramine on human and

tree shrew responses are suggestive of this model’s robust

predictive, face, and construct validity for investigating the etiology

and pathophysiology of major depression.
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